Block Elimination Distance

dc.contributor.author Diner, Oznur Yasar
dc.contributor.author Giannopoulou, Archontia C.
dc.contributor.author Stamoulis, Giannos
dc.contributor.author Thilikos, Dimitrios M.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:39:40Z
dc.date.available 2024-10-15T19:39:40Z
dc.date.issued 2021
dc.description Diner, Oznur Yasar/0000-0002-9271-2691; Stamoulis, Giannos/0000-0002-4175-7793 en_US
dc.description.abstract We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G((k)) so that G((0)) = B(G) and, if k >= 1, G((k)) = B(A(G((k-1)))). The block elimination distance of a graph G to a graph class G is the minimum k such that G is an element of G((k)) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363-382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G. G(k) is NPcomplete. We focus on the case where G is minor-closed and we study the minor obstruction set of G((k)) i.e., the minor-minimal graphs not in G((k)). We prove that the size of the obstructions of G((k)) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G is an element of G((k)) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G((k)) from members of G((k-1)) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O boolean AND G((k)), for every k is an element of N and every non-trivial minor-closed graph class G. en_US
dc.description.sponsorship Spanish Agencia Estatal de Investigacion project [MTM2017-82166-P]; ANR [ANR-16-CE40-0028, ANR-17-CE23-0010]; French-German Collaboration ANR/DFG [ANR-20-CE92-0027] en_US
dc.description.sponsorship The first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMOGRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA(ANR-20-CE92-0027). en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-030-86838-3_3
dc.identifier.isbn 9783030868376
dc.identifier.isbn 9783030868383
dc.identifier.issn 0911-0119
dc.identifier.issn 1435-5914
dc.identifier.uri https://doi.org/10.1007/978-3-030-86838-3_3
dc.identifier.uri https://hdl.handle.net/20.500.12469/6337
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) -- JUN 23-25, 2021 -- Warsaw, POLAND en_US
dc.relation.ispartofseries Theoretical Computer Science and General Issues
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Elimination distance en_US
dc.subject Graph minors en_US
dc.subject Obstructions en_US
dc.subject Parameterized algorithms en_US
dc.subject Biconnected graphs en_US
dc.title Block Elimination Distance en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.id Diner, Oznur Yasar/0000-0002-9271-2691
gdc.author.id Stamoulis, Giannos/0000-0002-4175-7793
gdc.author.institutional Yaşar Diner, Öznur
gdc.author.wosid Diner, Oznur Yasar/AAT-7443-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkey; [Diner, Oznur Yasar] Univ Politecn Cataluna, Dept Math, Barcelona, Spain; [Giannopoulou, Archontia C.; Stamoulis, Giannos] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece; [Stamoulis, Giannos] Univ Montpellier, LIRMM, Montpellier, France; [Thilikos, Dimitrios M.] Univ Montpellier, CNRS, LIRMM, Montpellier, France en_US
gdc.description.endpage 38 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 28 en_US
gdc.description.volume 12911 en_US
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W3202572989
gdc.identifier.wos WOS:001299688600003
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8196019E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Elimination distance
gdc.oaire.keywords Obstructions
gdc.oaire.keywords 05C75, 05C83, 05C75, 05C69
gdc.oaire.keywords Block elimination distance
gdc.oaire.keywords G.2.2
gdc.oaire.keywords Graph class
gdc.oaire.keywords Parameterized algorithms
gdc.oaire.keywords Non-trivial
gdc.oaire.keywords Minor obstructions
gdc.oaire.keywords Obstruction
gdc.oaire.keywords Computer Science - Data Structures and Algorithms
gdc.oaire.keywords Parameter estimation
gdc.oaire.keywords Mathematics - Combinatorics
gdc.oaire.keywords Biconnected graph
gdc.oaire.keywords Biconnected graphs
gdc.oaire.keywords Graph minors
gdc.oaire.keywords Graph theory
gdc.oaire.keywords Graphic methods
gdc.oaire.keywords Parameterized algorithm
gdc.oaire.keywords Class B
gdc.oaire.keywords Class A
gdc.oaire.keywords F.2.2
gdc.oaire.keywords Class G
gdc.oaire.keywords Computer Science - Discrete Mathematics
gdc.oaire.popularity 5.6458687E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 1.045
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 1
gdc.wos.citedcount 0
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files