Anomaly Detection in Walking Trajectory

dc.contributor.author Öğrenci, Arif Selçuk
dc.date.accessioned 2020-12-20T20:17:01Z
dc.date.available 2020-12-20T20:17:01Z
dc.date.issued 2018
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract Analysis of the walking trajectory and the detection of anomalies in this trajectory, provide important benefits in the fields of health and security. In this work, two methods to detect anomalies in trajectories, are compared. Firstly, an unsupervised method is used where the conformance among trajectories are taken into consideration. Trajectories that deviate from others are qualified as anomalies. Secondly, the points in the trajectories are considered as a time series. Artifical neural networks performing supervised learning based on the backpropagation algorithm are used. The results are compared, and the points to be enhanced are highlighted. en_US
dc.identifier.citationcount 1
dc.identifier.isbn 978-1-5386-1501-0
dc.identifier.issn 2165-0608 en_US
dc.identifier.issn 2165-0608
dc.identifier.uri https://hdl.handle.net/20.500.12469/3616
dc.identifier.wos WOS:000511448500650 en_US
dc.institutionauthor Öǧrenci, Arif Selçuk en_US
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.journal 2018 26th Signal Processing And Communications Applications Conference (Siu) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Anomaly detection en_US
dc.subject Trajectory en_US
dc.subject Conformal prediction en_US
dc.subject Artifical neural networks en_US
dc.title Anomaly Detection in Walking Trajectory en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication

Files