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Abstract—This paper is concerned with the challenging and
timely problem of joint channel estimation, equalization, and data
detection for uplink orthogonal frequency division multiplexing
(OFDM) systems in the presence of frequency selective and very
rapidly time varying channels. The resulting algorithm is based
on the space alternating generalized expectation maximization
(SAGE) technique which is particularly well suited to multicarrier
signal formats leading to a receiver structure that also incorporates
interchannel interference (ICI) cancelation. In order to reduce the
computational complexity of the algorithm, band-limited, discrete
cosine orthogonal basis functions are employed to represent the
rapidly time-varying fading channel by the discrete cosine serial ex-
pansion coefficients. It is shown that, depending on the normalized
Doppler frequency, only a small number of expansion coefficients
is sufficient to approximate the channel perfectly and there is no
need to know the correlation function of the input signal. In this
way, the resulting reduced dimensional channel coefficients are
estimated and the data symbols detected iteratively with tractable
complexity. The proposed SAGE joint detection algorithm updates
the data sequences serially and the channel parameters are updated
in parallel, leading to a receiver structure that also incorporates
ICI cancelation. Computer simulations show that the cosine trans-
formation represents the time-varying channel very effectively
and the proposed algorithm has excellent symbol error rate and
channel estimation performance even with a very small number of
channel expansion coefficients employed in the algorithm, resulting
in substantial reduction of the computational complexity.

Index Terms—Intercarrier interference suppression, joint data
detection and channel estimation, orthogonal frequency-division
multiplexing (OFDM), rapidly varying wireless channels, space al-
ternating generalized expectation maximization (SAGE) algorithm.

I. INTRODUCTION

O RTHOGONAL frequency-division multiplexing has
been shown to be an effective method to overcome

intersymbol interference (ISI) caused by frequency-selective
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fading with a simple transceiver structure. Consequently, has
become a key air interface for broadband high speed com-
munication systems being standardized as the IEEE’s 802.16
family—better known as Mobile Worldwide Interoperability
Microwave Systems for Next-Generation Wireless Commu-
nication Systems (WiMAX)—and by the Third-Generation
Partnership Project (3GPP) in the form of its Long-Term
Evolution (LTE) project. Both systems employ orthogonal
frequency division multiplexing/multiple access (OFDMA) as
well as a new single-carrier frequency-division multiple access
(SC-FDMA) format. To promote the IEEE 802.16 standards,
recently, a high mobility feature has been introduced (IEEE
802.16m) to enable mobile broadband services at vehicular
speeds beyond 120 km/h.

While many studies of OFDM receiver design have appeared
in the literature for quasi-static channels [1]–[10], there is much
left for investigation in the area of fast fading channel estima-
tion, equalization, and data detection. Since mobility support is
widely considered to be one of the key features in next genera-
tion wireless communication systems, OFDM transmission over
very rapidly time varying multipath fading channels has been
considered in a number of recent papers [11]–[26]. However,
most of the these cited works have focused on finding low-com-
plexity channel equalization and estimation techniques, sepa-
rately, for OFDM receivers in the presence of highly mobile
environments.

OFDM can drastically simplify the equalization problem
by turning the frequency selective channel into a flat fading
channel. A simple one-tap equalizer is needed to estimate the
channel and recover the data. However, in fading channels
with very high mobilities, the time variation of the channel
over an OFDM symbol period results in a loss of subchannel
orthogonality which leads to inter-channel interference (ICI)
due to power leakage among OFDM subcarriers. In addition to
this, interblock interference (IBI) arises when the channel delay
spread is larger than the cyclic prefix (CP), which again results
in ICI. Techniques for equalization in high mobility channels
range from linear equalization, based on the zero-forcing (ZF)
or the minimum mean-squared error (MMSE) criterion [11],
[14]–[17], [19], [20], to nonlinear equalization based on deci-
sion-feedback or ICI cancelation [16], [17], [19], [20]. It has
been shown that nonlinear equalizers based on ICI cancelation
generally outperform linear approaches [17], [19], [20]. How-
ever, linear equalizers still preserve their importance mainly
because they are less complex. In [19], the performance of
matched filter (MF), least squares (LS), and MMSE successive
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detection with optimal ordering is investigated. However, since
the number of subcarriers is usually very large in high-speed
wide-band wireless standards, even the linear MMSE equalizer
considered in [19] demands very high computational load.
The specific structure of the Doppler-induced ICI in OFDM
systems operating over highly mobile channels presents a
distinctive feature of limited support of the Doppler spread that
can be exploited by the receiver. References [14]–[17], and [20]
exploit the banded character of the frequency-domain channel
matrix to reach a complexity that is only linear in the number
of subcarriers. In a certain sense, the assumption of a banded
frequency-domain channel matrix is a natural extension of the
time-invariant channel case, in which the frequency-domain
channel matrix is diagonal and hence banded with the smallest
possible bandwidth. In [14], using the banded structure of the
channel matrix, a simple frequency domain equalizer is pro-
posed that can compensate for these ICI coefficients, thereby
significantly affecting the loss of subchannel orthogonality.
However, the detection performance of the technique degrades
substantially, since the data to be detected cannot fully use
the contributing observation elements. The work presented in
[20] combined [14] and [17] and derived a recursive decision
feedback equalizer receiver for ICI suppression. The iterative
MMSE serial linear equalizer (SLE) of [17], which takes the
banded structure of the channel matrix into account, seems to
be one of the most promising approaches to compensate for ICI.
Iterative MMSE is then applied to estimate frequency-domain
symbols. In [15], a block MMSE equalizer for OFDM systems
over time-varying channels is presented. By exploiting the
banded structure of the frequency-domain channel matrix, the
complexity of the resulting algorithm turns out to be smaller
than that of [17]. In [27], a new computationally feasible,
maximum a posteriori probability (MAP)-based data symbol
detection algorithm is proposed for OFDM systems operating
in highly mobile channels, as an alternative to the existing
suboptimal equalization/detection techniques summarized in
the above paragraphs.

On the other hand, the recent work on the separate equal-
ization and estimation for OFDM systems in a highly mobile
environment can be summarized as follows. For a rapidly
time-varying channel, the time-domain channel estimation
method proposed in [19] is a potential candidate for the channel
estimator, in order to mitigate the ICI. This technique estimates
the fading channel by exploiting the time-varying nature of
the channel as a provider of time diversity and reduces the
computational complexity using the singular-value decompo-
sition (SVD) method. However, the linear MMSE successive
detection with optimal ordering proposed in [19] along with
channel estimation demand very high computation, since the
number of subcarriers is usually very large; thus it may not
be feasible in practical systems. In [13], a low-complexity
equalizer is designed first, assuming the channel is banded.
Then, employing this equalizer, a pilot-aided MMSE channel
estimation scheme for a time-varying wide-sense stationary
uncorrelated scatters channel model is proposed. In [18] a
general framework for a controlled removal of ICI and channel
acquisition is proposed. A finite power series expansion for the
time-varying frequency response is used and channel acquisi-

tion and ICI removal are accomplished in the frequency domain.
In [23], to handle rapid variation within an OFDM symbol,
a pilot-based estimation scheme using channel interpolation
was proposed. Moreover, coupled with the proposed channel
estimation scheme, a simple Doppler frequency estimation
scheme was proposed. In [24], to compensate for the ICI, a
modified Kalman filter (MKF) channel estimator for OFDM
systems in a fast and frequency-selective Rayleigh fading
channel was proposed. The time-varying channel was modeled
as an autoregressive (AR) process and the proposed MKF was
used to estimate the AR parameters. In addition, a channel
predictor using regression analysis and an MMSE time-domain
equalizer were also proposed to track the time-varying channel.
The difference between the method described in [19] and the
one proposed in [24] was that the former assumed the value of
the fading parameter (or Doppler frequency) to be known in
advance, whereas the latter estimated it by means of the MKF.
In [25], two methods to mitigate ICI in an OFDM system with
coherent channel estimation were proposed. Both methods em-
ployed a piece-wise linear approximation to estimate channel
time-variations in each OFDM symbol. The first method
extracted channel time-variation information from the cyclic
prefix while the second method estimated these variations
using the next symbol. Moreover, a closed-form expression for
the improvement in average signal-to-interference ratio (SIR)
was derived for a narrowband time-varying channel. However,
piece-wise linear approximation does not hold any more in
the presence of very high mobility. In [26], a decision-di-
rected channel predictor for OFDM communications over
time-varying channels was proposed. The channel prediction
algorithm presented in [26] was capable of yielding up-to-date
channel state information even without regular transmission of
pilot symbols. Moreover, the proposed normalized least mean
squares (NLMS) and recursive least squares (RLS) adaptive
predictors do not require any prior statistical knowledge and
are able to track nonstationary channels and noise statistics.
However, to avoid error propagation, it was concluded that a
certain minimum signal-to-noise ratio (SNR) was required and
that the algorithm could not work for very high mobility.

In this paper, a computationally feasible space alternating
generalized expectation maximization (SAGE) algorithm is
proposed for the problem of joint multiuser data detection
[28], channel estimation and equalization for OFDM systems
operating in highly mobile and frequency selective channels.
The channel variation over the duration of a data block is
upper bounded by the maximum Doppler bandwidth which is
determined by the maximum speed of the users. We exploit
the band-limited discrete-cosine orthogonal basis functions to
represent the time-varying fading channel through a discrete
cosine serial expansion of low dimensionality. In this way, the
resulting reduced dimensional channel coefficients are esti-
mated and the data symbols detected iteratively with tractable
complexity. The resulting SAGE-based receiver scheme com-
prises a channel estimator, interference canceler, equalizer and
soft-input/hard-output serial data detector in each iteration.

This detection algorithm is compared with previously pro-
posed algorithms in terms of both symbol error rate (SER) and
complexity requirements. Computational complexity investiga-
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tion as well as simulation results indicate that our algorithm
performs quite well while having significant complexity advan-
tages over the existing suboptimal detection and equalization
algorithms described above.

The paper is organized as follows. Section II presents the
system, including observation and time varying channel models,
explains the discrete-cosine expansion of the time-varying
channel and describes the pilot tone structures. In Section III,
the proposed SAGE algorithm is presented for joint channel
estimation, equalization and data detection. Furthermore
we discuss initialization and computational complexity. In
Section IV, the performance of the proposed receiver is evalu-
ated via computer simulations. Finally Section V summarizes
the main conclusions of the paper.

II. SYSTEM MODEL

A. Signal and Channel Models

We consider an OFDM system with subcarriers. At the
transmitter, out of subcarriers are actively employed to
transmit data symbols and nothing is transmitted from the re-
maining carriers. The frequency-domain transmitted data
symbols are denoted as , where is the OFDM symbol
discrete-time index and is the subcar-
rier index. A cyclic prefix of length is then added. We as-
sume a time-varying mobile radio channel with discrete-time
impulse response , , where is the
maximum channel length with . The Fourier transform
of the channel impulse response at time , is de-
fined as , where

are the indices of the discrete OFDM subchannel
frequencies. For a classical OFDM system with cyclic prefix du-
ration greater than the channel impulse response length, the re-
ceived signal is not corrupted by previous symbols and therefore
all OFDM symbols can be processed separately. At the receiver,
after matched filtering, symbol-rate sampling and discarding the
symbols falling in the cyclic prefix, the received signal at the
input of the discrete Fourier transform (DFT) and during the
transmission of the OFDM symbol can be expressed as [19]

(1)

for and , where
represents one OFDM frame length consisting of consecu-
tive OFDM symbols. and is zero-mean
complex additive Gaussian noise with variance . Note that
when the normalized Doppler frequency is sufficiently small,
the time varying-channel impulse response can be assumed to
be constant over the duration of one OFDM symbol; that is

for . Then it can
be easily shown from (1) that the received signal at the output
of DFT takes the known form

where , and are received signal, noise
and channel coefficients, respectively, all represented in the fre-
quency-domain, corresponding to the th OFDM symbol and

th subchannel.
If we focus on the detection of the th data symbol trans-

mitted during the th OFDM timing slot, the final expression
for the received signal can be expressed in vector form as
follows:

(2)
where

and

(3)

together with

The vector denotes the time-varying channel impulse
response during the th OFDM symbol

(4)

where
, represents -path wide-sense sta-

tionary uncorrelated scattering (WSSUS) Rayleigh fading coef-
ficients at the th discrete-times. Assuming the Jakes’
model, the autocorrelation function of the channel is

(5)

where , , represents the normalized power
of the th path of the channel satisfying . is the
zeroth-order Bessel function of the first kind, is the Doppler
shift due to the vehicle motion and is the Kronecker delta.

, being the OFDM symbol duration. Finally,
is the complex white Gaussian noise vector with zero-

mean and . The derivation of (2) is
given in the Appendix A.

B. Channel Basis Expansion

The performance of the receiver depends critically on
the estimate of the time-varying channel impulse response

from
the dimensional received vector

. It seems the estimation
of the channel vector is impossible by means of

since there are more unknowns to be determined than known
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equations. However, the banded property of the channel matrix
[17], [29] enables us to reduce the number of parameters needed
for channel estimation substantially, consequently reducing the
computational complexity of the channel estimation step.

We first apply a suitable basis expansion which describes the
time variations of the discrete-time channel impulse response

over a data block consisting of OFDM sym-
bols. We do not make any assumption regarding the amount of
time-variation (equivalently, Doppler frequency) in the channel.
For notational simplicity, let . Then

For each channel path , the channel coef-
ficients can be represented as weighted sums of
orthogonal basis functions in the interval :

(6)

where represent the expansion coefficients. As
is essentially a lowpass process whose bandwidth is determined
by the Doppler frequency, it can be well approximated by the
weighted sum of a substantially fewer number of
suitable basis functions:

(7)

Similarly, using the orthogonality property of the basis func-
tions, the expansion coefficients can be evaluated by the inverse
transformation as

(8)

Employing complex exponentials as basis functions has been
widely considered in the literature due to the orthogonality
among columns of the basis-expansion matrix error when the
channel is varying very rapidly. Recently the basis expan-
sion matrix has been considered using the Karhunen-Loève
transformation (KLT) [30]. The KLT based expansion model
achieves minimum mean square channel modeling error and
the expansion coefficients are uncorrelated. However, the
implementation of the KLT-based expansion algorithm is com-
putationally expensive and requires knowledge of the channel
statistics.

In our work, we make use of the orthonormal discrete cosine
transform (DCT) basis functions defined as

if
if

(9)

Hence, is the th DCT-coefficient of . The
dimension of the basis expansion satisfies

. The lower bound is given by

, where is the maximum
(one-sided) normalized Doppler bandwidth defined by

with , and the maximum supported speed, the car-
rier frequency and the speed of light, respectively, and the
OFDM symbol duration. As has its energy concentrated
near the frequencies and for

, the DCT basis functions are well suited to rep-
resent the low-pass equivalent of the channel by means of a
small number of basis functions. Also, the DCT basis functions
have the advantages of being independent of the channel statis-
tics and having expansion coefficients that become uncorrelated
as the number of observations gets larger, as proven in
Appendix B. By choosing , we control the channel modeling
mean square error (MSE)

(10)

Thus, for each channel path , the
channel and the expansion coefficients can be expressed in
matrix form

(11)

and

(12)

where

and represents the DCT matrix expressed as

(13)

and

Furthermore after removing the CP, it can be shown from
(7) and (2) that the dimension of the channel vectors ,

, in (11) reduces from to . Then it
can be easily seen that the channel vector in (4) is related
to in (11) as

where we have used the notation to denote entry to
entry of a vector . Finally from (11) it follows that

(14)

where
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and

with

Finally, substituting (14) into (2), the received signal is ex-
pressed in terms of the reduced dimensional channel vector as
follows:

(15)
where .

For purposes that will be clear below, we also express (15) in
a more compact matrix form as follows:

(16)

where

and

C. Pilot Symbol Selection

For channel estimation and especially for initialization of the
SAGE algorithm as explained in the following section, insertion
of pilot symbols is necessary. Although, several pilot patterns
are possible, for ease of implementation we consider the scheme
in which all subcarriers in a given time slot are dedicated to
pilot symbols. Due to high-mobility, time-domain correlation is
important and plays a key role in the initial reduced complexity
MMSE channel estimation used in the SAGE algorithm. We
assume there are pilot OFDM symbols located at time-slots

where . They can
be arranged in a way so that pilot spacings can be adjusted with
respect to the time variations of the channel. When the channel is
slowly varying, the time-domain correlation decays at a slower
rate and consequently, pilot spacing can be chosen wider.

III. DATA DETECTION USING THE SAGE TECHNIQUE

The problem of interest is to derive an iterative algorithm
based on the SAGE technique for data detection without com-
plete channel state information, employing the signal model
given by (2). Since the SAGE method has been studied and
applied to a number of problems in communications over the
years, the details of the algorithm will not be presented in this
paper. The reader is referred to [31] for a general exposition of
the SAGE algorithm and to [9] for its application to an estima-
tion problem related to the work herein. A suitable approach for

applying the SAGE algorithm for detection of the nonpilot data
signals , ,
and , is to decompose the received signal
in (15) into the sum [32]

(17)

where

(18)

and

(19)

We now derive a SAGE algorithm for detecting the nonpilot
OFDM data vectors in the set , where

, transmitted within an
observed frame consisting of OFDM symbols, based on the
received vector . To obtain a receiver architecture that iterates
between soft-data and channel estimation, one might choose the
parameter vector to be . At iteration , only the data symbol
vector of the subchannel , is updated, while the symbol
vectors of other subchannels are kept fixed, where
the notation “ ” denotes the set exclusion operator.

In the SAGE algorithm, we view the observed data as the
incomplete data and since is unknown, we incorporate into
the admissible hidden data set as to which the in-
complete data are related through a possibly nondeterministic
mapping [31].

A. Expectation-Step (E-Step)

The SAGE algorithm is based on the expectation-maximiza-
tion (EM) algorithm. The first step to implement the EM algo-
rithm, called the Expectation Step (E-Step), is the computation
of the average log-likelihood function, averaged over . The
conditional expectation is taken over given the observation

and given that equals its estimate calculated at th iteration

(20)

By neglecting the terms independent of ,
can be calculated from (20) as

(21)

where denotes the real part of its argument. Inserting (21)
into (20), we have for

(22)
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where

(23)

and

(24)

Eq. (23) can be calculated by applying the conditional expecta-
tion rule as

(25)

The conditional distribution of given , and
is Gaussian with mean

(26)

where is the estimated value of the signal at the th iter-
ation step and, if , then is
taken equal to the corresponding pilot symbol. Inserting (26) in
(25), and subsequently substituting (25) and (24) in (22), we can
rewrite (22) as

(27)

where

(28)

and .
The prior probability density function (pdf) of

is chosen as . The
covariance matrix of can be determined as

where

, the covariance matrix of , can be obtained from (5)
as

...
...

. . .
...

(29)

with . However, for sufficiently large
length of the observation frame, it can be shown (see
Appendix B) that , the covariance matrix of , for each
channel path becomes diagonal as

(30)

where , ,
and is the channel’s scattering function defined by the
Fourier transform of . For Jakes’ Doppler profile it is given
by for , [33].

On the other hand, since , using the observa-
tion equation for in (16), we can write the conditional pdf of

given and as

(31)

After some algebra it can be shown that [34]

where

(32)

and

(33)

Now let us compute the expectations on the right hand side
of (28). The first expectation can be computed from (32) as fol-
lows:

(34)

By defining , the second expectation in (28)
can be determined as follows:

(35)

where

, and denotes the trace of its argument.
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In summary of the above, the function in (28) can be
expressed as

(36)

B. Maximization-Step (M-Step)

In the M-step of the SAGE algorithm, the estimates of the
data sequence are updated at the th iteration according to

and

where is given by (27).
Keeping in mind (35) and substituting (27) into the above

equation yields the following for :

and

(37)

where the maximization should be taken over the nonpilot
data symbols for and

.
Moreover, when no coding is used, it follows from (37) that

each component of can be separately obtained in
the continuous-domain by maximizing the corresponding sum-
mation in the right-hand side of (37) as

However, since is discrete, belonging to a signal con-
stellation point, we must quantize to its nearest con-
stellation point in each iteration. Consequently, substituting (36)
into the above equation, the data update rule of the SAGE algo-
rithm takes the following form:

(38)

where denotes the quantization process that quantizes
its argument to its nearest data symbol constellation point.

Note that, as shown in Fig. 1, (36) can be interpreted as
joint equalization and ICI cancelation performed right after
the channel estimation step, implemented in the time-domain,

Fig. 1. Channel estimation, equalization, interference cancelation and data de-
tection performed for the �th subcarrier at the �th iteration step.

immediately following the analog-to-digital (A/D) conversion
and cyclic prefix deletion processes at the OFDM receiver.
Consequently, we can think of the quantities in (36)
as the outputs of an ICI canceler, generated at the th itera-
tion step of the SAGE algorithm. After the SAGE algorithm
converges at some iteration step, say the th step, the original
data is detected by conventional coherent detection in the
frequency domain using the interference-cleaned signal vector

, where .

C. Initialization

The performance of the receiver operating with the data
detection and channel estimation algorithm proposed above is
closely related to the quality of the initial values of and the
data , which are computed as follows.

1) Initialization of Channel Coefficients: The initial channel
estimate, , can be determined with the aid of the pilot sym-
bols. As mentioned in Section II-C, we consider all subcarriers
in a given time slot dedicated to pilot symbols. Assuming
that there are pilot OFDM symbols located at time-slots

where , they can
be arranged in an pilot-symbol
matrix where

. Accordingly, from (16)
the received vector corresponding to the one OFDM frame of
length can be expressed as

(39)

The MMSE estimate of the initial the channel parameter
can be determined from (39) as follows:

(40)

where is the variance of the Gaussian noise.
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2) Initialization of Data Symbols: The initial value of the
data symbols for each ,

, can be determined as follows. From (2) and
(14) the received signal can be expressed as

(41)

where and are defined in (2) and

(42)

and

Note that from (3) and (42) it follows that

where represents the time-varying channel coeffi-
cient in the frequency domain at the discrete time
and at the discrete frequency .

In order to detect the initial data symbols ,
, , several options are

possible. We focus on a low complexity linear MMSE detec-
tion approach here. We omit the time-index from now on for
notational simplicity since the detection process is the same for
each . From the observation (41), the linear MMSE detection
of data can be expressed as

(43)

The matrix inversion in (43) requires floating point op-
erations (flops), which is computationally very expensive when

is large such as for the IEEE 802.11 and IEEE 802.16 fam-
ilies. However, as is known, time-varying channels produce a
nearly-banded channel matrix whose only main diagonal,
subdiagonal and superdiagonals are nonzero. The bandwidth

is a parameter to be adjusted according to the mobility-rate
of the channel. It has been determined that is an
appropriate choice for Rayleigh fading [30]. The banded prop-
erty of the channel can be exploited to reduce the computational
complexity by means of low complexity decompositions such
as the Cholesky or factorization [35] of Hermitian banded
matrices.

Since in (43) is a Hermitian banded
matrix with lower and upper bandwidth , we choose the
factorization to obtain which has the advantage of not re-
quiring the computation of a square root. The basic steps of the
data detection are given later as presented in [15]

STEP-1: Construct the banded matrix

STEP-2: Noting that is a positive definite matrix, per-
form the Cholesky factorization of , as expressed by

, where the triangular factor has lower band-
width ;

STEP-3: Solve the system for by the following
steps:

(i) solve the triangular system for ;
(ii) solve the triangular system for .

STEP-4: Calculate

D. Computational Complexity

In this subsection we evaluate the computational cost of the
proposed algorithm in terms of complex multiplications (CMs)
and complex additions (CAs) that are required per each data
symbol to be detected. The computational complexity of the al-
gorithm is determined by the parameters , , , , and .
The particular structures of the diagonal and Hermitian as well
as banded matrices have been exploited to keep the number of
computations to a minimum. Let us first determine the number
of computations required to compute the quantities and

in (38) as follows.
Keeping in mind and

with we can show that

where is defined by (3). The notations and denote
Kronecker and element-by-element products, respectively. Note
that requires
complex multiplications. Consecutively, it is easily seen that the
computational load of is CM. Note that for

and , the ’s
can be precomputed and used throughout the operation of the
system. Therefore, it will not be taken into account in the com-
plexity calculations.

Similarly, to compute , where

, consider vectors and
of length which are the th row of and the th

column of , respectively. It then follows that

Since the reduced-dimensional channel covariance matrix
is diagonal, it is easy to see that there are CMs and
CAs in calculation of . Similarly, CMs

and CAs are needed to calculate . Therefore,
the total computational load of the trace operation is roughly

CMs and CAs leading to a total
of complex operations.

By means of the above results we can evaluate the
total number of multiplications and additions required to
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implement the SAGE algorithm in (38) as follows. As-
suming that the SAGE algorithm converges in itera-
tions, the computations needed to detect each data symbol

in (38) is CMs and
CAs which is roughly

complex operations for nonconstant envelope
signal constellations, since .

The computational cost of the initialization step of the al-
gorithm can be determined as follows. To compute the initial
MMSE estimate of the reduced dimensional channel vector ,
given by (40), CMs and CAs are
necessary per detected data symbol, since and the

term in (40) can be precom-
puted and need not be recomputed again during the detection
stage.

The computational load of the low-complexity linear MMSE
algorithm to compute the initial data in (43) can be
determined as follows. Taking into account that
is nearly banded with bandwidth , the computation of

in Step-1, requires CMs
and CAs. For Step-2, it was shown in [15] that computation
of factorization algorithm requires CMs
and CAs. Furthermore, solving each of the two
banded triangular equation systems of Step-3 requires
CMs and CAs. Finally, the last step needs CMs and CAs
to calculate . Therefore, the entire initialization
algorithm requires roughly CMs and

CAs per detected symbol leading
to a total of complex operations,
since , and . Conse-
quently, the total computational complexity to implement our
equalization/detection algorithm per detected data symbol is

.
On the other hand, a number of suboptimal equalizers/de-

tectors have been proposed to reduce complexity, such as
MMSE detectors [17] and BLAST detectors [36]. However
all these schemes perform far from the maximum likelihood
(ML) detector. The VBLAST equalization/detection algorithm
yields substantially better error performance than conventional
linear equalizer/detectors. Therefore, we would like to compare
the computational complexity of our algorithm with that of
VBLAST.

The VBLAST algorithm performs four operations: nulling,
slicing, canceling, and ordering [36]. Estimation of the symbols
is done at the slicing stage and a new received signal is calculated
by subtracting the estimated symbols. If we assume that the
receiver has the complete channel state information and we do
not count slicing operation that corresponds to demodulation,
the nulling and canceling processes require CMs and
CAs for each iteration and thus for all iterations requires a total
of complex operations. Also, ordering
of the symbols require matrix inversion and sorting in
each iteration loop. The repeated inverse matrix computation
in the ordering step is the main computational bottleneck of the
algorithm and it requires total a total of complex opera-
tions for detection of the data symbols. However by using the
banded structure of the channel matrix this complexity can be

Fig. 2. SER versus SNR simulation results for different detection schemes:
� � � � ����, � � �,� � ��, QPSK signaling.

reduced to , using Rugini’s approach [15]. In addition
to this, computation of the signal-to-interference-plus-noise
ratio at each iteration step , requires
CMs and CAs leading to a total of complex
operations. As a result, the complete VBLAST algorithm needs
approximately
complex operations per detected data symbol. Therefore, the
computational complexity of the VBLAST receiver is substan-
tially greater than that of our algorithm, (i.e., versus

per data symbol) even under the assumption that the
channel is known by the receiver, and increases rapidly with the
number of subcarriers which makes its real-time implementation
prohibitive for OFDM based WiMAX and LTE types of systems.

Based on the above discussions on computational complexi-
ties, we conclude that the complexity of our algorithm is much
smaller than that of the VBLAST algorithm. On the other hand,
our algorithm has the potential to achieve better performance
than the VBLAST since it is known that the SAGE algorithm
achieves the optimal ML detection performance if it converges.

IV. COMPUTER SIMULATIONS

In this section, we present simulation results to assess the per-
formance of OFDM systems based on the proposed receiver.
The system operates over a 10-MHz bandwidth with 1024 sub-
channels operating on a carrier frequency of 2.5 GHz and with
quadrature phase shift keying (QPSK) signaling. A multipath
wireless channel having an exponentially decaying power delay
profile with the normalized powers [19], ,

, and is chosen.
In Fig. 2, the SER performance of the proposed algorithm is

presented as a function of SNR for the normalized Doppler fre-
quencies and corresponding to
a mobile terminal moving at speeds of 120 km/h and 240 km/h,
respectively, and for the OFDM frame length . The
lower bounds for the dimension of the DCT basis ex-
pansion coefficients, the chosen dimensions , corresponding
to the channel modeling [defined in (10)], as well
as the pilot spacings are given in Table I.
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TABLE I
SIMULATION PARAMETERS

Our extensive computer simulations have shown that the pilot
spacings (PSs) chosen according to resulted
in the best SER performance. The solid and the dashed curves in
Fig. 2 represent the SER performance curves when we have per-
fect channel state information (CSI) and for the proposed SAGE
algorithm including channel estimation, corresponding to mo-
bilities and

. Note that as the velocity increases, the rapidly
varying channel not only destroys the orthogonality but also pro-
vides the receiver with time-diversity. As can be seen from (2),
the data is carried on components of the channel
vector in one symbol duration. When the channel
is perfectly known (CSI is available), the CSI-SAGE scheme is
able to make good use of the time diversity. Consequently, in
Fig. 2, the performance for the case with (solid
line) is better than for the case with (dashed
line). However, when the channel CSI is not available, the gain
from diversity may be overwhelmed by the channel estimation
errors. This effect is clearly seen from the performance curves
in Fig. 2 which show that the SER performance of the SAGE
detection scheme for is better than the case
of when the CSI is obtained through channel
estimation.

In Fig. 3, the SER is plotted as a function of the number of
SAGE iterations for several SNR values and for 16-ary quadra-
ture amplitude modulation (16QAM) modulation. It can be seen
that three to four iterations are sufficient in order for the SAGE
algorithm to converge. The initial estimates of the channel and
the transmitted data are performed by the reduced-complexity
MMSE estimation techniques based on the pilot symbols as ex-
plained at the end of Section III. We refer to this method for
obtaining the initial channel and data estimates as the MMSE
separate detection and estimation (MMSE-SDE) scheme. We
conclude from these curves that even when the number of DCT
coefficients is chosen to be fairly small as compared to the total
number of coefficients , the performance loss in SER is
not significant when CSI is not available. We also can see that
the SER performance of the SAGE algorithm obtained at the
end of the third iteration step is much lower than that of the
MMSE-SDE.

We also investigated the average MSE performance of the
channel estimation as part of our algorithm. The average MSE,
here, is defined as the combination of the channel estimation
error with the channel modeling error due to the truncation of the
DCT expansion coefficients. In Fig. 4, the average MSE curves
are plotted for several SNR values employing the same param-
eter values as given in Table I. As can be seen in Fig. 3, the
algorithm achieves excellent MSE performance even when the
number of DCT coefficients is truncated at 11.

The effects of channel estimation on the average MSE and on
the SER performance are investigated as functions of the pilot

Fig. 3. SER versus Number of Iterations for 16QAM signaling scheme,
� � � ������ �� � ��� 	
���, � � � � 
���,� � � and 	 � ��.

Fig. 4. Average MSE versus SNR simulation results for different detection
schemes: � � � � 
���,� � �, 	 � ��, QPSK signaling.

spacing with different numbers of DCT truncation coeffi-
cients . The results are shown in Fig. 5 and Fig. 6, respec-
tively, when the normalized Doppler frequency

, and the OFDM frame length
is chosen as . Our extensive computer simulations have
shown that the average MSE performance depends heavily on
the pilot spacings and number of pilot symbols employed within
an OFDM observation frame. During the preliminary simula-
tions we always placed the first pilot tone at the beginning of
the frame and the others equally spaced over the frame, and ob-
served that the MSE performance degrades significantly if the
last pilot symbol cannot be placed at the end of the frame as
result of the equally spaced placement. Based on these observa-
tions, we have modified our computer simulations in such a way
that the first and the last pilots are always placed at the begin-
ning and at the end of the OFDM frame. The rest of the pilots
are placed almost equally spaced over the OFDM frame. From
Fig. 5 it is observed that the performance stays almost the con-
stant up until pilot spacing 12, and then degrades substantially
from pilot spacing 12 to 16. This is mainly due to the fact that
the number of pilot symbols drops from five to four at this point.

Similarly, it is concluded from Fig. 6 that the SER perfor-
mance does not change significantly for pilot spacings up to
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Fig. 5. Average MSE versus Pilot Spacing ��� for � � � ������ �� �
	
� ���
� and � � ��, QPSK signaling.

Fig. 6. SER versus Pilot Spacing ��� for � � � ������ �� � 	
� ���
�,
� � � � ��	
,	 � � and � � ��, QPSK signaling.

a certain value determined by the Doppler frequency. For ex-
ample, from Fig. 6 it is seen that the best SER performance

is achieved when and for the nor-
malized Doppler frequency .
Whereas, is achieved for and

. Consequently, the best pilot spacings and number of
pilots can be determined from Figs. 5 and 6 for the given SER
performance values based on the optimal pilot placement de-
scribed above.

Finally, we compare the SER performance of our algorithm
with separate data detection, equalization and channel estima-
tion techniques. Fig. 7 presents the SER as a function of SNR
for the matched filter (MF), MMSE-SDE and the linear MMSE
successive detection with optimal ordering and channel estima-
tion (MMSE-SucDE) proposed in [19], and the joint SAGE de-
tection and channel estimation, when the Doppler frequency

and when 16-ary phase shift
keying (16PSK) modulation is employed. For comparison of our
results with the ones presented in [19], the same pilot spacing
was chosen as . The MF suffers from severe ICI. The
MMSE-SDE is slightly worse than the MMSE-SucDE espe-
cially for SNR values greater than 15 dB. It is seen that our joint

Fig. 7. SER comparison of different detection and channel estimation tech-
niques � � � for � � � ��� �� � 
�� ���
�, � � � � ��	
, 	 � �,
and � � 	�, 16PSK signaling.

Fig. 8. SER comparison of QPSK, 8PSK and 16QAM signaling schemes
� � � ������ �� � 	
� ���
�, � � � � ��	
,	 � �, and � � ��.

detection and channel estimation algorithm has the best per-
formance, and that it is slightly better than the MMSE-SucDE
scheme. Note that since the number of subcarriers is usually
very large, e.g., in WiMAX and LTE systems, even
only the linear MMSE-based equalization-detection part of the
scheme proposed in [19] demands very high computation load,
and it may not be feasible in a practical system.

Finally, in Fig. 8, the SER performances of our algorithm are
compared with that of the MMSE-SDE for QPSK, 8PSK and
16QAM signalling schemes with parameters

, , , and .
The performance curves shown in Fig. 8 indicate that the SAGE
algorithm clearly outperforms the MMSE-SDE technique also
for different type of modulation formats.

V. CONCLUSION

The problem of joint channel estimation, equalization and
data detection for OFDM systems operating in the presence of
frequency selective and very rapidly time-varying channels has
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been investigated in this paper. We have presented an iterative
approach based on the SAGE algorithm and closed form ex-
pressions have been derived for data detection which incorpo-
rate channel estimation as well as partial interference cancela-
tion. The cosine orthogonal basis functions have been applied to
describe the time-varying channel. It has been shown by com-
puter simulations that, depending on the normalized Doppler
frequency, only a small number of expansion coefficients is suf-
ficient to approximate the channel perfectly and that there is no
need to know the statistics of the input signal. The proposed al-
gorithm has excellent symbol error rate and channel estimation
performance even with a very small number of channel expan-
sion coefficients, resulting in substantial reduction of the com-
putational complexity.

APPENDIX A
DERIVATION OF (2)

Recalling from (4), the received signal in (1) can be
expressed in vector form as follows:

(44)

where denotes the Kronecker product and

(45)
Note that

(46)

where is given in (4). Finally, substituting (46) into (44)
we obtain

(47)
from which (2) can be obtained.

APPENDIX B
PROOF OF ASYMPTOTIC CONVERGENCE OF THE CHANNEL

COVARIANCE MATRIX

The correlation between and can be computed
from (8) as

(48)

where .

We now show that for sufficiently large block size

(49)

Consequently, since ’s are orthonormal, it follows from
(49) that

if
if

(50)

Using the definition of the cosine transform given by (9), the
left-hand side of (49) can be expressed as

(51)

Since is the inverse Fourier transformation of
, the channel’s scattering function, it follows that

(52)

On substituting (52) into (51) and after some algebra we have

(53)

It can be easily shown that as we can use the
Poisson sum formula to obtain

(54)

where is the Dirac delta function. Substituting (54) into
(53), and integrating the resulting integrals with respect to we
have

(55)

Finally, defining and
, the claim in (50) is

proved.
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Habib Şenol (S’04–M’07) was born in Nazilli,
Turkey, in 1971. He received the B.S. and M.S.
degrees from Istanbul University, Istanbul, Turkey,
in 1993 and 1999, respectively, both in electronics
engineering. From 1996 to 1999, he was a research
assistant with Istanbul University. He received the
Ph.D. degree in electronics engineering from Işık
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