A Methodological Approach to the Computational Problems in the Estimation of Adjusted Pin Model

dc.contributor.author Ersan, Oguz
dc.contributor.author Ghachem, Montasser
dc.date.accessioned 2025-07-15T18:46:12Z
dc.date.available 2025-07-15T18:46:12Z
dc.date.issued 2025
dc.department Kadir Has University en_US
dc.department-temp [Ersan, Oguz] Kadir Has Univ, Fac Econ Adm & Social Sci, Int Trade & Finance Dept, TR-34083 Istanbul, Turkiye; [Ghachem, Montasser] Stockholm Univ, Dept Econ, S-10691 Stockholm, Sweden en_US
dc.description.abstract It is well documented that computational problems may lead to large biases in the estimation of probability of informed trading (PIN) models. The complexity of the AdjPIN model [Duarte, J. and Young, L., Why is PIN priced? J. Financ. Econ., 2009, 91, 119-138.], an extension of the conventional PIN model, exacerbates further these computational issues due to its larger parameter set. We introduce a dual approach to improve estimation reliability: a logarithmic factorization of the likelihood function and a strategic algorithm for generating initial parameter sets. The logarithmic factorization addresses floating point exceptions and numerical instability, while the algorithm significantly reduces the likelihood of converging to local maxima. We show that our methodology outperforms existing best practices and it enables accurate estimation of the AdjPIN model. We, therefore, strongly suggest its use in future studies. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBTAK) [122K637] en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkey (TUB & Iacute;TAK) [grant no 122K637]. en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.doi 10.1080/14697688.2025.2515929
dc.identifier.issn 1469-7688
dc.identifier.issn 1469-7696
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1080/14697688.2025.2515929
dc.identifier.uri https://hdl.handle.net/20.500.12469/7396
dc.identifier.wos WOS:001521896100001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Routledge Journals, Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Adjusted Probability Of Informed Trading en_US
dc.subject AdjPIN en_US
dc.subject Cluster Analysis en_US
dc.subject Maximum-Likelihood Estimation en_US
dc.subject Information Asymmetry en_US
dc.subject Expectation-Maximization Algorithm en_US
dc.subject C13 en_US
dc.subject C38 en_US
dc.subject G14 en_US
dc.subject G17 en_US
dc.title A Methodological Approach to the Computational Problems in the Estimation of Adjusted Pin Model en_US
dc.type Article en_US
dspace.entity.type Publication

Files