A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data

Loading...
Thumbnail Image

Date

2020

Authors

Aydın, Mehmet Nafiz
Öğrenci, Arif Selçuk

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We conducted extensive experiments using buoy data of 2005 from National Data Buoy Center and Hurricane Katrina as ground truth. Experiments demonstrate that the proposed model achieves more than 10% improvement in accuracy over the methods used in the comparison where our model jointly processes the spatial and temporal dimensions of the contextual data to extract features for anomaly detection.

Description

Keywords

Spatio-temporal anomaly detection, Unsupervised learning, Multivariate data, Deep learning, CNN, LSTM, Hurricane tracking, Hurricane Katrina

Turkish CoHE Thesis Center URL

Fields of Science

Citation

16

WoS Q

N/A

Scopus Q

Q2

Source

Volume

10

Issue

15

Start Page

End Page