A reliable method for data aggregation on the industrial internet of things using a hybrid optimization algorithm and density correlation degree

dc.contributor.author Heidari, Arash
dc.contributor.author Shishehlou, Houshang
dc.contributor.author Darbandi, Mehdi
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Yalcin, Senay
dc.date.accessioned 2024-06-23T21:38:16Z
dc.date.available 2024-06-23T21:38:16Z
dc.date.issued 2024
dc.description Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract The Internet of Things (IoT) is a new information technology sector in which each device may receive and distribute data across a network. Industrial IoT (IIoT) and related areas, such as Industrial Wireless Networks (IWNs), big data, and cloud computing, have made significant strides recently. Using IIoT requires a reliable and effective data collection system, such as a spanning tree. Many previous spanning tree algorithms ignore failure and mobility. In such cases, the spanning tree is broken, making data delivery to the base station difficult. This study proposes an algorithm to construct an optimal spanning tree by combining an artificial bee colony, genetic operators, and density correlation degree to make suitable trees. The trees' fitness is measured using hop count distances of the devices from the base station, residual energy of the devices, and their mobility probabilities in this technique. The simulation outcomes highlight the enhanced data collection reliability achieved by the suggested algorithm when compared to established methods like the Reliable Spanning Tree (RST) construction algorithm in IIoT and the Hop Count Distance (HCD) based construction algorithm. This proposed algorithm shows improved reliability across diverse node numbers, considering key parameters including reliability, energy consumption, displacement probability, and distance. en_US
dc.description.sponsorship Kadir Has University en_US
dc.description.sponsorship No Statement Available en_US
dc.identifier.doi 10.1007/s10586-024-04351-4
dc.identifier.issn 1386-7857
dc.identifier.issn 1573-7543
dc.identifier.uri https://doi.org/10.1007/s10586-024-04351-4
dc.identifier.uri https://hdl.handle.net/20.500.12469/5779
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Cluster Computing
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Internet of things en_US
dc.subject Artificial bee colony en_US
dc.subject Genetic operators en_US
dc.subject Spanning tree en_US
dc.subject Mobility en_US
dc.subject Reliability en_US
dc.title A reliable method for data aggregation on the industrial internet of things using a hybrid optimization algorithm and density correlation degree en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Heidari, Arash] Hal Univ, Dept Software Engn, TR-34060 Istanbul, Turkiye; [Shishehlou, Houshang] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Darbandi, Mehdi] Pole Univ Leonard de Vinci, Paris, France; [Navimipour, Nima Jafari] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu 64002, Yunlin, Taiwan; [Yalcin, Senay] Bahcesehir Univ, Fac Engn & Nat Sci, Dept Energy Syst Engn, Istanbul, Turkiye en_US
gdc.description.endpage 7539
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 7521
gdc.description.volume 27
gdc.description.wosquality Q1
gdc.identifier.openalex W4393191773
gdc.identifier.wos WOS:001191066700003
gdc.index.type WoS
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 106.0
gdc.oaire.influence 7.1465673E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.019576E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 101.2607982
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 44
gdc.plumx.scopuscites 114
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 109
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files