Block Elimination Distance
dc.authorid | Diner, Oznur Yasar/0000-0002-9271-2691 | |
dc.authorid | Stamoulis, Giannos/0000-0002-4175-7793 | |
dc.authorwosid | Diner, Oznur Yasar/AAT-7443-2020 | |
dc.contributor.author | Diner, Oznur Yasar | |
dc.contributor.author | Giannopoulou, Archontia C. | |
dc.contributor.author | Stamoulis, Giannos | |
dc.contributor.author | Thilikos, Dimitrios M. | |
dc.date.accessioned | 2024-10-15T19:39:40Z | |
dc.date.available | 2024-10-15T19:39:40Z | |
dc.date.issued | 2021 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkey; [Diner, Oznur Yasar] Univ Politecn Cataluna, Dept Math, Barcelona, Spain; [Giannopoulou, Archontia C.; Stamoulis, Giannos] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece; [Stamoulis, Giannos] Univ Montpellier, LIRMM, Montpellier, France; [Thilikos, Dimitrios M.] Univ Montpellier, CNRS, LIRMM, Montpellier, France | en_US |
dc.description | Diner, Oznur Yasar/0000-0002-9271-2691; Stamoulis, Giannos/0000-0002-4175-7793 | en_US |
dc.description.abstract | We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G((k)) so that G((0)) = B(G) and, if k >= 1, G((k)) = B(A(G((k-1)))). The block elimination distance of a graph G to a graph class G is the minimum k such that G is an element of G((k)) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363-382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G. G(k) is NPcomplete. We focus on the case where G is minor-closed and we study the minor obstruction set of G((k)) i.e., the minor-minimal graphs not in G((k)). We prove that the size of the obstructions of G((k)) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G is an element of G((k)) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G((k)) from members of G((k-1)) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O boolean AND G((k)), for every k is an element of N and every non-trivial minor-closed graph class G. | en_US |
dc.description.sponsorship | Spanish Agencia Estatal de Investigacion project [MTM2017-82166-P]; ANR [ANR-16-CE40-0028, ANR-17-CE23-0010]; French-German Collaboration ANR/DFG [ANR-20-CE92-0027] | en_US |
dc.description.sponsorship | The first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMOGRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA(ANR-20-CE92-0027). | en_US |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/978-3-030-86838-3_3 | |
dc.identifier.endpage | 38 | en_US |
dc.identifier.isbn | 9783030868376 | |
dc.identifier.isbn | 9783030868383 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 28 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-86838-3_3 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/6337 | |
dc.identifier.volume | 12911 | en_US |
dc.identifier.wos | WOS:001299688600003 | |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Yaşar Diner, Öznur | |
dc.language.iso | en | en_US |
dc.publisher | Springer international Publishing Ag | en_US |
dc.relation.ispartof | 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG) -- JUN 23-25, 2021 -- Warsaw, POLAND | en_US |
dc.relation.ispartofseries | Theoretical Computer Science and General Issues | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Elimination distance | en_US |
dc.subject | Graph minors | en_US |
dc.subject | Obstructions | en_US |
dc.subject | Parameterized algorithms | en_US |
dc.subject | Biconnected graphs | en_US |
dc.title | Block Elimination Distance | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 84ac79d3-823a-4abf-9b15-e1383ec8a9f5 | |
relation.isAuthorOfPublication.latestForDiscovery | 84ac79d3-823a-4abf-9b15-e1383ec8a9f5 |