Block Elimination Distance

dc.authorid Diner, Oznur Yasar/0000-0002-9271-2691
dc.authorid Stamoulis, Giannos/0000-0002-4175-7793
dc.authorwosid Diner, Oznur Yasar/AAT-7443-2020
dc.contributor.author Yaşar Diner, Öznur
dc.contributor.author Giannopoulou, Archontia C.
dc.contributor.author Stamoulis, Giannos
dc.contributor.author Thilikos, Dimitrios M.
dc.contributor.other Computer Engineering
dc.date.accessioned 2024-10-15T19:39:40Z
dc.date.available 2024-10-15T19:39:40Z
dc.date.issued 2021
dc.department Kadir Has University en_US
dc.department-temp [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkey; [Diner, Oznur Yasar] Univ Politecn Cataluna, Dept Math, Barcelona, Spain; [Giannopoulou, Archontia C.; Stamoulis, Giannos] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece; [Stamoulis, Giannos] Univ Montpellier, LIRMM, Montpellier, France; [Thilikos, Dimitrios M.] Univ Montpellier, CNRS, LIRMM, Montpellier, France en_US
dc.description Diner, Oznur Yasar/0000-0002-9271-2691; Stamoulis, Giannos/0000-0002-4175-7793 en_US
dc.description.abstract We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G((k)) so that G((0)) = B(G) and, if k >= 1, G((k)) = B(A(G((k-1)))). The block elimination distance of a graph G to a graph class G is the minimum k such that G is an element of G((k)) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363-382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G. G(k) is NPcomplete. We focus on the case where G is minor-closed and we study the minor obstruction set of G((k)) i.e., the minor-minimal graphs not in G((k)). We prove that the size of the obstructions of G((k)) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G is an element of G((k)) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G((k)) from members of G((k-1)) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O boolean AND G((k)), for every k is an element of N and every non-trivial minor-closed graph class G. en_US
dc.description.sponsorship Spanish Agencia Estatal de Investigacion project [MTM2017-82166-P]; ANR [ANR-16-CE40-0028, ANR-17-CE23-0010]; French-German Collaboration ANR/DFG [ANR-20-CE92-0027] en_US
dc.description.sponsorship The first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMOGRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA(ANR-20-CE92-0027). en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-030-86838-3_3
dc.identifier.endpage 38 en_US
dc.identifier.isbn 9783030868376
dc.identifier.isbn 9783030868383
dc.identifier.scopusquality N/A
dc.identifier.startpage 28 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-86838-3_3
dc.identifier.uri https://hdl.handle.net/20.500.12469/6337
dc.identifier.volume 12911 en_US
dc.identifier.wos WOS:001299688600003
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) -- JUN 23-25, 2021 -- Warsaw, POLAND en_US
dc.relation.ispartofseries Theoretical Computer Science and General Issues
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Elimination distance en_US
dc.subject Graph minors en_US
dc.subject Obstructions en_US
dc.subject Parameterized algorithms en_US
dc.subject Biconnected graphs en_US
dc.title Block Elimination Distance en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files