The Multicolored Graph Realization Problem

dc.contributor.author Diaz, Josep
dc.contributor.author Diner, Oznur Yasar
dc.contributor.author Serna, Maria
dc.contributor.author Serra, Oriol
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:40:41Z
dc.date.available 2024-10-15T19:40:41Z
dc.date.issued 2024
dc.description Serna Iglesias, Maria Jose/0000-0001-9729-8648; Diner, Oznur Yasar/0000-0002-9271-2691; Serra, Oriol/0000-0001-8561-4631 en_US
dc.description.abstract We introduce the multicolored graph realization problem (MGR). The input to this problem is a colored graph ( G , phi ), i.e., a graph G together with a coloring phi on its vertices. We associate each colored graph ( G , phi ) with a cluster graph ( G phi ) in which, after collapsing all vertices with the same color to a node, we remove multiple edges and self -loops. A set of vertices S is multicolored when S has exactly one vertex from each color class. The MGR problem is to decide whether there is a multicolored set S so that, after identifying each vertex in S with its color class, G [ S ] coincides with G phi . The MGR problem is related to the well-known class of generalized network problems, most of which are NP -hard, like the generalized Minimum Spanning Tree problem. The MGR is a generalization of the multicolored clique problem, which is known to be W [ 1 ] -hard when parameterized by the number of colors. Thus, MGR remains W [ 1 ] - hard, when parameterized by the size of the cluster graph. These results imply that the MGR problem is W [ 1 ] -hard when parameterized by any graph parameter on G phi , among which lies treewidth. Consequently, we look at the instances of the problem in which both the number of color classes and the treewidth of G phi are unbounded. We consider three natural such graph classes: chordal graphs, convex bipartite graphs and 2 -dimensional grid graphs. We show that MGR is NP -complete when G phi is either chordal, biconvex bipartite, complete bipartite or a 2 -dimensional grid. Our reductions show that the problem remains hard even when the maximum number of vertices in a color class is 3. In the case of the grid, the hardness holds even for graphs with bounded degree. We provide a complexity dichotomy with respect to cluster size. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). en_US
dc.description.sponsorship Spanish Agencia Estatal de Investigacion [PID2020-113082GB-I00, PID2020-112581GB-C21]; AGAUR [2017-SGR-786]; Scientific and Technological Research Council [BIDEB 2219-1059B191802095]; Kadir Has University [2018-BAP-08] en_US
dc.description.sponsorship We thank the anonymous referees for their careful reading and helpful suggestions. J. Diaz and M. Serna are partially supported by funds from the Spanish Agencia Estatal de Investigacion under grant PID2020-112581GB-C21 (MOTION) , and from AGAUR under grant 2017-SGR-786 (ALBCOM) . OE. Y. Diner is partially supported by the Scientific and Technological Research Council Tuebitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra is supported by the Spanish Agencia Estatal de Investigacion under grant PID2020-113082GB-I00. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.dam.2022.06.031
dc.identifier.issn 0166-218X
dc.identifier.issn 1872-6771
dc.identifier.uri https://doi.org/10.1016/j.dam.2022.06.031
dc.identifier.uri https://hdl.handle.net/20.500.12469/6388
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Discrete Applied Mathematics
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Multicolored realization problem en_US
dc.subject Generalized combinatorial problems en_US
dc.subject Parameterized complexity en_US
dc.subject Convex bipartite graphs en_US
dc.title The Multicolored Graph Realization Problem en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Serna Iglesias, Maria Jose/0000-0001-9729-8648
gdc.author.id Diner, Oznur Yasar/0000-0002-9271-2691
gdc.author.id Serra, Oriol/0000-0001-8561-4631
gdc.author.institutional Yaşar Diner, Öznur
gdc.author.wosid Serna Iglesias, Maria Jose/B-7688-2016
gdc.author.wosid Diner, Oznur Yasar/AAT-7443-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Diaz, Josep; Serna, Maria] Univ Politecn Cataluna, Comp Sci Dept, ALBCOM Res Grp, Barcelona, Spain; [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkiye; [Diner, Oznur Yasar; Serra, Oriol] Univ Politecn Cataluna, Math Dept, Barcelona, Spain; [Diaz, Josep; Serna, Maria; Serra, Oriol] Univ Politecn Cataluna, UPC BarcelonaTech IMTech, Inst Matemat, Barcelona, Spain en_US
gdc.description.endpage 159 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 146 en_US
gdc.description.volume 354 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3136718917
gdc.identifier.wos WOS:001248611100001
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.downloads 57
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7383333E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Discrete Mathematics (cs.DM)
gdc.oaire.keywords Complex networks
gdc.oaire.keywords Color
gdc.oaire.keywords Parameterization
gdc.oaire.keywords Computational Complexity (cs.CC)
gdc.oaire.keywords Convex bipartite graphs
gdc.oaire.keywords Grafs
gdc.oaire.keywords Combinatorial problem
gdc.oaire.keywords Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica
gdc.oaire.keywords Bipartite graphs
gdc.oaire.keywords Realization problems
gdc.oaire.keywords Teoria de
gdc.oaire.keywords Grafs, Teoria de
gdc.oaire.keywords Generalized combinatorial problems
gdc.oaire.keywords Graph G
gdc.oaire.keywords Graph theory
gdc.oaire.keywords Parameterized complexity
gdc.oaire.keywords Computer Science - Computational Complexity
gdc.oaire.keywords Graphic methods
gdc.oaire.keywords Convex bipartite graph
gdc.oaire.keywords Convex-bipartite
gdc.oaire.keywords Parameterized
gdc.oaire.keywords Generalized combinatorial problem
gdc.oaire.keywords Multicolored realization problem
gdc.oaire.keywords Computer Science - Discrete Mathematics
gdc.oaire.popularity 2.9524665E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 68
gdc.openalex.fwci 0.148
gdc.openalex.normalizedpercentile 0.35
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.wos.citedcount 0
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files