The multicolored graph realization problem

dc.authoridSerna Iglesias, Maria Jose/0000-0001-9729-8648
dc.authoridDiner, Oznur Yasar/0000-0002-9271-2691
dc.authoridSerra, Oriol/0000-0001-8561-4631
dc.authorwosidSerna Iglesias, Maria Jose/B-7688-2016
dc.authorwosidDiner, Oznur Yasar/AAT-7443-2020
dc.contributor.authorDiaz, Josep
dc.contributor.authorDiner, Oznur Yasar
dc.contributor.authorSerna, Maria
dc.contributor.authorSerra, Oriol
dc.date.accessioned2024-10-15T19:40:41Z
dc.date.available2024-10-15T19:40:41Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Diaz, Josep; Serna, Maria] Univ Politecn Cataluna, Comp Sci Dept, ALBCOM Res Grp, Barcelona, Spain; [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkiye; [Diner, Oznur Yasar; Serra, Oriol] Univ Politecn Cataluna, Math Dept, Barcelona, Spain; [Diaz, Josep; Serna, Maria; Serra, Oriol] Univ Politecn Cataluna, UPC BarcelonaTech IMTech, Inst Matemat, Barcelona, Spainen_US
dc.descriptionSerna Iglesias, Maria Jose/0000-0001-9729-8648; Diner, Oznur Yasar/0000-0002-9271-2691; Serra, Oriol/0000-0001-8561-4631en_US
dc.description.abstractWe introduce the multicolored graph realization problem (MGR). The input to this problem is a colored graph ( G , phi ), i.e., a graph G together with a coloring phi on its vertices. We associate each colored graph ( G , phi ) with a cluster graph ( G phi ) in which, after collapsing all vertices with the same color to a node, we remove multiple edges and self -loops. A set of vertices S is multicolored when S has exactly one vertex from each color class. The MGR problem is to decide whether there is a multicolored set S so that, after identifying each vertex in S with its color class, G [ S ] coincides with G phi . The MGR problem is related to the well-known class of generalized network problems, most of which are NP -hard, like the generalized Minimum Spanning Tree problem. The MGR is a generalization of the multicolored clique problem, which is known to be W [ 1 ] -hard when parameterized by the number of colors. Thus, MGR remains W [ 1 ] - hard, when parameterized by the size of the cluster graph. These results imply that the MGR problem is W [ 1 ] -hard when parameterized by any graph parameter on G phi , among which lies treewidth. Consequently, we look at the instances of the problem in which both the number of color classes and the treewidth of G phi are unbounded. We consider three natural such graph classes: chordal graphs, convex bipartite graphs and 2 -dimensional grid graphs. We show that MGR is NP -complete when G phi is either chordal, biconvex bipartite, complete bipartite or a 2 -dimensional grid. Our reductions show that the problem remains hard even when the maximum number of vertices in a color class is 3. In the case of the grid, the hardness holds even for graphs with bounded degree. We provide a complexity dichotomy with respect to cluster size. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.description.sponsorshipSpanish Agencia Estatal de Investigacion [PID2020-113082GB-I00, PID2020-112581GB-C21]; AGAUR [2017-SGR-786]; Scientific and Technological Research Council [BIDEB 2219-1059B191802095]; Kadir Has University [2018-BAP-08]en_US
dc.description.sponsorshipWe thank the anonymous referees for their careful reading and helpful suggestions. J. Diaz and M. Serna are partially supported by funds from the Spanish Agencia Estatal de Investigacion under grant PID2020-112581GB-C21 (MOTION) , and from AGAUR under grant 2017-SGR-786 (ALBCOM) . OE. Y. Diner is partially supported by the Scientific and Technological Research Council Tuebitak under project BIDEB 2219-1059B191802095 and by Kadir Has University under project 2018-BAP-08. O. Serra is supported by the Spanish Agencia Estatal de Investigacion under grant PID2020-113082GB-I00.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citation0
dc.identifier.doi10.1016/j.dam.2022.06.031
dc.identifier.endpage159en_US
dc.identifier.issn0166-218X
dc.identifier.issn1872-6771
dc.identifier.scopusqualityQ2
dc.identifier.startpage146en_US
dc.identifier.urihttps://doi.org/10.1016/j.dam.2022.06.031
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6388
dc.identifier.volume354en_US
dc.identifier.wosWOS:001248611100001
dc.identifier.wosqualityQ3
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMulticolored realization problemen_US
dc.subjectGeneralized combinatorial problemsen_US
dc.subjectParameterized complexityen_US
dc.subjectConvex bipartite graphsen_US
dc.titleThe multicolored graph realization problemen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files