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Abstract—Ultra-wideband (UWB) multipath channels are as-

sumed to have a sparse structure as the received consecutive

pulses arrive with a considerable time delay and can be resolved
individually at the receiver. Due to this sparse structure, there has

been a significant amount of interest in applying the compressive

sensing (CS) theory to UWB channel estimation. There are
various implementations of the CS theory for the UWB channel

estimation based on the assumption that the UWB channels are

sparse. However, the sparsity of a UWB channel mainly depends
on the channel environment. Motivated by this, in this study

we investigate the effect of UWB channel environments on the

CS based UWB channel estimation. Particularly, we consider the
standardized IEEE 802.15.4a UWB channel models and study the

channel estimation performance from a practical implementation

point of view. The study shows that while UWB channel models

for residential environments (e.g., CM1 and CM2) exhibit a
sparse structure yielding a reasonable channel estimation perfor-

mance, channel models for industrial environments (e.g., CM8)

may not be treated as having a sparse structure due to multipaths
arriving densely. The results of this study are important as it

determines the suitability of different channel models to be used

with the CS theory.

I. INTRODUCTION

Ultra-wideband (UWB) impulse radio (IR) systems operate

with low transmit power, have low-cost simple transceiver

structures, and the received signal is rich in multipath di-

versity with fine time resolution [1]. These properties have

made UWB-IRs suitable for accurate location-ranging ap-

plications and for sensor networks. Accordingly, they have

been selected as the physical layer structure of the Wireless

Personal Area Network (WPAN) standard IEEE 802.15.4a

for location and ranging, and low data rate applications [2].

As for the channel estimation of UWB-IRs, the conventional

maximum-likelihood (ML) channel estimation approach has

been widely considered and adopted [3]. The main drawback

of the implementation of an ML estimator is that very high

sampling rates are required for accurate channel estimation

due to the extremely wide bandwidth of the UWB-IRs (at

least 500 MHz). This contradicts with the low-cost and low-

power implementation purpose of UWB-IRs. Hence, a lower
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sampling rate would be preferred at the receiver for channel

estimation purposes.

Compressive sensing (CS) theory introduced in [4], [5]

explains recovering a sparse signal of interest from fewer

measurements. Accordingly, there has been a growing interest

in applying the CS theory to sparse channel estimation [6], [7].

The recent literature on sparse channel estimation can be found

in [6], [7] and in their references. As the UWB-IR signals have

resolvable multipaths with a sparse structure at the receiver, the

application of CS theory to UWB channel estimation has also

found wide interest in the UWB community. For the CS based

UWB channel estimation, the main goal has been to estimate

the sparse channel with reduced number of observations [8]–

[11]. That is equivalent to reducing the sampling rate at

the receiver. In [8], a channel detection method based on

the Matching Pursuit algorithm is proposed, where the path

delays and gains are calculated iteratively. In [9], the authors

combine the ML approach with the CS theory. In [10], a

spread spectrum modulation structure is placed before the

measurement matrix to enhance the estimation performance.

In [11], a pre-filtering method is proposed so as to replace the

measurement matrix. The common assumption of the studies

in [8]–[11] is that the UWB channels are sparse. However,

depending on the environment (e.g., an industrial environment

may have dense multipaths), the sparsity assumption of the

channels may not hold.

Motivated by this condition, we investigate the suitability

of standardized UWB channel models, which are classified

according to the measurement environments, to be used with

the CS theory. For that, we particularly investigate the effect of

the IEEE 802.15.4a UWB channel models [12] on the channel

estimation performance from a practical implementation point

of view. Accordingly, the channel estimation performance is

determined in terms of the mean-square error (MSE) of the

channel gain estimates, and the bit-error rate (BER) perfor-

mance is investigated with the estimated channel parameters

for various Rake receiver implementations. The MSE and BER

performances are discussed considering the effects of system

parameters. The results of this study are important for the

practical implementation of the CS theory to UWB channel

estimation.
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II. CS FOR UWB CHANNEL ESTIMATION

Compressive sensing theory introduced in [4], [5] has shown

that a sparse signal can be recovered with high probability

from a set of small number of random linear projections. In

the following, the overview of the CS theory and how it can

be applied to sparse UWB channel estimation are presented.

Suppose that y ∈ ℜN is a discrete-time signal that can

be represented in an arbitrary basis Ψ ∈ ℜNxN with the

weighting coefficients x ∈ ℜN as

y = Ψx . (1)

Let x = [x1, x2, . . . , xN ]T has M nonzero coefficients, where

M << N . By projecting y onto a random measurement

matrix Φ ∈ ℜKxN , a set of measurements z ∈ ℜK can be

obtained as

z = ΦΨx (2)

where K << N . Instead of using the N -sample y to find the

weighting coefficients x, K-sample measurement vector z can

be used. Accordingly, x can be estimated as

x̂ = min ‖x‖
1

subject to z = ΦΨx (3)

where ℓp-norm is defined as ‖x‖p =
(

∑N
n=1

|xn|
p
)1/p

. Note

that, the advantage of estimating x from the vector z instead of

y is that the former having much fewer samples corresponds

to a much lower sampling rate at the receiver. We will now

present how this concept can be used for UWB channel

estimation.

The CS theory explained in (1)–(3) can be applied to UWB

channel estimation. Suppose that r ∈ ℜN is the discrete-time

representation of the received signal given as

r = Ph + n (4)

where P ∈ ℜNxN is a scalar matrix representing the time-

shifted pulses, h = [α1, α2, . . . , αN ]T are the channel gain

coefficients, and n are the additive white Gaussian noise

(AWGN) terms. Since the UWB channel structure is sparse, h

has only M nonzero coefficients. Similar to (2), the received

signal r can be projected onto a random measurement matrix

Φ ∈ ℜKxN so as to obtain z ∈ ℜK as

z = ΦPh + Φn

= Ah + v . (5)

Due to the presence of the noise term v, the channel h can

be estimated as

ĥ = min ‖h‖
1

subject to ‖Ah − z‖
2
≤ ǫ (6)

where ǫ is related to the noise term as ǫ ≥ ‖v‖
2
. Consider-

ing (6), the channel estimation performance depends on the

sparsity of h (i.e., the value of M ), as well as the number

of observations K . It is therefore necessary to understand

the discrete-time equivalent structure of h and the effects of

standardized channel models.

III. MODELING THE UWB CHANNEL

In the following, we initially present the discrete-time

equivalent channel h followed by the UWB channel models.

In order to obtain h, the general channel impulse response

(CIR) should be presented first. Accordingly, the continuous-

time channel h(t) can be modeled as

h(t) =

Lr
∑

m=1

hmδ(t − τm) (7)

where hm is the mth multipath gain coefficient, τm is the

delay of the mth multipath component, δ(·) is the Dirac delta

function and Lr is the number of resolvable multipaths.

The continuous-time CIR given in (7) assumes that the

multipaths may arrive any time. This is referred to as the

τ -spaced channel model [13]. Suppose that two consecutive

multipaths with delays τk and τk+1 arrive very close to each

other. Further suppose that a pulse of duration Ts is to be

transmitted through this channel. If Ts > |τk+1 − τk|, then
the pulse at the receiver cannot be resolved individually for

each path, and experiences the combined channel response of

the kth and (k + 1)th paths. Let us define an approximate

Ts-spaced channel model that combines multipaths arriving

in the same time bin, [(n − 1)Ts, nTs], ∀n. Accordingly, for
[(n−1)Ts, nTs], ∀n, the delays {τm|1, 2, . . . , Lr} that arrive in
the corresponding quantized time bins can be determined, and

the associated {hm|1, 2, . . . , Lr} gains can be linearly com-

bined to give the new channel coefficients {αn|1, 2, . . . , N}.
Note that some of the {αn} values may be zero due to no

arrival during that time bin, hence, the number of nonzero

coefficients M satisfies the condition M ≤ Lr ≤ N . The

equivalent Ts-spaced channel model can be expressed as

h(t) =

N
∑

n=1

αnδ(t − nTs) (8)

where Tc = NTs is the channel length. Using (8), the discrete-

time equivalent channel can be written as

h = [α1, α2, . . . , αN ]T (9)

where the channel resolution is Ts. Then the discrete-time

equivalent channel vector obtained above can be used in (4)–

(6) in the context of CS theory. Next, we consider the UWB

channel models to be used with the channel vector h.

The CS based UWB channel estimation studies assume

that the UWB channel vector h defined above is sparse.

However, this is a vague assumption. In order to classify a

channel as sparse, initially the channel environment should be

examined. In [12], members of the IEEE 802.15.4a standard-

ization committee have developed a comprehensive standard-

ized model for UWB propagation channels. Accordingly, they

have considered different environments and have conducted

measurement campaigns in order to model the UWB channels

for each environment. The channel environments that they

have parameterized include indoor residential, indoor office,
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Fig. 1. Channel realizations for CM1, CM2, CM5, CM8 when Ts = 1ns.

outdoor, industrial environments, agricultural areas and body

area networks. The details of the related channel models

and their associated parameters can be found in [12]. We

motivate our study with the selection of a variety of en-

vironments either having a line-of-sight (LOS) or a non-

LOS (NLOS) transmitter-receiver connection. Accordingly,

we select the CM1 (indoor residential LOS), CM2 (indoor

residential NLOS), CM5 (outdoor LOS) and CM8 (industrial

NLOS) channel models, which are widely used in UWB

research. We now summarize the characteristics of channel

models CM1, CM2, CM5 and CM8 in the following.

CM1: This is by-far the most commonly used channel model

in order to assess the system performance. It models an LOS

connection in an indoor residential environment. It is the most

sparse channel model where few Rake fingers can collect

considerable amount of signal energy.

CM2: This is a channel model with an NLOS connection in

an indoor residential environment. It complements CM1. It is

a sparse channel model but usually contains more multipaths

compared to CM1.

CM5: This is a channel model with an LOS connection in an

outdoor environment. Typically, the multipaths arrive in a few

clusters.

CM8: This is a channel model with an NLOS connection in an

industrial environment. The multipaths arrive densely so that

the channel does not have a sparse structure.

Using the Ts-spaced channel model in (8) and the parame-

ters for channel models CM1, CM2, CM5 and CM8 in [12],

a realization for each channel model is plotted in Fig. 1 when

the channel resolution is Ts = 1ns. It can be observed that

the typical channel properties listed above can be observed in

Fig. 1. Before assessing the channel estimation performance

for different channel models, we present in Table I the sparsity

TABLE I

THE SPARSITY RATIOS FOR DIFFERENT CHANNEL RESOLUTIONS

Channel Ts = 1ns Ts = 0.5ns Ts = 0.25ns
Model M/N M/N M/N
CM1 0.30 0.17 0.09

CM2 0.34 0.20 0.11

CM5 0.81 0.69 0.52

CM8 1.00 0.99 0.99

ratio,1 M/N , at various channel resolution values for differ-

ent channel models obtained by averaging over 100 channel

realizations when the channel length is fixed to Tc = 100ns.
From the table, it can be deduced that the multipaths for CM5

and CM8 arrive very densely compared to CM1 and CM2,

hence, even at the increased channel resolution (i.e., when Ts

is decreased) the sparsity of these channels does not improve

much.

IV. SIMULATION RESULTS

In this section, we investigate the effects of IEEE 802.15.4a

channel models on the channel estimation performance. For

that, we evaluate the MSE of channel estimation2 for various

number of observations K and a fixed channel resolution3

Ts with different channel models and various signal-to-noise

(SNR) values. To remove the path loss effect and to treat each

channel model fairly, we normalize the channel coefficients as
∑N

n=1
α2

n = 1. For the generation of channels, the standard-

ized IEEE 802.15.4a channel models [12] are used.

Initially, let us compare the channel models for the same

set of parameters. In Figs. 2 and 3, the effect of number

of observations K on the MSE performance at SNR=20dB

is investigated when the channel length is Tc = 250ns for

channel models CM1, CM2, CM5 and CM8. The channel

resolutions (i.e., used pulse widths) in each figure are Ts = 1ns
and Ts = 0.25ns resulting in N = 250 and N = 1000,
respectively. Both figures can be compared to each other fairly

based on the K/N ratio. It can be observed that for the same

conditions the channel estimation is better for channel models

in the order of CM1, CM2, CM5 and CM8 as expected.

When the channel resolution is increased from Ts = 1ns to

Ts = 0.25ns, it can be observed that the MSE performances

of CM1, CM2 and CM5 are improved, while the performance

of CM8 does not change. This can be explained by the

dense multipaths arriving almost in each time bin although

the resolution is increased as also shown in Table I. We can

also observe that the MSE performances of CM1 and CM2

do not change much for the resolution Ts = 0.25ns when

400 < K < 500. Hence, the number of observations can be

1We define the sparsity ratio as the ratio of the number of nonzero

coefficients to the length of the discrete-time equivalent channel for the

selected resolution.
2For the implementation of (6), the codes provided by Candes and Romberg

publicly available at http://www.acm.caltech.edu/l1magic/ are used.
3The effect of channel resolution on the channel estimation performance

has been investigated in detail in [14].
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Fig. 2. The effect of number of observations K on the MSE performance

at SNR=20dB when Tc = 250ns and Ts = 1ns for channel models CM1,

CM2, CM5, CM8.
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Fig. 3. The effect of number of observations K on the MSE performance at

SNR=20dB when Tc = 250ns and Ts = 0.25ns for channel models CM1,

CM2, CM5, CM8.

limited to K ≈ 400, i.e., a lower sampling rate can be used

for a similar MSE performance.

Next, we investigate the effects of number of observations

for CM1 and CM5 for different SNR values. Channel models

CM1 and CM5 are selected as the MSE performance of CM2

is similar to that of CM1, and the MSE performance of

CM8 does not change much with the channel resolution. The

channel resolution is fixed to Ts = 0.25ns for both cases. In

Fig. 4 we investigate the effect of number of observations

K on the MSE performance for CM1 when Tc = 100ns,
where most of the multipaths arrive within the channel length.

Since the channel resolution is Ts = 0.25ns, the discrete-time
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Fig. 4. The effect of number of observations K on the MSE performance

when Tc = 100ns and Ts = 0.25ns for channel model CM1.
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Fig. 5. The effect of number of observations K on the MSE performance

when Tc = 250ns and Ts = 0.25ns for channel model CM5.

channel length is N = Tc/Ts = 400. Note that the number of

nonzero coefficients M may vary for each channel realization

generated by its equivalent probabilistic model. Here, K/N
can be seen as the ratio of the compressed sampling rate to the

conventional receiver sampling rate. As seen in Fig. 4, while

K = 50 observations are not enough for channel estimation

even at high SNR, K = 200 observations can achieve an MSE

≈ 10−2 at SNR=20dB for a fixed Ts = 0.25ns. That is, the
sampling rate at the receiver can be reduced by K/N = 50%
if a CS based channel estimation is used to achieve an MSE

≈ 10−2.

In Fig. 5 the effect of number of observations K on the

MSE performance is investigated for CM5 when Tc = 250ns.
The channel length is assumed to be longer as some clusters
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Fig. 6. BER performance of various Rake implementations (AR: All

Rake, P5R: Partial 5-Rake, S5R: Selective 5-Rake) for perfectly known and

estimated channels (PKC, EC).

may arrive beyond 200ns. Here, the equivalent discrete-time

channel length is N = Tc/Ts = 1000. As can be observed,

when K = 250 observations are used the MSE performance

is poor (i.e., at the rate K/N = 0.25). On the other hand,

increasing the observations to K = {500, 750} improves the

MSE at the expense of increasing the compressed sampling

rate.

Finally in Fig. 6, we evaluate the BER performance with

the estimated and perfectly known channels (EC and PKC) for

various Rake receiver implementations when CM1 and CM5

are considered. The channel length and channel resolution

are selected as Tc = 250ns and Ts = 0.25ns, respectively,
and the sampling ratio, K/N , is fixed to 50%. As for the

modulation, binary phase shift keying (BPSK) is used. When

an all-Rake receiver is used, it can be observed that the

BER performances are worse about 0.5 dB and 1 dB for

CM1 and CM5, respectively. When a selective-Rake receiver

with 5 fingers is used for CM1, the performances for the

known and estimated channels are similar as the strongest

paths are correctly determined by the CS based estimation.

However, when a partial-Rake with 5 fingers is used for CM1,

the BER performance for the estimated channel compared

to the known channel has degraded much as the CS based

estimation introduces non-zero components at low SNR, which

are possibly selected as the fingers of a partial-Rake. Finally,

it can be observed that for CM5, 5 fingers are not enough

to collect significant energy for either known or estimated

channels.

V. CONCLUSION

In this study, we investigated the effect of UWB channel

environments on the CS based UWB channel estimation.

We particularly considered the standardized IEEE 802.15.4a

UWB channel models, which are classified according to the

measurement environments, and studied the channel estimation

performance from a practical implementation point of view.

The channel estimation performance was determined in terms

of the MSE of the channel gain estimates, and the BER

performance was evaluated with estimated channel parame-

ters for practical Rake implementations. It was shown that

UWB channel models for residential environments exhibited

a sparse structure yielding a reasonable channel estimation

performance, whereas the channel models for industrial envi-

ronments may not be treated as having a sparse structure due

to multipaths arriving densely. It was also observed that the

use of selective-Rake receivers after CS based sparse channel

estimation yields a BER performance very close to the known

channel case. The results of this study are important for the

practical implementation of the CS theory to UWB channel

estimation.
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