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ABSTRACT

Motivation: Biclustering gene expression data is the problem of
extracting submatrices of genes and conditions exhibiting significant
correlation across both the rows and the columns of a data matrix
of expression values. Even the simplest versions of the problem
are computationally hard. Most of the proposed solutions therefore
employ greedy iterative heuristics that locally optimize a suitably
assigned scoring function.

Methods: We provide a fast and simple pre-processing algorithm
called localization that reorders the rows and columns of the input
data matrix in such a way as to group correlated entries in small
local neighborhoods within the matrix. The proposed localization
algorithm takes its roots from effective use of graph-theoretical
methods applied to problems exhibiting a similar structure to that of
biclustering. In order to evaluate the effectivenesss of the localization
pre-processing algorithm, we focus on three representative greedy
iterative heuristic methods. We show how the localization pre-
processing can be incorporated into each representative algorithm
to improve biclustering performance. Furthermore, we propose a
simple biclustering algorithm, Random Extraction After Localization
(REAL) that randomly extracts submatrices from the localization pre-
processed data matrix, eliminates those with low similarity scores,
and provides the rest as correlated structures representing biclusters.
Results: We compare the proposed localization pre-processing
with another pre-processing alternative, non-negative matrix
factorization. We show that our fast and simple localization procedure
provides similar or even better results than the computationally heavy
matrix factorization pre-processing with regards to H-value tests. We
next demonstrate that the performances of the three representative
greedy iterative heuristic methods improve with localization pre-
processing when biological correlations in the form of functional
enrichment and PPI verification constitute the main performance
criteria. The fact that the random extraction method based on
localization REAL performs better than the representative greedy
heuristic methods under same criteria also confirms the effectiveness
of the suggested pre-processing method.

Availability: Supplementary material including code implementa-
tions in LEDA C++ library, experimental data, and the results are
available at http://code.google.com/p/biclustering/
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1 INTRODUCTION

Clustering refers to the process of organizing a set of input
vectors into clusters based on similarity specified according to
some predefined distance measure. In many cases, it is more
desirable to simultaneously cluster the dimensions as well as the
vectors themselves. This special instance of clustering, referred to as
biclustering, was introduced by Hartigan (Hartigan, 1972). Although
traditional one-way clustering provides valuable information with
regards to a global perspective, extracting local substructures
via biclustering may help build intuition on both dimensions
of the data. In addition to the areas such as data mining and
pattern recognition, biclustering has found many applications in
bioinformatics, specifically in microarray analysis, drug activity
analysis and motif detection (Barkow et al., 2006; Ben-Dor et al.,
2002; Kluger et al., 2003; Murali and Kasif, 2003; Preli¢ et al.,
2006; Tanay et al., 2002).

In gene expression analysis, data are assumed to be arranged in a
matrix, where each gene corresponds to arow and each condition to a
column. After reordering rows and columns of the matrix, a bicluster
can then be defined as a submatrix with significant correlation among
its data values. Such a submatrix is likely to group together genes that
exhibit similar behavior over a subset of experimental conditions.

One of the early approaches for biclustering expression data is
that of Cheng and Church (Cheng and Church, 2000). A mean-
squared residue score is defined and the algorithm greedily
inserts/removes rows and columns to arrive at a certain number
of biclusters achieving some predefined residue score. Order
preserving submatrix (Ben-Dor er al., 2002) is another greedy,
iterative algorithm that finds a statistically significant bicluster at
each iteration. Maximum similarity biclusters (MSB; Liu and Wang,
2007) starts by constructing a similarity matrix based on a reference
gene. A greedy strategy of removing rows/columns iteratively is
employed to provide the maximum similarity bicluster in polynomial
time. Large average submatrices (LAS; Shabalin ez al., 2009) is a
recently proposed algorithm which tries to extract large average
submatrices according to a Bonferroni-based significance score.
Several graph-theoretical approaches have also been suggested.
Prelic et al. provided a divide-and-conquer algorithm, Bimax (Preli¢
etal., 2006), that runs on discretized binary data. In SAMBA (Sharan
et al., 2003; Tanay et al., 2002), the data matrix is viewed as
a bipartite graph where the genes/conditions constitute the layers
of the bipartite graph and edges in the graph correspond to the
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expression changes. The goal is to find out heavy bicliques inside
the graph. A similar model is constructed in (Abdullah and Hussain,
2006) where crossing minimization in unit-weight bipartite graphs is
used as a means to extract bicliques corresponding to biclusters in the
data matrix. The model is generalized to weighted bipartite graphs
in (Erten and Sozdinler, 2009). Many other biclustering algorithms
including xMOTIFs (Murali and Kasif, 2003), ISA (Bergmann et al.,
2003), coupled two-way clustering (Getz et al., 2000) have also
been suggested; see the survey of Madeira et al. for further details
of various other biclustering methods (Madeira and Oliveira, 2004).

Once a model is determined, be it a matrix of real values
corresponding to relative abundance of mRNA, a discretized
binary matrix or a bipartite graph model of the data matrix, the
problem becomes that of globally optimizing a suitable scoring
function defined under the terms including residue (Cheng and
Church, 2000), similarity (Liu and Wang, 2007), order-preserving
submatrix (Ben-Dor et al., 2002), maximal biclique (Tanay et al.,
2002). NP-hardness of even the simplest versions of all these
seemingly similar optimization problems makes the task quite
challenging (Alexe et al., 2004; Madeira and Oliveira, 2004). An
approach common to most of the existing algorithms, therefore, is
to apply a greedy iterative heuristic that aims at locally improving
the suitable scoring function under the defined model.

Following this observation and the common observation that
a ‘good’ initial configuration is especially important in the
success of greedy iterative heuristics for solving optimization
problems (Srinivas and Patnaik, 1994), we present a pre-processing
method called localization that provides an appropriate initial
configuration by placing rows/columns exhibiting similar patterns
in nearby locations within the data matrix. Although the majority of
the proposed solutions for biclustering consists of iterative, greedy
local optimization heuristics, no suitable pre-processing algorithm
has been suggested for an improvement of these methods. We
extract only one such method, non-singular non-negative matrix
factorization (nsNMF) proposed by Carmona-Saez et al. (2006).
Though not presented originally as a pre-processing method per se,
but rather as a biclustering method in itself, we employ nsNMF for
our comparisons as a possible alternative pre-processing method.
This is plausible since reordering rows and columns so as to gather
similar entities in close proximity is also a common goal of nsNMFE.
We show experimentally that our proposed pre-processing method
of localization provides similar or even better results than the
computationally heavy nsNMFE. In addition, we show that when
pre-processed with our localization method, performances of the
greedy iterative biclustering heuristics improve. The algorithms
under consideration are SAMBA (Tanay et al., 2002), MSB (Liu
and Wang, 2007) and LAS (Shabalin et al., 2009). Furthermore, we
provide a biclustering method that simply uses localization followed
by a random extraction of submatrices from the provided initial
configuration. We show that this method when applied on real
data outperforms the tested greedy heuristics according to certain
evaluation criteria.

2 METHODS AND ALGORITHMS

Given an input data matrix M where rows correspond to genes, columns
correspond to conditions, and each data entry is a real value corresponding
to the expression change of the gene under the specified condition, the idea
behind localization is to first group together rows and columns of M in such

Algorithm 1 Localization
repeat
/* Fix column set C, order row set R */
for all reR do
leftsum=0; rightsum= Zl‘.gzam-;
for c=1 to |C| do
if leftsum > rightsum then break;
leftsum~+=ay ¢; rightsum—=a, 4 1;

end for
Pe=P U{r};
end for

for all ce C do
Let u,v € R. We define a total order u <v as follows:
D i1 an,i X Zl'gcau,i <D i au,i ¥ Zl‘g‘cav,i
Sort P, using ordering defined by <.

end for

/* Fix row set R, order column set C */

Switch R and C, and repeat the above procedure.

until no change in row/column ordering or enough iterations

a way that correlated rows/columns are ‘localized’, that is rows/columns
exhibiting similar patterns are placed in nearby locations within M. In order
to formalize this notion, first a decision has to be made with regards to
where in matrix M to collect entries with similar patterns. Gathering such
patterns around the main diagonal of M seems like a natural choice. Let a; ;
denote the real valued data entry at row i and column j of M. Formally, the
goal of localization is to reorder the rows and columns of M in such a way
as to minimize Zvi,jai,j % |i—j|. We note that such an optimization in 0-1
matrices corresponds to row/column permutations that bring non-zero entries
as close to the diagonal as possible. This optimization problem has received
considerable attention from a wide range of application areas including graph
drawing, VLSI layout and numerical analysis under different names such as
bipartite linear arrangement, minimum-1-sum, bandwidth sum, edge sum,
wirelength minimization; see Diaz et al. (2002); Lai and Williams (1999)
for nice surveys on the topic.

2.1 The localization algorithm

Since the optimization goal determined for localization is computationally
hard in general, it is of interest to establish connections with other well-
studied layout problems. In Shahrokhi et al. (2001), it has been theoretically
shown that the bipartite linear arrangement and the problem of minimizing
crossings in a bipartite drawing is closely related and that the relation
is approximation preserving: given an f(.) approximation for one of the
problems, where f is some function on the input size, it also provides an
approximation for the other with the same ratio. This connection has also been
verified in practice through various experimental evaluations (Stallmann
et al., 2001). Based on these results we present our localization method
that aims at minimizing:

Zai,j x (Lij+R;i ) n

Vij

where Lij=3,.; ,jdp.q and Rij=3",_; .. ; ap,q. Note that considering
the partitions of a bipartite graph as rows and columns, and the weights of
the edges as the real valued entries in the data matrix, minimizing weighted
edge crossings in the bipartite graph is equivalent to minimizing Equation (1)
in a data matrix. A pseudocode of the localization method is provided in
Algorithm 1. Assuming a fixed arrangement of columns, first the rows are
reordered so as to reduce the sum in Equation (1). Then the rows are kept
fixed and the columns are reordered using the same procedure. This is
continued until no further improvements can be made or a predetermined
number of iterations is reached. For rearranging one of the dimensions while
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(a)

Fig. 1. Yeast expression data (Gasch et al., 2000) (a) Before Localization.
(b) After Localization.

fixing the other, we adopt our method presented in Cakiroglu et al. (2009)
which has been suggested in a different context with a similar optimization
goal. For completeness, we provide the proof of the following lemma in the
Supplementary Material.

LEMMA 2.1. Assuming the columns (rows) are fixed, the localization
algorithm orders the row (column) set in such a way that the sum in
Equation (1) is at most three times the optimum among all possible row
(column) orderings of the matrix.

With a straightforward implementation, the running time of each iteration
of the repeat loop is O(|R|x |C|+|R|log|R|+|C|log|C]|), where |R|,|C]|
denote the sizes of the rows and the columns of the data matrix respectively.
The loop is iterated until the minimization of Equation (1) converges or a
constant number of iterations is achieved. We note that in all the experiments
conducted, the method converges after a small constant number of iterations.
In most practical settings |C|=O(|R]), that is the number of conditions
is usually much smaller than the number of genes and |C|=Q(log|R]).
Therefore, under these settings, the running time of the proposed method
is linear in terms of the input size. Heatmap visualizations of the Yeast
expression data both before and after localization are provided in Figure 1.
The Figure 1a shows the original gene expression data matrix where the data
values are assigned colors for visualization purposes. The Figure 1b shows
the gene expression matrix after the localization method is applied. The right
block gathering homogeneous colored subblocks together as compared to
the left block is a visual clue that the localization method does ‘localize’ the
matrix by grouping together the submatrices with correlated gene expression
data values.

2.2 Improving biclustering heuristics via localization

The most natural heuristic candidates to apply localization as a pre-
processing step for further improvement are those based on iteratively
improvin some locally optimum solution in a greedy fashion. We identify
three such algorithms, briefly describe each, and comment on possible
modifications necessary for pre-processing with our localization method.
The SAMBA (Tanay et al., 2002) algorithm identifies biclusters using an
exhaustive enumeration method. First, a bipartite graph model of the gene
expresssion matrix is created. The set of genes and the set of conditions
correspond to the two partitions and there exists an edge between a gene—
condition pair if the expression level of the gene changes significantly under
the given condition. Weights are assigned to the edges and non-edges in
the bipartite graph in a way that the weight of a subgraph corresponds to its
statistical significance. Once the weights are assigned the problem then turns
into that of extracting maximum weight complete subgraphs. The subgraph
construction phase is followed by an iterative local improvement procedure
of growing/shrinking the composed subgraphs. Localization pre-processing
becomes affective at this phase by localizing the vertices corresponding to

coexpressed genes and thus providing a better chance for local improvement
at each iteration.

MSBs (Liu and Wang, 2007) are yet another algorithm we envision
improvement via localization pre-processing. In the original description
of the algorithm, first a similarity matrix for a given reference gene is
constructed. Each entry in the similarity matrix descibes how similar the
expression value of a gene under a certain condition is to the expression
value of the reference gene under the same condition. It is shown that
a greedy iterative strategy of removing the least similar row or column
from the similarity matrix yields the MSB. To generalize this approach
for the extraction of all the biclusters in the expression matrix a subset of
reference genes are needed. This is achieved via randomly selecting a subset
of genes and designating them as reference. The new algorithm Randomized
Maximum Similarity Biclusters (RMSBs) is the resulting algorithm. As
each output bicluster is computed based on the given reference gene it
is important to carefully construct the set of references. We extend this
biclustering algorithm by pre-processing the data matrix with localization and
selecting a reference gene subset by considering genes at constant intervals
gene;,geneit ¢, 8eneitoxe,-..geNeitkxe. It should be intuitive that selecting
a gene from each local neighborhood in the localized matrix would yield
better references than selecting them in random.

LAS proposed by Shabalin et al. (2009) is yet another recent algorithm
for which we utilize the localization pre-processing for further improvement.
Assuming a Gaussian null model for the data, the significance score of
a submatrix is defined using a Bonferroni-corrected P-value based on the
size and the average of the data values in the submatrix. The main goal
then is defined as that of extracting the submatrix with maximum score.
As with the previous algorithms this optimization goal is computationally
hard to achieve. Therefore, rather than solving it to the optimum a greedy
iterative heuristic is proposed for the search procedure. The heuristic starts
out with a random initial submatrix. Fixing alternatively the column (row)
set, the set of rows (columns) locally optimizing the significance score is
searched iteratively until convergence. Pre-processing the LAS algorithm
with localization and modifying the greedy search heuristic to start the
iterations with a submatrix consisting of rows and columns within a local
neighborhood rather than a random submatrix yields an improvement in the
local search results.

2.3 Random extraction after localization

In order to demonstrate the power of the localization procedure, we provide
a simple algorithm that takes as input the localized matrix M|, extracts local
submatrices randomly from M, evaluates the significance (statistical and/or
biological) score of each submatrix, and finally reports those with high scores.

Given minimum and maximum row counts, and a row increment amount
respectively denoted with min,, max,, inc, the set of possible row sizes
are min,+k x inc,, for all non-negative integers k where k X inc, <max,.
The set of possible column sizes is defined analogously. The dimension of
each extracted local submatrix is a member of the cartesian product of these
two sets. For each possible dimension we extract a pre-specified number
of submatrices randomly and eliminate those with low significance. The
rows (columns) of the submatrix are all consecutive in M. We evaluate the
significance of each extracted submatrix with two types of scorings. First is
the H-value test (Cheng and Church, 2000). Let the set of rows and columns
of the extracted submatrix be denoted respectively with 7, J. The residue R
of the entry (i,j) is

Ry (. j)=aij—aj—aij+ay 2)
where a;; is the mean of row i, aj; is the mean of column j and ay; is the
mean of the submatrix. H-value of the submatrix is then defined as,

1
T > R ©)

i=0,j=0

H —value(l,J)=

The submatrices with H-value lower than a given threshold » are subject to
a second test when biological validation data in the form of GO associations
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through sources such as FuncAssociate (Berriz et al., 2003) is avaliable.
Given such associations it is easy to determine the ratio of the number of
genes associated with some category to the total number of genes in the
extracted submatrix. If the highest ratio of the submatrix is lower than a
threshold the submatrix is eliminated, otherwise it is reported as a bicluster
with high significance. In what follows random extraction after localization
is referred to as REAL if only H-value scoring is applied. When biological
significance is also evaluated with available GO associations we refer to the
algorithm as REALgo.

3 DISCUSSION OF RESULTS

The localization algorithm and the bicluster extraction algorithm
REAL are implemented in C++ using the LEDA Library (Mehlhorn
and Naher, 1999). The codes for the algorithm implementation
and experimentation are available as part of the Supplementary
Materials. The implementations of the algorithms subject to
improvement via localization, SAMBA, MSB and LAS are from
the cited sources of the algorithms. Each of these algorithms are
evaluated both with and without localization pre-processing. In the
former case, the algorithms are denoted with SAMBA*, MSB*
and LAS*. We experiment on two real datasets, Saccharomyces
cerevisiae (Yeast) from Gasch et al. (2000) and A.thaliana from Wille
et al. (2004). We note that our localization algorithm requires
non-negative real values in the input matrix. To achieve this, we
apply a normalization procedure on the input expression matrix
by first adding the minimum value to each entry and then taking
the logarithm of the data entries in the resulting matrix. The
logarithm transformation is a standard transformaton in microarray
data analysis to achieve distributions that are closer to normal
distributions (Kluger et al., 2003; Liu and Wang, 2007). We
emphasize that to have a fair comparison, right after localization
we preserve the original values of the expression matrix before we
apply the algorithms SAMBA, MSB and LAS, though localization
may have changed the order of the rows and the columns.

3.1 Structural and statistical evaluation

We first evaluate the structural and statistical significance of
biclusters output by each algorithm REAL, REALgGp, MSB,
SAMBA, LAS and the localization pre-processed counterparts of
the last three. The parameter settings of each of these algorithms and
those of their localization pre-processed counterparts are the same
as the default settings suggested in the original descriptions of the
methods. The results of our evaluations applied on both A.thaliana
and the Yeast gene expression datasets are presented in Table 1. We
apply REAL on the Thaliana dataset and REALGo on the Yeast
dataset. The parameter n is set to 75 for REAL and to 0.12 for
REALGo. The parameter settings for each algorithm are the same
in this and the following experimental subsections. In addition to
structural information including maximum and minimum bicluster
sizes, average dimensions and the bicluster count we also provide
evaluations based on statistical measures of similarity. Candidate
measures commonly used in literature are H-value (Cano et al.,
2007; Cheng and Church, 2000; Cheng et al., 2008; Liu et al., 2009),
Hv-value (Bryan and Cunningham, 2006), average correlation value
(ACV) (Teng and Chan, 2006). All these measures have similar
definitions and provide similar results in our evaluations, and we
only provide the results of H-value evaluations.

Table 1. Structural and statistical analysis of biclusters produced by the
algorithms under consideration applied on the Arabidopsis thaliana (top
multirow) and the yeast (bottom multirow) datasets

Alg. Max Min Avg |I| Avg|J| Count H-value
REAL 180 x 5 20x5 4385 7.52 143 54.6
MSB 319x 163  5x6 58.00 22.00 7 411.7
MSB* 69 x 55 4x5 23.69 21.58 36 0
SAMBA 60 x 4 12x4 18.85 4.22 55 2810.7
SAMBA*  32x4 6x6 1748 4.63 52 2062.5
LAS 7x3 Ix1 6.10 1.22 60 7693.7
LAS* 14 x 1 Ix1 5.73 1.28 60 15007.6
REALGo 47 x30 5x10 2410 14.50 534 0.107
MSB 112 x 111 11x11 2035 19.35 1342 0.241
MSB* 105x 106 11 x 11 19.11 18.29 1424 0.306
SAMBA 174 x 71 7x10 6494 16.71 114 0.474
SAMBA* 119x71 19x6 63.08 16.19 128 0.524
LAS 679 x 113 1x1 13482 23091 55 0.388
LAS* 688 x 111 1x1 12024  22.17 56 0.386

At the A.thaliana 734x69 major row, the best performers in
terms of H-values are the algorithms REAL and MSB*. MSB*
interestingly provides several constant-valued biclusters as its H-
value average is 0. Localization pre-processing helps MSB provide
more constant biclusters than the original algorithm. Comparing
SAMBA and SAMBA¥*, the localization pre-processed SAMBA*
provides more homogeneous biclusters in terms of H-value. LAS
and LAS™ are among the worst ones. This is because of the high
variance of the dataset. Also, due to the scoring scheme of the
LAS algorithm both the original algorithm and the localization pre-
processed modification provide relatively small biclusters. When
we compare the original and localized runs of the algorithms on the
Yeast 2993x173 dataset, we note a slight increase in the H-values of
MSB* and SAMBA™* as compared to their unlocalized counterparts.
However the localization pre-processed versions of the algorithms
provide a larger number of biclusters in each case which maybe the
cause of this discrepancy.

3.2 Comparison with localization alternatives

We compare the performance of our localization algorithm with
another potential pre-processing method, the non-smooth non-
Negative Matrix Factorization (nsNMF) proposed by Carmona-Saez
et al. (2006). This method is not originally proposed as a pre-
processing method per se, but rather as a full-fledged biclustering
method. However since the main idea involves reordering the rows
and the columns of the data matrix so as to gather correlated
structures in close proximity, it serves as a potential benchmark!
method for pre-processing.

In nsNMF, the input data matrix M is first converted to a
product of two matrices W and H with sizes |R| xf and f x |C],
respectively. Each of the f columns of W is called a factor and

'Another feasible alternative would be running the algorithms under
consideration on several randomly permuted instances of the input and
picking the ‘best’ output instance rather than employing a pre-processing
of some sort. We show this alternative does not improve the biclustering
results by running each algorithm on 50 randomly ordered instances of the
S.cerevisiae dataset. Details can be found in the Supplementary Material.
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Fig. 2. (a)Yeast data 2993 genes and 173 conditions and plots corresponds to H-values; (b)A.thaliana data 734 genes and 69 conditions and plots corresponds

to H-values.

constitutes a basis experiment. Each row of H constitutes a basis
gene. Given a certain factor, that is a column of W, the rows of M
can be sorted based on it. Similarly, the columns of M are sorted
according to the corresponding row, that is the basis gene of H. It is
assumed that each such sorting of the original data matrix provides
correlated genes/conditions localized in a portion of the matrix.
For our evaluations we assume the parameter settings employed in
the original paper. For nsNMF we produce results for four factors.
Therefore we evaluate six matrices in total: M, My, M|, Mp, M3,
and M. The last four correspond to the results of nsSNMF with basis
factorizations shown as the corresponding subscripts.

We present 3D plots in Figure 2a and b which summarize
the results of our experiments performed on the Yeast expression
data (Gasch et al., 2000) and the A.thaliana expression data (Wille
et al., 2004) respectively. We use the H-value test described
in Equation 3 to compare the localization performances of the
six alternative matrices. Each point on the x-axis corresponds
to a specific gene size gy where g5€{10,20,30,...,100} for the
Yeast expression data experiment and gs€{5,10,15,...,50} for
the A.thaliana expression data experiment. Each point on the
y-axis corresponds to a specific condition size cg where cs€
{5,10,15,...,50} for the Yeast data and ¢z €{3,6,9,...,30} for the
Thaliana data. For each pair (g, cs), we randomly pick a submatrix
with gg consecutive rows and ¢y consecutive columns from each of
the six matrices starting at exactly the same indices and compute an
H-value of the submatrix. The random choices are repeated 1000
times, an average H-value is computed for each alternative and
is plotted at the z-axis. Analyzing the results of our experiments
on the Yeast dataset, H-value test seems to favor My, the matrix
pre-processed with our Localization procedure over M, M1, M>, the
original input matrix, and the resulting matrices of nsNMF with
basis factorizations 1 and 2, respectively. We note that low H-value
implies more correlation between the entries of a given submatrix.
The factorizations with basis 3 and 4 seem to provide H-values
slightly better than that of localization. With regards to the A.thaliana
dataset experiments H-value results of localization is better than the
rest in almost all the cases, except for the case where g5 and ¢ are
small. In this exceptional case, the H-value test is not stable due to
the large variance in the original dataset. As alternative statistical
significance measures the six matrices are also evaluated based
on variances and the average pearson correlation coefficient (PCC)
ratios. Such an evaluation reveals the intuition behind the nsNMF

method and its contrast with the localization. Detailed 3D plots
and a discussion of these results emphasizing the main conceptual
differences between nsNMF and localization can be found in the
Supplementary Material.

Although they do not provide an explicit running time, the
algorithm of Carmona-Saez et al. (2006) seems to require Q(|R|2 X
|C| Xf X Icony) time, where I.on is the number of iterations
necessary for convergence to local optimum. In practice, the constant
in the suggested bound is large and the running time is much
worse. The fact that the greedy iterative biclustering methods
themselves require large amounts of computing time, necessitates
a pre-processing algorithm for improvement of such methods take
much less proportion of the necessary CPU time. This makes nsNMF
a much less appealing pre-processing alternative. Our localization
algorithm provides better or comparably similar results to those of
nsNMF with only an almost linear running time.

3.3 Functional enrichment evaluation

We next evaluate the biclustering results of the algorithms under
study based on biological significance. Based on gene functionality
a gene-to-category association is created for the Yeast dataset in von
Mering et al. (2002). Using these associations, we are able to
evaluate an enrichment ratio for each bicluster. Categories of genes
are identified in a manner similar to Bryan and Cunningham (2006).
There are 13 pre-identified categories. Given a bicluster the ratio
of the number of genes specified in a category to the number of
genes in the bicluster provides a possible enrichment value for that
category. For a specific category, we choose the highest enrichment
value among all biclusters as the enrichment ratio of the category.
This is a ratio between 0 and 1, see Table 2. For this experiment, we
do not evaluate small biclusters that contain less than 20 genes.
We first compare the results of each greedy iterative heuristic
method with those of its localization pre-processed counterpart.
MSB* provides better enrichment ratio than MSB in 10 categories.
MSB has better ratio than MSB* in only one category and they
have a tie in two of the categories. These are the expected results
as the MSB algorithm greedily selects the maximum similarity
bicluster based on a random reference gene, whereas with the
localization pre-processing each reference gene is selected from
a representative local neighborhood that already satisfies a certain
degree of similarity. The contrast is also apparent in the comparison
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Improving biclustering heuristics via localization

Table 2. Warfield for the Yeast 2993x173 dataset

Original Algorithms Localized Runs
Func. REALgp MSB  SAMBA LAS MSB* SAMBA* LAS*
E 0.58 0.15 0.40 056 025 0.53 0.63
G 0.73 0.19 0.39 042 0.18 0.39 0.49
M 0.84 0.31 0.33 039 038 0.35 0.29
P 0.81 0.29 0.89 089 036 0.92 0.77
T 0.74 0.33 0.41 037 041 046 0.33
B 0.38 0.29 0.21 0.15 033 025 0.16
F 0.35 0.27 0.71 024 032 049 0.19
(0} 0.74 0.26 0.26 0.17 026 0.20 0.17
A 1.00 0.25 0.47 043 029 038 0.44
R 0.09 0.13 0.20 024 017 0.27 0.30
D 0.71 0.33 0.24 025 035 023 0.27
C 0.26 0.33 0.44 029 033 041 0.30
U 0.37 0.24 0.16 017 033 0.28 0.13

Predefined functional categories; E, energy production; G, Amino Acid Metab., M, Other
Metab., P, Translation; T, Transcription; B, Transcriptional control; F, Protein Fate;
O, Cellular Org.; A, Transport and Sensing; R, Stress and Defense; D, Genome
Maintenance; C, Cellular Fate / Org.; U, Uncharacterized. For each pair of original
algorithm and localization pre-processed counterpart a bold value highlights larger
enrichment ratio.

of SAMBA with its localized counterpart SAMBA®. The localization
pre-processed version provides a better functional enrichment ratio
than the original algorithm in seven categories, whereas the original
algorithm beats the modified version in five categories. There is a
draw in one category. A similar contrast results when comparing
LAS versus LAS*. As a result as far as the functional enrichment
is concerned, the localization pre-processed counterparts of all
three greedy iterative biclustering methods provide more significant
biclusters than the original methods themselves.

We note that with this measure the best performer among all the
algorithms, localization pre-processed or not, is the simple random
extraction algorithm applied after localization, that is REALgo. It
provides better enrichment ratio than the rest of the six algorithms
in eight categories. The category of Transport and Sensing is
especially notable as REALg( provides a bicluster with all the genes
associated with that category giving rise to a functional enrichment
ratio of exactly one for that category. This is a major indication
of success especially given that the average number of genes in
a bicluster produced by REALgo is almost 24, see Table 1. Both
the localization pre-processing and the GO association validation of
the randomly extracted structures contribute to this achievement.
We note that the results presented in Table 2 are verified when
the enrichment ratios are calculated based on Bonferroni-corrected
P-values as well. Details of this evaluation can be found in the
Supplementary Material.

3.4 Protein protein interactions evaluation

There is usually a natural interconnection between the information
contained within expression data and protein-protein interaction
(PPI) networks (Jansen et al., 2002). The validity of high-level
structures such as biclusters is usually cross-checked via low-level
biological data in the form of protein interactions (Preli¢ et al.,
2006). Conversely, to improve the accuracy and the coverage of
predicted protein interactions it is usually necessary to integrate

Table 3. PPI experiment on Yeast and A.thaliana datasets with PPIs

REALGo MSB MSB* SAMBA SAMBA* LAS LAS*

op 020286 0.2049 0.2255 0.1088 0.1234  0.1147 0.0996
o 0.15341 0.1494 0.1697 0.0716 0.0821 0.0551 0.0640
o3 0.00442 0.0016 0.0037 0.0167 0.0199  0.0000 0.0000

Averages of all hit ratios are given as o7 for PP1{(23 702 interactions), o, for PPI,
(11 833 interactions) and o3 for PPI3 (24418 interactions). For each pair of original
algorithm and localization pre-processed counterpart a bold value highlights larger hit
ratio.

complementary data sources including gene expression (Lin ef al.,
2009). Therefore, our next evaluation is based on validating
extracted biclusters with known protein—protein interactions from
literature.

We make use of two separate sources of PPI network data for the
yeast, one from Ben-Hur and Noble (2005) with 23 702 interacting
gene pairs and the other from Suthram et al. (2006) with 11 833
interacting gene pairs. As for the A.thaliana dataset evaluations
we use the PPI network with 24 418 interactions and 11 706 genes
from De Bodt et al. (2009). For the rest of the evaluations, these
data sources are denoted with PPI;, PPI,, PPI3, respectively.

For each bicluster extracted using a specified algorithm, we define
the hit ratio of the bicluster as the ratio of the number of interactions
among the gene pairs in the bicluster to the square of the total number
of genes in the bicluster. Extracting the subnetwork of genes of the
bicluster from an appropriate PPI network, the hit ratio in other
words is a measure of the density of this subnetwork. Therefore,
given an algorithm and a PPI network source it is easy to compute the
hit ratios of all the biclusters produced by the algorithm. We compute
an average o of the hit ratios per algorithm for our evaluations, see
Table 3. As far as the protein—protein interactions of the given source
are concerned, the higher the average hit ratio, the more correlated
the gene groups in output biclusters are.

With regards to PPI; network data localization pre-processing
improves the results of the MSB and the SAMBA algorithms, but
fails to improve those of LAS. An increase in the average hit ratio
of the produced biclusters is assumed to be an improvement in this
case. Localization pre-processing is verified even more strongly in
the PPI, network data, as all the modified versions of the algorithms
provide better hit ratios than their original counterparts. We note
that going from PPI; to PPI, the average hit ratios decrease as the
former is more dense than the latter. As for the PPI3 network data
as the network is the sparsest among all three networks the average
hit ratios are all quite low. However, it is still easy to verify the
improvement created by localization pre-processing. Overall, three
network evaluations MSB* and the REAL (¢ algorithms are among
the best performers as far as the average hit ratios of the produced
biclusters are of concern.
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