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Outage Scaling Laws and Diversity for Distributed
Estimation Over Parallel Fading Channels
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Abstract—We consider scaling laws of the outage for distributed
estimation problems over fading channels with respect to the total
power and the number of sensors. Using a definition of diversity
which involves a fixed number of sensors, we find tight upper
and lower bounds on diversity which are shown to depend on the
sensing (measurement) signal-to-noise ratios (SNRs) of the sen-
sors. Our results indicate that the diversity order can be smaller
than the number of sensors, and adding new sensors might not
add to the diversity order depending on the sensing SNR of the
added sensor. We treat a large class of envelope distributions for
the wireless channel including those appropriate for line of sight
scenarios. Finally, we consider fixed power per sensor with an
asymptotically large number of sensors and show that the outage
decays faster than exponentially in the number of sensors.

Index Terms—Distributed estimation, diversity, sensor net-
works.

I. INTRODUCTION

D ISTRIBUTED estimation is an important task in wireless
sensor networks (WSNs), where information collected by

decentralized sensors is sent to a fusion center (FC) via wireless
channels, after possible local processing. This contrasts sharply
with the classical centralized sensor networks with the sensors
wired to the FC, where all the signal processing occurs. Since
the FC in decentralized networks only receives condensed or
noisy information from the sensors, they exhibit a loss in per-
formance compared with centralized systems.

Especially over the past few years, research on distributed es-
timation has been evolving very rapidly [1]. Universal decen-
tralized estimators of a source observed in additive noise have
been considered in [2] and [3]. Much of the literature has fo-
cused on finite-rate transmissions of quantized sensor obser-
vations [4]–[9]. The observations of the sensors can be deliv-
ered to the FC by analog or digital transmission methods. Am-
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plify-and-forward is one analog option, whereas in digital trans-
mission, observations are quantized, encoded and transmitted
via digital modulation. The optimality of amplify and forward is
described in [10]–[13]. In particular, [10] shows from an infor-
mation theoretic point of view that a joint source-channel coding
approach such as the amplify and forward scheme is superior
to separate source-channel coding approaches such as decode
and forward for estimating the sample mean of the sensor ob-
servations over AWGN channels. A type-based approach to esti-
mating the histogram of the sensor observations is considered in
[14] and [15], and the sensitivity of this approach to system non-
idealities is addressed in [16]. In [13], an amplify-and-forward
approach is employed over an orthogonal multiple access fading
channel, where the concept of estimation diversity is introduced,
and shown to be given by the number of sensors. This seminal
result is obtained under the assumption of asymptotically large
number of sensors, and large total transmission powers.

We consider a parallel multiple access fading channel model,
and obtain expressions for the outage probability under different
asymptotic regimes than those in [13]. In the first part of this
work, we allow the number of sensors to be any finite value,
and arrive at results which can be interpreted differently than
those in [13], where infinitely many sensors were assumed. To-
ward this goal, in Section III we adopt a definition of diversity
order commonly adopted in wireless communications, and con-
sider finitely many sensors and large total transmit powers. In
this setting, we show that, unlike the findings in [13], the diver-
sity order need not be equal to the number of sensors, and de-
pends on both the sensing signal-to-noise ratios (SNRs), and the
threshold used to define the outage. Moreover, in contrast with
[13] we consider statistically nonidentical sensors, and general
fading distributions for the wireless channel. Our findings show
that it is possible to add new sensors into the system without any
diversity benefit, however, the outage performance can still im-
prove with addition of new sensors even when the total power is
fixed. We obtain results by finding bounds on the diversity order,
which can be found in Theorems 1 and 2, which are respec-
tively upper and lower bounds that are arbitrarily tight under
certain conditions. We extend our analysis to the case of random
sensing SNRs and found that the diversity order in this case is
zero under general conditions on the sensing SNR distributions.

In Section IV, we consider the case where both the number
of sensors, and the total transmit power are increased with their
ratio (the power per sensor) remaining fixed. We characterize
the scaling law of the outage in this regime in Theorems 4 and
5 which is seen to be a function decaying faster than an expo-
nential in the number of sensors. In what follows, we introduce
the underlying system model for this work.

1053-587X/$25.00 © 2009 IEEE
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Fig. 1. Wireless sensor network with parallel channels.

II. SYSTEM MODEL

Consider a distributed estimation problem in a WSN with par-
allel channels as shown in Fig. 1. We assume that there are
sensors and focus on a single time snapshot. The sensor mea-
surements are related to the source parameter by

(1)

where is the sensing noise, and is a
parameter that controls the sensing SNR given by

. The sensing SNRs can be modelled as de-
terministic or random variables depending on the application.
We mainly focus on deterministic , but we also address
the random case in the sequel. The sensors amplify and for-
ward their measurements which are separately received by the
FC over orthogonal channels:

(2)

where is the channel coefficient (we will
relax this assumption when we consider line-of-sight channels),

is the receiver noise, and is the amplifi-
cation coefficient which controls the power of the sensor.
We assume that , , , and are statistically independent
of each other and across sensors. If the channel information is
available at the sensor side, it is possible to optimize the transmit
power as a function of the channel [13]. We will assume no
channel information at the sensors, and consider equal power
transmission in the sequel. Since each sensor’s average power
is given by

(3)

in order to ensure that the total power is equally distributed
among all sensors, the per-sensor power is ,
which implies

(4)

We assume that the FC knows , and the noise vari-
ances , and thus can employ maximal ratio com-
bining before doing estimation of the source parameter . Com-
bining the separately received signals in (2) to get the max-
imum possible SNR at the output of the FC amounts to multi-
plying with the conjugate of the coefficient of when the noise
variances are equal [17]. Since the noise term in (2) is given
by with variance

, we can normalize (2) with so that the
noise term has unit variance

(5)

The maximal ratio combining coefficients are given by
[17]. We denote the resulting SNR at the output

of the FC with the random variable snr given by

(6)

Recalling that , defining , and
substituting for in (4) into (6), we obtain

(7)

The snr in (7) is random because the instantaneous SNR on the
channel, , is random. Since , the random

variable is exponentially distributed with mean
.

III. OUTAGE AND DIVERSITY

In distributed estimation of , the variance of the best linear
unbiased estimator (BLUE) is given by [13]. In this con-
text, it was shown in [13] that the outage, defined as

, satisfies

(8)

for large and . To put it another way, [13] showed that

behaves like for large . We emphasize that the result
in [13] is established for an asymptotically large , for a fixed
(but large) total power . Since (8) can be seen to indicate
that the outage behaves approximately like , the exponent
in the total power has been interpreted in [13] as an estimation
diversity of order . In what follows, we motivate a definition
of estimation diversity which, unlike that of [13], applies for any
finite number of sensors.

Traditionally, in wireless communications, diversity analysis
is performed for a fixed set of system parameters (e.g., number
of antennas in MIMO systems) for asymptotically large total
transmit power corresponding to large signal to noise ratios.
Therefore, it is of interest to fix the number of sensors and
examine the behavior of outage for asymptotically large total
powers. Interestingly, in our study of diversity for a fixed , we
find that the diversity order can be smaller than , and depends
on the sensing SNRs .

To define the diversity order formally, we recall that the
outage for a fixed set of sensing SNRs is the proba-
bility that snr falls below a threshold

(9)

where the randomness of snr stems from the instantaneous
channel SNRs , and the sensing SNRs are assumed deter-
ministic. Another way of viewing (9) is the outage conditioned
on . Since , we are interested in
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TABLE I
DEFINITION OF VARIABLES

a threshold range of , because when ,
, and when , . Examining

(9), we observe that if , then as
. We now quantify how fast the outage converges

to zero as a function of the threshold and the sensing SNRs
by investigating outage diversity order defined as

(10)

This definition of diversity is in perfect analogy to the defi-
nition of diversity for MIMO systems (see, e.g., [18, eq. 3])
where a large total transmit power is considered for a fixed set
of system parameters. Table I summarizes some parameters that
recur throughout the manuscript for convenience.

In what follows, we find upper and lower bounds for the di-
versity order for fixed sensing SNRs . Without loss of
generality, we assume that . We first begin
with the upper bound as a function of and .

Theorem 1:
1) If for some 1 then

. Clearly, the upper bound on is most useful if
we find the largest such .

2) If then .
Proof: See Appendix A.

Theorem 1 establishes that the diversity order is if the
threshold is chosen to be sufficiently small: .
However, if is increased (or the sensing SNRs are
decreased) the diversity order necessarily decreases, since its
upper bound is given by . This shows that the diversity
order in distributed estimation problems with amplify and for-
ward can be strictly less than the number of sensors . How-
ever, with just an upper bound, it is not clear what the range of
values the diversity order can take. For this reason, we state and
prove the following lower bound on :

Theorem 2: If for some ,
then

(11)

Proof: See Appendix B.
Combining the upper bound of Theorem 1 with the lower

bound of Theorem 2, the diversity order is bounded as

(12)

1When � � �, � � �, by definition

provided that by the assumption of Theorem 1
part 1.

We now examine the tightness of the bounds. The threshold
falls in an interval of the form for

some . In this case, the difference between
the upper and lower bounds in (12) can be at most unity because

(13)

Note also that the upper and lower bounds can be arbitrarily
close to zero when the threshold is sufficiently close to

. Therefore, with the upper and lower bounds, we can
determine the diversity order anywhere within a difference of at
most unity, to arbitrarily closely, depending on the exact value
of the threshold , and its relationship with the sensing SNRs

.
Let us now examine a corollary of Theorem 1 and Theorem 2

for the case of equal sensing SNRs to get simpler
expressions.

Corollary 1: If the sensing SNRs are equal, ,
then we have the following simple upper and lower bounds on

whenever is not an integer

(14)

If , we have the exact diversity order .
Proof: Since , from part 1 of Theorem 1 we

have the statement, for any integer satisfying (or equiv-
alently, ) we have . Hence, we need to find
the largest integer which is strictly smaller than . Clearly,
this integer is given by . Therefore,

. For the lower bound, using (11) with ,
we obtain . From part 2 of Theorem 1 we know
that whenever . This establishes the corollary.

Note that in the case when is an integer, the same proof
can be carried out with recognizing that the integer can be
chosen as which is less than . Using part 1
of Theorem 1 for this choice of we obtain

. Examining the tightness of the bounds in (14), we
observe that, similar to the discussion in (13), the bounds can
be apart at most by one. Fig. 2 illustrates the upper and lower
bounds of the diversity order as a function of . It can be seen
that . When , the diversity order is exactly .
When is an integer, the upper bound is
as per the discussion above, and it is exactly one more than the
lower bound in (14). On the other hand, when is greater
than, but sufficiently close to an integer, the difference between
the upper and lower bounds becomes arbitrarily close to zero.
In this setting where the sensing SNRs are equal, the upper and
lower bounds in (14) show that for a fixed and , when a new
sensor is added into the system, the bounds both increase by one.
In fact, the diversity order increases like for large .
We note, however, that the growth of the diversity order with
applies when are equal, and does not necessarily hold
when are unequal. In fact, examining the statement of
Theorem 1, we see that it is possible to add new sensors with
very small ’s such that the upper bound in Theorem 1 does
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Fig. 2. Diversity order bounds when the sensing SNRs are equal.

not increase. To see this, suppose that the threshold and set of
sensing SNRs are given. We add a new sensor whose
sensing SNR is small enough to satisfy .
This implies that we have . Using Theorem
1 with ’s, and sensors, we have

, the same diversity order as when we
had sensors. Therefore, it is possible to add new sensors into
the system without getting any diversity benefit. Note that the
new sensor that was introduced had to have a sensing quality
(measured by ) that was bad enough to not contribute to the
diversity order. This example clearly illustrates that the diversity
order depends on the sensing SNRs and not just on the
number of sensors.

The proofs of Theorems 1 and 2 which derive upper and lower
bounds on the diversity order are expressed in terms of a general
distribution for the instantaneous channel SNR on the sensor

, and therefore can be easily extended to cases where is not
exponentially distributed. In the next section, we extend these
bounds to cases that involve line-of-sight between the sensors
and the FC.

A. Diversity with Line of Sight

So far, we have assumed that the channel is zero-mean
complex Gaussian implying Rayleigh fading (exponential ).
However, in the presence of line of sight between some or all of
the sensors and the FC, distributions other than the exponential
might be suitable for . We first begin by considering a Ricean
amplitude (i.e., is Ricean), which means that the density
function of in this case is given by

(15)

where is the Ricean factor, and . Recall that in the
upper and lower bounds for the diversity order in the exponential
case, we only used the fact that , This also holds

for the density function in (15) for any . Reconsidering the
upper bound in (25) with (24) and the lower bound in (38), we
conclude that the bounds on the diversity in the Ricean case
remain the same as the Rayleigh case.

Another widely used distribution for the channel envelope
in the presence of line of sight is the Nakagami distribution.

The corresponding density function for is given by

(16)

where is the Nakagami parameter, and as before.
In this case, we now show that the bounds in (12) both scale by
a factor of .

Theorem 3: If and are dis-
tributed as in (16) then

(17)

Proof: The proof uses (25) and (38) for the upper and
lower bounds, respectively. Both equations are expressed in
terms of the density function of and can straightforwardly
applied to the density function in (16). The details are given in
Appendix C.

Note that for the special case of , the bounds can
be obtained by multiplying the upper and lower bounds in (14)
by .

B. Outage and Diversity when Sensing SNRs are
Random

In the analysis of outage defined in (9), the channel SNRs
are the only source of randomness. It is also possible

to consider scenarios where the sensing SNRs are
best modeled as random variables coming from a distribution.
This might occur, for example, when the sensors undergo fast
random motion in an underwater environment. When
are random, we will denote the outage by defined as in (9)
except the probability is calculated over the random variables

and . We now show that the unconditional
outage does not necessarily go to zero as . To see
why, consider removing the term from the
denominator in (9), which would make the sum larger, and the
resulting probability smaller. Therefore, we have the following
bound:

(18)

which does not depend on . Therefore is bounded
away from zero when is positive, which holds
for most probability distributions on . For example, when
in (1) is complex Gaussian, is exponential so that for any

, . This implies that no matter
how large the total power is, the outage calculated over the
probability measures of and is bounded away from zero.
We define the diversity order in this case the same way as (10)
except with . This diversity order is zero since does
not go to zero as .

Clearly it is not necessary for to be exponential for this
conclusion to hold. Any other choice for which can be
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smaller than with positive probability would yield a diversity
order of zero.

IV. OUTAGE FOR LARGE FOR FIXED POWER PER-SENSOR

We mentioned in Section III that in [13] the outage probability
for large but for a fixed was studied. In Section III we
considered an approach that is more common in wireless com-
munications when studying diversity, where was fixed to any
value, which highlighted the effect of on the diversity.

A third option of practical relevance is when the transmission
power of each sensor is fixed to a certain value. In this context,
an important question is how the outage performance scales with
the number of sensors. Our analysis so far has considered large

for fixed. In what follows, we allow both
and with a fixed per-sensor power of .
This is a natural scenario where each sensor that is deployed
has a fixed individual power, and increasingly larger number of
sensors are introduced. For simplicity, we assume
and , so that .
Since is fixed, the outage in (9) is given by

(19)

where . Recall that in Section III, where
the number of sensors was fixed, the value of could deter-
mine whether the outage in (9) converged to zero. In sharp con-
trast, if the number of sensors is allowed to increase with the
total power, the sum in the outage expression in (19) grows
without bound, and therefore the outage probability converges
to zero regardless of the value of . This hints that the be-
havior of the outage is markedly different in this scenario. In
fact, we soon show that the outage behaves approximately like

in this regime. We have the following theorem.
Theorem 4: For any and , if , then

(20)

Proof: See Appendix D.
Intuitively, Theorem 4 maintains that goes to zero faster

than for any fixed constant . That is, the
exponent of the outage grows faster than any linear function of

. In the next theorem, we show that the exponential rate cannot
be faster than .

Theorem 5: For any and , if , then
1)

(21)

2) and if , then

(22)

Proof: Please see Appendix E.
Part 2 of Theorem 5 shows that

, for sufficiently large . This is useful
only when , which guarantees that the

Fig. 3. Outage probability versus total power for different number of sensors
�� � ����.

right–hand side (RHS) of (22) is positive. This can be fulfilled
if the per-sensor power is chosen sufficiently large.

Combining the two results of Theorem 5, we can roughly state
that where the constant satisfies

. If the lower bound on is
negative, which might happen when is not large enough, then
we cannot guarantee , for a positive

. However, we are still assured by Theorem 4 that
for any constant if is sufficiently large.

Note that the results in Theorem 4 and Part 1 of Theorem 5
do not depend on . In other words, the outage probability for a
fixed goes to zero at least as fast as exponentially in ,
and not faster than , independently of the value
of .

V. SIMULATIONS

In this section, we provide simulation results to verify and
illustrate our findings in previous sections. We assume that the
variance of the source parameter and the instantaneous
channel SNRs are i.i.d. exponential random variables
with unit mean. The numerical results herein are obtained by
generating over runs, which is necessary since is ex-
ceedingly small even for moderate values of and .

We first verify the outage and diversity for the case of fixed
sensing SNRs , as in Theorems 1 and 2. Fig. 3 shows
the outage probabilities as a function of the total power for four
cases where the number of sensors equals to 1, 2, 5, 5, re-
spectively. The outage threshold is set to 0.8. The first three
cases are assumed to consist of all “good-observation” sensors
which have the same large sensing SNR, i.e., .
Whereas, the fourth case has the same number of sensors as the
third case but three of them are “bad-observation”
sensors with small , . Similar to
diversity in classic communication systems, we can see that a
diversity gain is achieved as the number of sensors increases
and the power saving is most substantial when going from no
diversity to two-sensor diversity with diminishing returns as the
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Fig. 4. Outage probability versus total power for a set of fixed and unequal
sensing SNRs �� � � ��� �� �� �� ��.

number of sensors increases. It is well known that the diver-
sity order is equal to the number of independent channel paths
in classic communication systems. Interestingly, this is not al-
ways true for distributed estimation systems. As seen in Fig. 3,
the curve of the fourth case has a smaller slope than that of the
third case although both have the same number of sensors, i.e.,
the same number of independent paths. Instead, the curve of the
fourth case has a similar slope as that of the second case where

. Clearly, the diversity order in distributed estimation
systems does not only depend on the number of sensors. We
continue with several case studies that further verify that the di-
versity order is given by the theorems we provided in previous
sections.

We now consider a case where there are five sensors
with different sensing SNRs: , , ,

, and . We simulate the outage probabilities as
a function of the total power for different thresholds where

. From Fig. 4 where the outage
probability is plotted versus , we can see that the diver-
sity order as seen from slopes decreases as the threshold
increases. When , the outage probability is always 1
since .

Fig. 5 shows the outage probability and the diversity order
for the case of fixed and equal sensing SNRs where ,
with . With the number of sensors

, the theoretical diversity order is given by (14). Again,
we observe that our simulation results match with the theoret-
ical results: as increases, the diversity order decreases. More
importantly, all the aforementioned figures show that, given the
sensing SNRs, the diversity order of the outage probability de-
pends on not only the number of active sensors in the system
but also the comparative values of the outage threshold and
the sensing SNRs .

We also study the case where the sensing SNRs are i.i.d. ex-
ponential random variables with unit mean. The outage proba-
bility is shown in Fig. 6, when the threshold is given as .
In Fig. 6, it is seen that the outage probability is bounded away
from zero for all cases of 5, 7, 9 no matter how large the

Fig. 5. Outage probability versus total power for fixed and equal sensing SNRs
� � ����.

Fig. 6. Outage probability versus total power for random sensing SNRs (� is
i.i.d. exponential distributed with mean 1 and � � �).

total power is. Indeed, the outage probability converges to some
nonzero value as , which indicates the diversity order
(measured by the slope) is always zero as shown in Fig. 6. Note
that a zero diversity order does not necessarily mean that the
outage probability does not improve with increasing . Indeed,
as shown in Fig. 6, the outage probability improves by several
orders of magnitude as the number of sensors increases from 5
to 9.

We have illustrated and verified the outage diversity order
when the number of sensors is fixed and the total power
is large. In the following, we consider the case where the power
per sensor is fixed and show how the outage probability
behaves as increases. We assume that and
is fixed and equal. Fig. 7 shows the values of
as a function of for several cases with different choices
of and . From Fig. 7, we see that all curves continue to
grow as increases, which verifies Theorem 4. Fig. 8 plots

versus when and . The
upper bound and the lower bound are given by the RHS of (21)
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Fig. 7. Illustration of Theorem 4 (� � � and � � ��).

Fig. 8. Illustration of Theorem 5 (� � �, � � �, � � �, and � � ��).

and (22), respectively. As expected, the simulation results fall
between the upper bound and the lower bound as increases.
This verifies that is an asymptotical tight bound for

if .

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the performance of distributed
estimation algorithms, as quantified by the outage under dif-
ferent asymptotic regimes. We found upper and lower bounds
on the diversity order, which are shown to coincide under certain
conditions. Using these bounds, we showed that the estimation
diversity order for a fixed is not always given by , and de-
pends on the sensing SNRs, and the threshold used to define the
outage. We observed that if the sensing SNR of a sensor is
too small, that sensor does not contribute to the diversity order.
We also showed generalizations to channel distributions such
as Rice and Nakagami. In fact, any other channel distributions
can be similarly treated. We extended our analysis to the case of
random sensing SNRs and found that the diversity order in this
case is zero for a wide range of sensing SNR distributions. This
zero-diversity phenomenon occurs when the sum of the sensing

SNRs can be arbitrarily small with positive probability. Since
systems with such random sensing SNRs cannot be compared
with using the diversity order, future research is needed for this
scenario. Other areas of future work include, generalization of
these results to the vector parameter case, maximum likelihood
estimation of nonlinear observation models.

We also studied the natural scenario where the per-sensor
power is fixed, with increasing number of sensors. In this
regime, the outage is shown to go to zero more rapidly than
exponentially in the number of sensors, and slower than

.

APPENDIX A
PROOF OF THEOREM 1

Proof: We begin with part 1. Let
be the term of the sum in (9), where and

for simplicity of notation. Recall that and
are deterministic, and is exponentially distributed. Clearly

with probability one.
Let , be arbitrary strictly positive numbers

that satisfy . We have

(23)

where in the inequality we used
and the second equality is due to independence. It is

straightforward to verify that

(24)
where and are the cumulative distribution func-
tions of and , respectively.

Substituting (23) in the definition of diversity in (10) we
obtain

(25)

(26)

where (26) uses the indicator function to assert that the term
in the sum in (25) is one when , and zero otherwise.
Too prove (26), consider first the case when . Since

almost surely, we have , and therefore
, which makes the term in (25) zero.

Suppose now that so that we may use (24) in (25),
recall that , and use L’Hôspital’s rule to obtain

(27)

for the term in the sum in (25) when . Using the fact
that for the exponential distribution , L’Hôspital’s
rule only needs to be used on the
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term in (27), and reveals that the term in (25) is one when
.

Since are free variables with the only requirement
that they be positive and add up to , we obtain the desired bound
in Theorem 1 with the following choice: , ;
arbitrary for . Since by
assumption, such positive for can be found.
In (26) it is clear that the first terms contribute zero, and the
last terms each contribute to at most one. Therefore (26)
is less than or equal to which is what we wanted to show
for part 1.

To prove part 2, we begin by recalling that due to part
1. To show , note that

(28)

because . Therefore, the probabilities of the events in
(28) are related as

(29)

Using (24) and taking the logarithms of both sides, (29) can be
written as

(30)

where, we used to write in terms of .
Dividing through by and taking the limit as

we obtain

(31)

Using (27), it is straightforward that each limit on the RHS of
(31) is given by 1 using L’Hôspital’s rule, which proves that

, and completes the proof.

APPENDIX B
PROOF OF THEOREM 2

Proof: Using the Chernoff bound on the outage in (9) we
obtain

(32)

where the expectation is with respect to , and is an
arbitrary but positive function of , which we choose
as , for some constant , to be later
specified, and for . Substituting in (32), taking the
logarithms of both sides, and expressing the expectation as an
integral, we obtain

(33)

Breaking up the integral in the term of the sum for some
function , we have

(34)

where we obtained upper bounds on both terms on the left-hand
side (LHS) of (34) by substituting the lower limits of both
integrals for in the exponent of because
is a monotonically decreasing function of , and also used

. Substituting , for some
, the exponent of the second term on the RHS of (34)

can be written as

(35)

Since the second term on the RHS of (35) is small for small
, . More rigorously, for any ,

and any , for
sufficiently small. Using this result with (34), the term in
(33) can be bounded for sufficiently small as

(36)

Recalling the definition of the diversity order (10), and substi-
tuting (36) into (33), we have

(37)

Using the L’Hospital’s rule twice, we obtain (38), shown at
bottom of the page. Substituting , we
observe that as and that .

(38)
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Examining (38), it is clear that the limit depends on whether
or not. Working out this limit, we have

(39)

where is the limit in the term in (38), and
if , and if . Since the lower

bound in (39) is most useful when it is larger, using the conti-
nuity of with respect to , we can take the supremum of
the RHS of (39) over which is obtained as ,
yielding

(40)

We can select any positive for the Chernoff bound, which we
choose as and substitute in (40) to obtain

(41)

where to get the RHS, we used , and the
definition of . This is completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Proof: For the upper bound, (25) can be calculated for the
density in (16), by evaluating the limit in (27). Unlike the expo-
nentially distributed case, in for the Nakagami
distribution. However, by scaling (27) we obtain

(42)
The first limit in (42) can be related to the second limit by using
L’Hospital’s rule, and the second limit can be computed using

as [19] for the Nakagami distri-
bution to show that the bound is scaled by a factor of .

The lower bound in (41) also can be shown to scale by a factor
of as follows. Unlike when is exponential, in
the Nakagami case, which yields an undefined ratio when
is substituted in (38). Since corresponds to in (38), we
are motivated to multiply the numerator and denominator with

and then take the limit as . Carrying out
this calculation, we obtain

(43)

where if , and
if . The remainder of the

proof follows along the same lines as the exponential case
(Appendix B), except in tightening the bound, the choice of

is given by . Combining with the lower
bound we obtain

(44)

APPENDIX D
PROOF OF THEOREM 4

Proof: We start with deriving a general expression that is
useful for both Theorem 4 and part 2 of Theorem 5. Taking the
logarithm of the Chernoff bound of in (19) we obtain

(45)

where , and is any positive function of
which satisfies as . Dividing through with ,
and splitting the integral into two pieces for an arbitrary

we obtain

(46)

Equation (46) can be further upper bounded if the lower limits
of the integrals are substituted for in the argument of the ex-
ponentials

(47)

where we also used . Recalling that both
and can be chosen as arbitrary positive functions of , we
focus on a choice that ensures that , , and

, as . Rewriting the exponential in (47) we get
.

Since and , the second term can be made ar-
bitrarily close to 1 if is sufficiently large. Therefore, for any

, for suf-
ficiently large . Substituting into (47) we have a bound which
is useful to prove both Theorem 4 and part 2 of Theorem 5

(48)

For Theorem 4, we choose and for
. Substituting this choice, and taking the limit as ,

the RHS goes to which implies that .
This establishes the Theorem.
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APPENDIX E
PROOF OF THEOREM 5

Proof: We begin with a lower bound on the outage in (19).
Since ,

(49)

where the RHS follows since is a random variable
with degrees of freedom. We further lower bound (49)

(50)

so that the RHS of (50) lower bounds . Using this, taking
logarithms of both sides, and normalizing with we
have

(51)
Due to Stirling’s formula, we can express the as

(52)

Taking the limit as , the first term on the RHS of the
inequality in (51) converges to 1 due to (52). The second and
third terms in (51) clearly go to zero. This completes the proof
of (21).

For part 2, we choose and in (48),
where is a constant that will be specified. With this
choice, (48) becomes

(53)

Recalling , taking the limit as
, and using L’Hospital’s rule twice with we obtain

(54)

Since , can be made arbitrarily close to
. Since we would like this exponent to be posi-

tive, (22) is useful when . This
establishes part 2 and the Theorem.
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