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ABSTRACT

Evaluating conceptual design alternatives in a new product development (NPD) environment has been
one of the most critical issues for many companies which try to survive in the fast-growing world mar-
kets. Therefore, most companies have used various methods to successfully carry out this difficult and
time-consuming evaluation process. Of these methods, analytic hierarchy process (AHP) has been widely
used in multiple-criteria decision-making (MCDM) problems. But, in this study, we used analytical net-
work process (ANP), a more general form of AHP, instead of AHP due to the fact that AHP cannot accom-
modate the variety of interactions, dependencies and feedback between higher and lower level elements.
Furthermore, in some cases, due to the vagueness and uncertainty on the judgments of a decision-maker,
the crisp pairwise comparison in the conventional ANP is insufficient and imprecise to capture the right
judgments of the decision-maker. Therefore, a fuzzy logic is introduced in the pairwise comparison of
ANP to make up for this deficiency in the conventional ANP, and is called as fuzzy ANP. In short, in this
paper, a fuzzy ANP-based approach is proposed to evaluate a set of conceptual design alternatives devel-
oped in a NPD environment in order to reach to the best one satisfying both the needs and expectations of
customers, and the engineering specifications of company. In addition, a numerical example is presented

to illustrate the proposed approach.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Today’s world is characterized by major changes in market and
economic conditions, coupled with rapid advances in technologies.
As the natural result of this, companies have been forced to devel-
op new products for current markets, most of all technology-driven
or high-tech markets. The changing economic conditions and tech-
nologies combined with increased domestic and global competi-
tion, changing customer needs, rapid product obsolescence and
the emergence of new markets, require very fast innovation pro-
cess. The innovation process can be divided into three main areas
such as fuzzy front-end (FFE) or project planning, new product
development (NPD) process, and commercialization.

A NPD process is the sequence of steps or activities which an
enterprise employs to conceive, design and commercialize a prod-
uct. This development process typically includes the following
activities: (i) identifying customer needs, (ii) establishing target
specifications, (iii) concept generation, (iv) concept selection, (v)
concept testing, (vi) setting final specifications, (vii) project plan-
ning, (viii) economic analysis, (ix) benchmarking of competitive
products, (x) modeling and (xi) prototyping. In the NPD process,
in item (v), a set of concepts are introduced and needs to be eval-
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uated in terms of the criteria (i.e. highest performance and lowest
cost) to reach to ultimate one. This process is called concept selec-
tion (Ayag, 2005b).

Concept selection is often the Rubicon in the design process. It is
vital that the best concept is selected, as it determines the direction
of the design embodiment stage. It is often said in the literature
that nearly 60-80% of the cost is committed at this stage (Duffy,
Andreasen, Maccallum, & Reijers, 1993). After this stage has been
passed, the design process will diverge towards a detailed solution.
Concept selection is therefore a vital part in the design process. It is
recognized that the ability to rapidly evaluate design ideas,
throughout their development within the design process, is an
essential element in the goal to increase design productivity. Given
the need for companies to produce more and more innovative
products in an increasingly competitive market place, it follows
that designers have to consider an increased number of design op-
tions. The activity of judging between and selecting from a range of
competing design options is referred to as evaluation. As the num-
ber of options to evaluate increases and the time available de-
creases, it is evident that human evaluators will require
increasing assistance in selecting the most satisfying design alter-
native. Due to the fact that the evaluation process of conceptual
design alternatives is a multiple-criteria decision-making (MCDM)
problem in the presence of many criteria and alternatives, a deci-
sion-maker(s) needs to use one of current MCDM methods. In this
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paper, we utilized analytic network process (ANP) as presented
next.

As one of the most commonly used techniques for solving
MCDM problems, analytic hierarchy process (AHP) was first intro-
duced by Saaty (1981). In the AHP, a hierarchy considers the distri-
bution of a goal amongst the elements being compared, and judges
which element has a greater influence on that goal. In reality, a
holistic approach like ANP is needed if all attributes and alterna-
tives involved are connected in a network system that accepts var-
ious dependencies. Several decision problems cannot be
hierarchically structured because they involve the interactions
and dependencies in higher or lower level elements. Not only does
the importance of the attributes determine the importance of the
alternatives as in the AHP, but the importance of alternatives
themselves also influences the importance of the attributes.

Furthermore, in the conventional ANP method as in the AHP,
the pairwise comparisons for each level with respect to the goal
of the best alternative selection are conducted using a nine-point
scale of Saaty. If this nine-point scale is used to make all pairwise
comparions in the ANP, some shortcomings are observed similar to
the AHP as follows: (i) it is mainly used in nearly crisp decision
applications, (ii) it creates and deals with a very unbalanced scale
of judgment, (iii) it does not take into account the uncertainty
associated with the mapping of one’s judgment to a number, (iv)
its ranking is rather imprecise and (v) the subjective judgment,
selection and preference of decision-makers have great influence
on its results. Due to the vagueness and uncertainty on judgments
of the decision-maker(s), the crisp pairwise comparison in the con-
ventional ANP seems to be insufficient and imprecise to capture
the right judgments of decision-maker(s). Therefore, in this study,
a fuzzy logic is introduced in the pairwise comparison of ANP to
make up for this deficiency in the conventional ANP, called as fuzzy
ANP.

The objective of this paper is to present a fuzzy ANP-based ap-
proach to the concept selection problem using triangular fuzzy
numbers in order to reach to the ultimate one satisfying both the
expectations of customers, and the engineering specifications of
company. Furthermore, a numerical example is presented to illus-
trate the proposed approach.

2. Related research

A NPD environment is a strategic business activity by intent or
by default (Whitney, 1988). It is not only the critical linkage be-
tween a business organization and its market, but it is also funda-
mental to business success. Business organizations need to manage
their product development activities strategically to gain compet-
itive advantage in the market place. Firms that fail to manage their
product development activities strategically are not only running
their business from a position of disadvantage but also risking their
future (Fitzsimmons, Kouvelis, & Mallick, 1991). The critical role of
NPD in the survival and success of business organizations and the
need for managing it strategically is being recognized increasingly
in both the academic (Brown & Eisenhardt, 1995; Finger & Dixon,
1989a, 1989b; Griffin & Hauser, 1996; Krishnan & Ulrich, 2001)
and practitioner literature (Chesbrough & Teece, 2002; Gates,
1999; Welch & Kerwin, 2003).

In a NPD process, concept selection is an important activity
because it strongly influences its upstream and downstream
activities in a NPD environment. As the result of this, many
methods have been introduced to concept selection. In the liter-
ature, five main types of concept selection methods (CSMs) are
defined by King and Sivaloganathan (1999) as follows: utility
CSMs, AHP CSMs, graphical CSMs, QFD matrices, and fuzzy logic
CSMs.

The evaluation of each CSM method is shortly summarized as
follows: (i) Utility theory: Utility theory has formed the basis for
the majority of CSMs in the literature. The method was first devel-
oped for economic decision-making and has since been incorpo-
rated into a number of systematic design models. The core
principle in the theory is a mapping of how criteria will vary across
the range of each criterion. This relationship is governed by a util-
ity function. (ii) AHP: AHP was first developed by Saaty (1981) for
decision-making, and Marsh, Moran, Nakui, and Hoffherr (1991)
have developed a more specific method directly for design deci-
sion-making. The Marsh AHP has three steps ordering the factors
(i.e. attributes) of a decision such that the most important ones re-
ceive greatest weight. (iii) Graphical: Pugh (1991) gives a simple
graphical technique that centers on a matrix with columns (show-
ing concepts), and rows (giving decision criteria). Pugh’s evaluation
matrix is very simple and fast. However, no measure is given of the
importance of each of the criteria and it does not allow for coupled
decisions. Therefore, there is a danger that the final concept can be
distorted. The simplicity of Pugh’s evaluation matrix makes the
method a good screening process against highly unfeasible con-
cepts and can allow the designer to focus on the best concepts
using a different CSM. (iv) Quality function deployment (QFD) matri-
ces: QFD is a graphical adaptation of utility theory with several
additions to assist decision-making building block of the method
is a matrix chart known as a “House of Quality (HoQ)” and columns
follow the method of utility as given earlier in this paper. While the
matrix follows utility theory in many ways, the interaction chart
gives a measure of coupled decisions. However, no numerical
method is given to this measure into the QFD calculation. Without
a numerical method, this become complex for most design situa-
tions where many concepts are visual comparison would be almost
impossible. (v) Fuzzy logic: Fuzzy logic is a concept used when a
decision needs to be made near the boundary of two outcomes.
Thurston and Carnahan (1992) proposed the application of fuzzy
set theory to multiple-criteria engineering design evaluation pro-
cess. They do not use normalized weights in order that the ex-
tended division will not be needed in the calculation. They
developed a fuzzy logic CSM.

Comparing the methods above is given as follows: At a concep-
tual design phase, if information quality may be low and so sys-
tematic methods which are the easiest to use, such as those of
Pahl and Beitz (1984) Pugh charts (Pugh, 1991) are appropriate.
Most methods reviewed allow for multiple attributes to a decision,
although the QFD matrix method represents this facility with
greatest clarity because of its graphical template. The QFD method
provides a qualitative interaction table, but this is used for “opti-
mal conflict information” and does not provide a quantitative anal-
ysis of how one decision affects another. A choice to use one
technology or component will significantly affect the rest of the de-
sign. The fuzzy logic method does require a rather lengthy method-
ology and is by no means easy to use. It is still necessary to
determine the mathematical equation in order to establish a solu-
tion. In the field of design decision-making, many decisions are not
based upon known (or definable) mathematical equations. The
methodology therefore has a very limited advantage when consid-
ered as a general methodology for a CSM. In addition, none of the
utility methods given in the literature accommodate coupled deci-
sions within the calculation, although they are a reality in most de-
sign situations.

As one of the above-mentioned CSMs, the AHP has been widely
used for MCDM selection problems in the literature (i.e. Ayag,
2002, 2005a; Scott, 2002; Zahedi, 1986). But, in this study, we used
ANP, a more general form of AHP due to the fact that the AHP can-
not accommodate the variety of interactions, dependencies and
feedback between higher and lower level elements. The ANP ap-
proach may be considered as a second generation AHP, which
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has been designed to overcome more complex problems. It re-
places hierarchies with network systems that permit all possible
elements and join them together in network structures. With its
strength, the modeling of the interactions and dependencies
among elements of the problem, ANP may be applied to generate
a better in-depth analysis and to deliver a more accurate result
than AHP. In other words, the ANP incorporates feedback and
interdependent relationships among decision attributes and alter-
natives (Saaty, 1996). This provides a more accurate approach for
modeling complex decision environment (Agarwal & Shankar,
2003; Lee & Kim, 2000; Meade & Sarkis, 1999; Yurdakul, 2003).

In the literature, to the best of our knowledge, a number of stud-
ies has been realized in various fields using the ANP since it first
was introduced. Some of them are presented here; Hamalainen
and Seppalainen (1986) presented ANP-based framework for a nu-
clear power plant licensing problem in Finland. They used the pair-
wise comparison process with the consistency index to determine
the weightings of the alternatives. ANP is also used to incorporate
product lifecycle in replacement decisions. The multi-attribute,
multi-period model handles vital dynamic factors as well as inter-
dependence among system attributes. The system attributes’ rela-
tive importance which vary during the different stages of product
life cycle is captured in this model (Azhar & Leung, 1993). Meade
and Presley (2002) used the ANP method for R&D project selection.
Agarwal and Shankar (2003) presented a framework for selecting
the trust-building environment in e-enabled supply chain. Lee
and Kim (2000) proposed an integration model by integrating the
ANP and goal programming for interdependent information sys-
tem project selection. Yurdakul (2003) used the ANP method to
measure long-term performance of a manufacturing company.

In addition, some design-related works have been done in the
literature, a few of them are presented as follows: Thurston and
Carnahan (1992) used fuzzy ratings and utility analysis in preli-
minary design evaluation of multiple attributes. Carnahan, Thur-
ston, and Liu (1994) also used fuzzy ratings for multi-attribute
decision-making. Biiyiikozkan, Ertay, Kahraman, and Ruan (2004)
used fuzzy ANP to prioritize design requirements by taking into ac-
count the degree of the interdependence between the customer
needs and design requirements and the inner dependence among
them. Mikhailov and Singh (2003) used fuzzy ANP and its applica-
tion to the development of decision support systems. Kwong, Chen,
Bai, and Chan (2007) emphasized determining the importance
weight of engineering characteristics for quality function deploy-
ment, and they developed a new methodology of determining
aggregated importance of engineering characteristics in a new
product development environment. They considered the fuzzy
relation measures between customer requirements and engineer-
ing characteristics. Hu and Zhang (2007) proposed the use of ana-
lytical hierarchy process to determine the house of quality
parameters and they employed fuzzy clustering dynamic sort
method to classify customer requirements that will be used for
obtaining product design features. Biiyiikozkan, Feyzioglu, and
Ruan (2007) presented a new fuzzy group decision-making ap-
proach to fuse multiple preference styles to respond customer
needs in product development with quality function deployment.
The relationship between user and designer was founded based
on integrated technology of quality function deployment and fuzzy
multi-objective decision-making method and the optimal principle
solution set was obtained using design method of product innova-
tion, with which the technology contradiction problem in product
design was solved by Han, Liu, and Wang (2007). Chen and Weng
(2006) proposed a fuzzy goal programming model for evaluation
of engineering designs and their model also considers business
competition by specifying the minimum fulfillment levels of de-
sign requirements and the preemptive priorities between goals.
Huang and Gu (2006) considered the product development process

modeling based on information feedback and requirement cooper-
ation. In connection with this issue, they developed the reasoning
scheme for inferring the relationships between the requirements
and information, and the feedback control mechanism by analyz-
ing the conflicting or cooperative relationships among the process
requirements. Karsak (2004) defined quality function deployment
as a customer-oriented design tool for developing new or im-
proved products to increase customer satisfaction by integrating
marketing, design engineering, manufacturing, and other related
functions of an organization. The aim of QFD was also described
to be maximizing customer satisfaction with considerations (i.e.
cost budget, technical difficulty), limiting the number and the ex-
tent of the possible design requirements that can be incorporated
into a product. The study presented a fuzzy multiple-objective pro-
gramming approach that incorporates imprecise and subjective
information inherent in the QFD planning process to determine
the level of fulfillment of design requirements.

In the following section, we propose a fuzzy ANP-based ap-
proach to evaluate a set of conceptual design alternatives in order
to find out the best concept satisfying the needs and expectations
of both customers and company. We also defined a fuzzy ANP-
based framework that identifies critical determinants, dimensions
and attribute-enablers used in concept selection.

3. Proposed approach

In this section, first fuzzy logic is introduced; second fuzzy ANP-
based approach and its steps are presented.

3.1. Fuzzy logic

The key idea of fuzzy set theory is that an element has a degree
of membership in a fuzzy set (Negoita, 1985; Zimmermann, 1996).
A fuzzy set is defined by a membership function (all the informa-
tion about a fuzzy set is described by its membership function).
The membership function maps elements (crisp inputs) in the uni-
verse of discourse (interval that contains all the possible input val-
ues) to elements (degrees of membership) within a certain interval,
which is usually [0,1]. Then, the degree of membership specifies
the extent to which a given element belongs to a set or is related
to a concept. The most commonly used range for expressing degree
of membership is the unit interval [0,1]. If the value assigned is 0,
the element does not belong to the set (it has no membership). If
the value assigned is 1, the element belongs completely to the
set (it has total membership). Finally, if the value lies within the
interval [0,1], the element has a certain degree of membership
(it belongs partially to the fuzzy set). A fuzzy set, then, contains
elements that have different degrees of membership in it. In this
study, triangular fuzzy numbers, 1 to 9, are used to represent sub-
jective pairwise comparisons of selection process (equal to extre-
mely preferred) in order to capture the vagueness (Table 1). A
fuzzy number is a special fuzzy set F={(x, ug(x)), x € R}, where x
takes it values on the real line, R: —oco <x < +co and pug(x) is a con-
tinuous mapping from R to the closed interval [0,1]. A triangular
fuzzy number denoted as M = (I, m,u), where [ < m < u, has the
following triangular type membership function:

0, x<l

x=Il/m-1 I<x<m
He(X) =

u—x/u—-m, m<x<u

0, X>u

The triangular fuzzy numbers, 1 to 9, are utilized to improve the
conventional nine-point scaling scheme. In order to take the impre-
cision of human qualitative assessments into consideration, the five

triangular fuzzy numbers (1,3,5,7,9) are defined with the
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Table 1

Nine-point fundamental scale used in pairwise comparisons (Saaty, 1989)

Numerical Judgment or Remarks

rating preference

1 Equally Two attributes contribute equally to the attribute
important at the higher decision level

3 Moderately more  Experience and judgment slightly favor one
important attribute over another

5 Strongly more Experience and judgment strongly favor one
important attribute over another

7 Very strongly Experience and judgment strongly favor one
more important attribute over another; its dominance has been

demonstrated in practice
9 Extremely more Experience and judgment extremely favor one

important attribute over another; the evidence favoring one
attribute over another is of the highest possible

order of affirmation

corresponding membership function. All attributes and alternatives
are linguistically depicted in Fig. 1. The shape and position of lin-
guistically terms are chosen in order to illustrate the fuzzy exten-
sion of the method.

3.2. Fuzzy ANP-based approach

As seen in Fig. 2 in Section 4, a schematic representation of the
fuzzy ANP-based framework and its decision environment related
to the concept selection problem is given. ANP represents relation-
ships hierarchically but does not require as strict as hierarchical
structure and therefore allows for more complex interrelationships
among the decision levels and attributes. The overall objective is to
find out the best concept. The determinants, dimensions and attri-
bute-enablers used for evaluating a set of conceptual design alter-
natives are determined based on the needs and expectations of
both customers and company. That is why that they may differ
from a company to another or from a product to another. They
are also so critical elements at the stage of concept evaluation of
a NPD environment, because they directly affect to determine the
ultimate concept out of the available options.

After constructing flexible hierarchy, the decision-maker is
asked to compare the elements at a given level on a pairwise basis
to estimate their relative importance in relation to the element at
the immediate proceeding level. In conventional ANP, the pairwise
comparison is made using a ratio scale. A frequently used scale is

#y (x)

A Equally

Moderately Strongly  Very strongly  Extremely

1 3 5 7 9

1.0 ——W

05 |——7

\4

5
0 2 4 6 8 10

Intensity of importance

Fig. 1. Fuzzy membership function for linguistic values for attributes or
alternatives.

the nine-point scale (Saaty, 1989) which shows the participants’
judgments or preferences. Even though the discrete scale of 1-9
has the advantages of simplicity and easiness for use, it does not
take into account the uncertainty associated with the mapping of
one’s perception or judgment to a number.

3.3. Steps of the proposed approach

The fuzzy ANP-based approach is presented step-by-step
next.

Step I. Model construction and problem structuring: The top most
elements in the hierarchy of determinants are decomposed into
dimensions and attribute-enablers. The decision model develop-
ment requires identification of dimensions and attribute-enablers
at each level and the definition of their interrelationships. The ulti-
mate objective of hierarchy is to identify alternatives that are sig-
nificant for finding out best conceptual design. In this study, we
determined three evaluation determinants (marketability, compet-
itive advantage and profitability) that are aggregated in concept
selection weighted index (CSWI) selection step. To define this hierar-
chy, we also utilized the Saaty’s suggestions of using a network for
categories of benefits, costs, risks and opportunities (Saaty, 1996).
Instead of Saaty’s categories, we used evaluation determinants
which are very important in concept selection. In order to analyze
the combined influence of three determinants on concept selec-
tion, a CSWI is calculated to prioritize conceptual design alterna-
tives. This index also takes the influences of dimensions and
attribute-enablers into consideration.

Step II. Building pairwise comparison matrices between compo-
nent/attributes levels: By using triangular fuzzy numbers, the deci-
sion-maker(s) are asked to respond to a series of pairwise
comparisons with respect to an upper level “control” criterion.
These are conducted with respect to their relevance importance to-
wards the control criterion. In the case of interdependencies, com-
ponents in the same level are viewed as controlling components
for each other. Levels may also be interdependent.

Triangular fuzzy numbers (1,3,5,7,9) are used to indicate the
relative strength of each pair of elements in the same hierarchy.
Then, the fuzzy judgment matrix, Z(a,‘j) via pair wise comparison
is constructed as given below:

1 612 e e aln
~ az1 1 R aZﬂ
A=
ay O ... ... 1
where a;=1, if i is equal j and @ =1,3,57,9or

1-1,3-1,5-1,7-1,9-1 if i is not equal j.

When scoring is conducted for a pair, a reciprocal value is auto-
matically assigned to the reverse comparison within the matrix.
That is, if a; is a matrix value assigned to the relationship of com-
ponent i to component j, then a; is equal to 1/ay.

Alternatively, by defining the interval of confidence level «, the
triangular fuzzy number can be characterized using the following
equation:

Vo [0,1] M, =[I",u) = [(m—lo+1,—(u—m)x+u (1)
Some main operations for positive fuzzy numbers are described by
the interval of confidence, by Kaufmann and Gupta (1988) as given
below:

Vm,mg,n,ng € RY, M, = [mZ,mZ], N, =[n?ng], ael0,1]
M@N = [m¢ +nf,mé+n%, MON = [m!—n*mi—ni

Mo N = [min?, m¢n%],  M/N = [m¢/n¥ m%/n]
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To find out the best concept
Concept selection weighted index (CSWT)

Concept selection determinants

| Marketability (M)

| Competitive advantage (C) | Profitability (P)

Concept selection dimensions

v

y

v

Reducing cost (RC)

| | Having less development risk (DR) | |

Increasing customer satisfaction (CS)

v

v

¢ Concept selection attributes enablers

Development cost (DC)
«  Unit manufacturing
Cost (UMC)

Envisioning risk (ENR)
Design risk (DSR)
Execution risk (EXR)
Ability to meet scheduled
delivery (AMS)

« Improved part appearance
and quality (IPQ)

«  Faster cycle time (FCT)

* Quick color change (QCC)

«  Precision temperature control
and uniformity (PRU)

« Better wear resistance (BWR)

* More strength (MST)
« Better corrosion resistance (BCR)

« Availability of screw-in nozzles for
molding large, deep-draw parts (ASD)
 Repeatability and reproducibility (RAR)
« Good performance for abrasive-filled

compounds (GPA)

«  More flexibility (MFL)
« High heat conductivity (HHC)

|DC I—-iUMCl

Conceptual design alternatives Concept A Concept B

I
X[/
=
S
=

i
>
1Z]
|}

|

||
W

<y

Concept C

Fig. 2. ANP-based framework for concept selection.

While o is fixed, the following judgment matrix can be ob-
tained after setting the index of optimism, g, in order to
estimate the degree of satisfaction. The eigenvector is calcu-
lated by fixing the u value and identifying the maximal
eigenvalue

s A0
1 a3 Ain
A0 Ao
~ aj; 1 yn
A=
A0 s
a, ayn ... ... 1

where «-cut is known to incorporate the experts or decision-ma-
ker(s) confidence over his/her preference or the judgments. Degree
of satisfaction for the judgment matrix is estimated by the index of
optimism u determined by the decision-maker. The larger value of
index u indicates the higher degree of optimism. The index of opti-
mism is a linear convex combination (Lee, 1999) as defined in the
following equation:

a; = pag, + (1 — pag, Vpel0,1] (2)

Once the pairwise comparisons are completed, the local priority
vector w (also referred as e-Vector) is computed using the following
equation as the unique solution:

Aw = AmaxW

3)

where Jax is the largest eigenvalue of A.

Step IIlI. Calculating consistency ratio (CR) for each pairwise com-
parison matrix: After constructing all required pairwise judgment
matrices between component/attributes levels, for each, the con-
sistency ratio (CR) should be calculated.

The deviation from consistency, the measure of inconsistency is
called the consistency index (CI) and calculated using the following
equation:

)Lmax —n
Cl= o1 (4)
where n is matrix size.

The CR is used to estimate directly the consistency of pairwise
comparisons, and computed by dividing the CI by a value obtained
from a table of random consistency index (RI), the average index
for randomly generated weights (Saaty, 1981), as shown in the fol-
lowing equation:

a
R= 5)

If the CR less than 10%, the comparisons are acceptable, otherwise
not.

Step IV. Pairwise comparison matrices of inter-dependencies: In or-
der to reflect the interdependencies in network, pairwise compar-
isons among all the attribute-enablers are constructed and their
consistency ratios are calculated as we previously defined in Step
II and Step III.

Step V. Super-matrix formation and analysis: The super-matrix
formation allows a resolution of the effects of interdependence
that exists between the elements of the system. The super-matrix
is a partitioned matrix, where each sub-matrix is composed of a set
of relationships between two levels in the graphical model. Three
types of relationships may be encountered in this model: (1) inde-
pendence from succeeding components, (2) interdependence
among components and (3) interdependence between levels of
components. Raising the super-matrix to the power 2k + 1, where
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k is an arbitrary large number, allows convergence of the interde-
pendent relationships between the two levels being compared. The
super-matrix is converged for getting a long-term stable set of
weights.

First, a super-matrix is constructed as an unweighted one, be-
cause in each column it consists of several eigenvectors which of
them sums to one (in a column of a stochastic) and hence the en-
tire column of the matrix may sum to an integer greater than one.
The super-matrix needs to be stochastic to derive meaningful lim-
iting priorities. So for this reason to get the weighted super-matrix,
firstly the influence of the clusters on each cluster with respect to
the control criterion is determined. This yields an eigenvector of
influence of the clusters on each cluster. Then the unweighted
super-matrix is multiplied by the priority weights from the clus-
ters, which yields the weighted super-matrix. Then, the super-ma-
trix will be steady state by multiplying the weighted super-matrix
by itself until the super-matrix’s row values converge to the same
value for each column of the matrix.

Step VI. Selection of the best concept alternative: The equation of
desirability index, D;, for concept alternative i and determinant a
is calculated using the following equation:

] K
Dis = Z Z PjﬂAllgjaA§<jasikjﬂ (6)
j=1 k=1

where Pj, is relative importance weight of dimension j on determi-
nant a; Afjﬂ. relative importance weight for attribute-enabler k of
dimension j, and determinant a for the dependency (D) relation-
ships between attribute-enabler’'s component levels; qu-u. stabilized
relative importance weight for attribute-enabler k of dimension j,
and determinant a for the independency (I) relationships within
attribute-enabler’s component level; Sygq, relative impact of concept
alternative i on attribute-enabler k of dimension j of concept selec-
tion network; Kj,, index set of attribute-enablers for dimension j of
determinant a; and J is index set for attribute j.

Step VII. Calculation of concept selection weighted index (CSWI): To
finalize the analysis of concept selection, concept selection
weighted index (CSWI) is calculated for each alternative. The CSWI
value is the product of the desirability index, D;, for each alterna-
tive. Then, the CSWI values are normalized to prioritize the con-
cepts to determine the one with highest value.

4. Case study

Above, a fuzzy ANP-based approach has been presented to eval-
uate a set of conceptual design alternatives in a NPD environment.
In this section, a case study is taken into consideration to clearly
explain to readers on how the proposed approach is implemented.
This case study was realized at the product engineering depart-
ment of a hot runner system manufacturer in Ontario, Canada. This
company with ISO 9000 certification designs and manufactures all
kinds of standard, semi-custom and custom hot runner systems for
the world market. Due to the fact that tight competitive conditions
in the market, the company’s top management decided to develop
a new kind of hot runner manifold and horizontal hot tip nozzle
system especially for the fast-growing automotive industry in or-
der to keep their competitive advantage up in the following years.
The new system would be made of stainless steel as being in exist-
ing products. Then, a cross-functional project team consisting of
various departments in the company worked to create a set of con-
ceptual design alternatives for four months, and suggested three
different concepts named Concepts A, B and C, respectively.

To generate the concepts, the team carried out the ways as fol-
lows: (1) define the problem (general understanding of a new hot
runner system design for automotive industry), (2) external
sources (interview with lead mold-makers, consult suppliers for

each critical system component, the literature on technical docu-
ments (i.e. mold-making, hot runner system design) to find out
existing solutions and more, benchmarking study of competitor
products and patents for mold and hot runner system design),
(3) internal sources (the use of personal and team knowledge
and creativity), (4) organization of the possible set of the concepts
was done by using a classification tree which divides the entire
space of possible solutions into distinct classes which facilitate
comparison and pruning and (5) final evaluation (first four steps
were evaluated again to make sure that the entire space of con-
cepts are fully-explored).

In Table 2, the determinants, dimensions and attribute-enablers
used in the ANP framework is presented in table format, while in
Fig. 2, they are illustrated in graphic form.

Reducing cost is only includes development cost and unit man-
ufacturing cost of a product. Having less development risk can be
categorized as follows (the essence of each risk can be captured
in a specific question (Sarbacker & Ishii, 1997)): (1) Envisioning risk:
will a product with the targeted product attributes of the product
vision create value for the customer and the company? (2) Design
risk: does the product design embody the targeted product attri-
butes of the product vision? (3) Execution risk: can the develop-
ment team execute the conversion of the product design into a
delivered product? (4) Ability to meet scheduled delivery: especially,
the hot runner systems are used for mold-makers which has tight
due dates of their injection molds for automotive industry. Deliver-
ing on time is quite critical. Increasing customer satisfaction or prod-
uct performance on plastic products for automotive industry for
customers (i.e. mold-makers) involves in the product specifications
(i.e. improved part appearance and quality, faster cycle time and so
on) defined by the mold-makers.

In this paper, three determinants (i.e. marketability, competi-
tive advantage and profitability) with network relationships each
other were defined. For example, higher profitability results in
increasing competitive advantage of company. On the other hand,
if marketability of product increases, then profitability gets higher.
For each type of determinant, we also defined the following dimen-
sions and network relationships each other: reducing cost, having
less development risk and increasing customer satisfaction. For

Table 2
Determinants/dimensions/attribute-enablers used in the ANP framework

Elements Code Definition

Determinants M Marketability

C Competitive advantage
P Profitability
Dimensions RC Reducing cost
DR Having less development risk
CS Increasing customer satisfaction
Attribute- DC Development cost

enablers UMC Unit manufacturing cost

ENR  Envisioning risk

DSR  Design risk

EXR  Execution risk

AMS  Ability to meet scheduled delivery

IPQ Improved part appearance and quality

FCT Faster cycle time

QCC  Quick color change

PRU  Precision temperature control and uniformity

BWR Better wear resistance

MFL  More flexibility (i.e. gating options, various nozzle sizes)

HHC High heat conductivity

MST  More strength

BCR  Better corrosion resistance

ASD  Availability of screw-in nozzles for molding large, deep-
draw parts

RAR  Repeatability and reproducibility

GPA  Good performance for abrasive-filled compounds
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Table 3 Table 6

Fuzzy comparison matrix of the determinants using triangular fuzzy numbers Fuzzy comparison matrix of the dimensions for marketability (M)

Determinants M C P Dimensions RC DR CS

M 1 3 9 Marketability (M)

c 31 1 5 RC 1 3 7

P 9-1 51 1 DR 3-1 1 3
cs 7" 3-1 1

example, while reducing cost increases the development risk, on

the other hand, it might increase the profitability and customer Table 7

satisfaction. In addition, we defined attribute-enablers for each
dimension under each determinant with their network relation-
ships. For example, faster cycle time results in better customer sat-
isfaction, reducing cost and high profitability.

In order to find out the best concept, we carried out our pro-
posed approach using triangular fuzzy numbers (1,3,5,7,9) to ex-
press the preference in the pairwise comparisons. First, we
obtained the fuzzy pair wise comparison matrix for the relative
importance of the determinants, as shown in Table 3.

Second, the lower limit and upper limit of the fuzzy numbers
with respect to o were defined by applying Eq. (1) as follows:

1, =1,3-2a], 3,=[1+205-2q,

3, = ﬁﬁ] 5, =3+ 20,7 — 24,
o[ 1 L} 7y =1[5+20,9 — 20

“ T |7-20'3+20 k ’
g [ 1 ! } 9, = [7+2a,11 - 20]
“ T |9-20’5+ 2 T k ’
g1 [ 1 ;}

” 111 — 20’7 + 20

Then, we substituted the values, « = 0.5 and p = 0.5, where p is the
coefficient of optimism, above expression into fuzzy comparison
matrices, and obtained all the «-cuts fuzzy comparison matrices
using Eq. (2) (Tables 4 and 5). Then, we calculated eigenvalue of
the matrix A by solving the characteristic equation of A, de-
t(A — ) =0, and found out all A values for A(4q,45,43). The largest
eigenvalue of pairwise matrix, imax, Was calculated by using Eq.
(3). The dimension of the matrix, n, is 3 and the random index,
RI(n), is 0.58 (RI - function of the number of attributes, Saaty,
1981). Finally, we also calculated the CI and the CR of the matrix
by using Eqgs. (4) and (5). Because the CR was less than 0.10, the
pairwise comparison was acceptable.

Table 4
o-Cuts fuzzy comparison matrix for the determinants (o = 0.5, i =0.5)
Determinants M C P
M 1 [2,4] [8,10]
c [1/4,1/2] 1 [4,6]
P [1/10,1/8] [1/6,1/4] 1
Table 5
Eigenvector for comparison matrix of the determinants (CR = 0.070)
Determinants M C P e-Vector
M 1.000 3.000 9.000 0.662
c 0.375 1.000 5.000 0.274
P 0.113 0.208 1.000 0.064

e 3.082

Cl 0.041

RI 0.58

CR 0.070 < 0.100

o-Cuts fuzzy comparison matrix for the relative importance of the dimensions for
marketability (M) («=0.5, 1 =0.5)

Dimensions RC DR CS
Marketability (M)

RC 1 [2,4] [6.8]
DR [1/4,1/2] 1 [2,4]
cs [1/8,1/6] [1/4,1/2] 1

By following the same way, three pairwise comparison matrices
for the relative importance of the dimensions (RC, DR, and CS) for
the determinants (M, C and P) were constructed and checked out
their consistencies, which were less than 0.10 and acceptable. Ta-
bles 6 and 7 show only the fuzzy related matrices for the relative
importance of the dimensions for the determinant marketability
(M).

Additionally, nine all fuzzy related matrices for the relative
importance of the attribute-enablers for the dimensions (RC, DR
and CS) and the determinants (M, C and P) were constructed and
checked out their consistencies, which were less than 0.10 and
acceptable. Tables 8-10 shows only fuzzy pairwise comparison
matrices for relative importance of the attribute-enablers for the
dimension, reducing cost (RC) and the determinant marketability
(M).

Then, 54 fuzzy pairwise comparison matrices for the relative
importance of each concept alternative (A, B and C) for each attri-
bute-enabler of the dimensions for three determinants were con-
structed and checked out their consistencies, which were less
than 0.10 and acceptable.

Tables 11-13 show the fuzzy pairwise comparison matrix of
concept alternatives for the attribute-enabler development cost
(DC) of the dimension reducing cost (RC) for the determinant mar-
ketability (M).

Table 8
Eigenvector for comparison matrix for the relative importance of the dimensions for
marketability (M) (CR = 0.078)

Dimensions RC DR (& e-Vector
Marketability (M)
RC 1.000 3.000 7.000 0.660
DR 0.375 1.000 3.000 0.249
CS 0.146 0.375 1.000 0.091
Arev 3.091
Cl 0.045
RI 0.58
CR 0.078 < 0.100

Table 9
Fuzzy comparison matrix for the relative importance of the attribute-enablers of
reducing cost (RC) for marketability (M)

Reducing cost (RC) DC UMC

Marketability (M)
DC 1
uMC 5-1 1

un
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Table 10
o-Cuts fuzzy comparison matrix for the relative importance of the attribute-enablers
of reducing cost (RC) for marketability (M) (o= 0.5, i =0.5)

Table 15
Fuzzy comparison matrix for the relative importance of the attribute-enablers under
marketability (M), reducing cost (RC) and development cost (DC)

Reducing cost (RC) DC UMC Development cost (DC) UMC
Marketability (M) UMC 3-1
DC 1 [4,6]
UMC [1/6,1/4] 1

Table 16

o-Cuts fuzzy comparison matrix for the relative importance of the attribute-enablers
Table 11

Eigenvector for comparison matrix for the relative importance of the attribute-
enablers of reducing cost (RC) for marketability (M)

Reducing cost (RC) DC UMC e-Vector
Marketability (M)

DC 1.000 5.000 0.831
UMC 0.208 1.000 0.169
Table 12

Fuzzy comparison matrix for the relative importance of concept alternatives under
marketability (M), reducing cost (RC) and development cost (DC)

Development cost (DC) Concept A Concept B Concept C
Marketability (M) B

Concept A 1 1 7

Concept B 1! 1 5

Concept C 7-1 5-1 1

Table 13

o-Cuts fuzzy comparison matrix for the relative importance of concept alternatives of
reducing cost (RC) for marketability (M) («=0.5, £=0.5)

Development cost (DC) Concept A Concept B Concept C
Marketability (M)

Concept A 1 [1,2] [6,8]
Concept B [1/2,1] 1 [4,6]
Concept C [1/8,1/6] [1/6,1/4] 1

Then, to reflect the inter-dependencies in network, we also built
pairwise comparison matrices for each of the attribute-enablers for
three determinants of concept selection clusters. A total of 54
matrices were built. Tables 14-16 show the fuzzy pairwise com-
parison matrix of the attribute-enablers under marketability (M),
reducing cost (RC) and development cost (DC).

Similarly, fuzzy pairwise comparison matrices for other attri-
bute-enablers were constructed as shown in Tables 14-16, and
all resultant e-Vectors are presented as given in Table 17, to build
a super-matrix.

The final standard fuzzy pair wise comparison evaluations are
required for the relative impacts of each concept alternative. The
number of fuzzy pairwise comparison matrices is dependent of

Table 14

The eigenvector for comparison matrix for the relative importance of concept
alternatives under marketability (M), reducing cost (RC) and development cost (DC)
(CR=0.053)

Development cost (DC)  Concept A  Concept B Concept C  e-Vector
Marketability (M)
Concept A 1.000 1.500 7.000 0.540
Concept B 0.750 1.000 5.000 0.383
Concept C 0.146 0.208 1.000 0.077

Jmax 3.061

Cl 0.031

RI 0.58

CR 0.053 <0.100

under marketability (M), reducing cost (RC) and development cost (DC)

Development cost (DC) UMC
UMC [2,4]
Table 17

The eigenvector for comparison matrix for the relative importance of the attribute-
enablers under marketability (M), reducing cost (RC) and development cost (DC)

Development cost (DC) UMC e-Vector

uMC 3.000 1

the number of the dimensions and the attribute-enablers that are
included in the determinant of concept selection hierarchy. In this
case study, we constructed 94 fuzzy pairwise comparison matrices
at all levels of relationships in the concept selection hierarchy.

Table 18 shows the super-matrix, M, detailing results of the rel-
ative importance measures for each of the attribute-enablers for
the determinant marketability of concept selection clusters. Since
there are 18 pairwise comparison matrices, one for each of the
interdependent attribute-enablers in the marketability hierarchy,
there will be 18 non-zero columns in this super-matrix. Each of
non-zero values in the column in super-matrix, M, is the relative
importance weight associated with the interdependently pairwise
comparison matrices. In this study, there are three super-matrices,
one for each of the determinants (M, C and P) of the best concept
selection hierarchy network. Then, all the super-matrices were
converged for getting a long-term stable set of weights. For this
power of super-matrix was raised to an arbitrarily large number.
In our case study, convergence for the super-matrix constructed
under the determinant marketability (M) was reached at 16th
power. Table 19 shows the values of super-matrix after
convergence.

To determine the best concept alternative, we used Eq. (6) and
made the calculations for the desirability indices (D;q, where a is
equal to 1 for the determinant marketability) for concept alterna-
tives based upon the determinant marketability control hierarchy
using the weights obtained from the pairwise comparisons of con-
cept alternatives, dimensions and attribute-enablers from the con-
verged super-matrix. The weights were used to calculate a score
for the determinant marketability of concept selection desirability
for each concept alternative being considered. For example, the
desirability indices of Concepts A, B and C under the first determi-
nant marketability (M), where index, a is equal to 1, was calculated,
respectively, by using Eq. (5) as illustrated in Table 20.

Finally, to reach to the best concept, we calculated concept
selection weighted index (CSWI) for each concept alternative (A,
B and C). The final results are presented in Table 21. As easily seen
in the table, the best concept alternative among S-type hot runner
manifold and horizontal hot tip nozzle system alternatives, is Con-
cept A.

We also made a sensitivity analysis, the details of which is given
next.

The final priorities of the conceptual design alternatives are
mainly dependent on the weights of three determinants (or risk
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Table 18

Super-matrix for marketability (M) before convergence

M DC UMC ENR DSR EXR AMS IPQ FCT QCC PRU BWR MFL HHC MST BCR ASD RAR GPA

DC 0.000 1.000

uUMC 1.000 0.000

ENR 0.000 0.544 0564 0.544

DSR 0.739 0.000 0368 0.397

EXR 0.153 0.397 0.000 0.058

AMS 0.108 0.058 0.068  0.000

IPQ 0.000 0313 0284 0.283 0328 0311 0.334 0.331 0.286 0.272 0.288  0.269

FCT 0.294 0.000 0216 0.216 0206 0.212 0.201 0.202 0209 0213 0.211 0.228

QCC 0.236 0.211 0.000 0.156 0.138 0.140 0.140 0.141 0.165 0.167 0.156 0.165

PRU 0.118 0.150 0.157 0.000 0.107 0.109 0.092 0.094 0.099 0.102 0.101 0.101

BWR 0.100 0.111 0.113 0.112 0.000 0.063 0.064 0.064 0.062 0.063 0.062 0.063

MFL 0.052 0.051 0.061 0.068  0.061 0.000 0.049 0.043 0.045 0.045 0.045 0.045

HHC 0.045 0.044 0045 0.045 0.048 0048 0.000 0.032 0.032 0037 0.037 0.037

MST 0.041 0.031 0.031 0.027 0.027 0.028 0.032 0.000 0.033 0.032 0.031 0.028

BCR 0.036 0.028 0.029 0.029 0.028 0.028 0.028 0.029 0.000 0.029 0.029 0.022

ASD 0.035 0.025 0.024 0.025 0.021 0.021 0.022 0.022 0.028 0.000 0.022 0.025

RAR 0.027 0.020 0.021 0.023 0.021 0.023 0.022 0.024 0.022 0.022 0.000 0.017

GPA 0.017 0.017 0.017 0.016 0.016 0.016 0.017 0.017 0.018 0.018 0.018 0.000

Table 19

Super-matrix for marketability (M) after convergence (A'6)

M DC UMC ENR DSR EXR AMS IPQ FCT QcCcC PRU BWR MFL HHC MST BCR ASD RAR GPA

DC 1.000 0.000

uMC  0.000 1.000

ENR 0.353 0.353 0353 0353

DSR 0364 0364 0364 0.364

EXR 0.203 0.203 0.203 0.203

AMS 0.073 0.073 0.073 0.073

IPQ 0.232 0232 0232 0232 0232 0232 0232 0232 0232 0232 0.232 0232

FCT 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191 0.191

QCC 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158 0.158

PRU 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112

BWR 0.089 0.089 0089 0.089 0.089 0089 0.089 0.089 0.089 0.089 0.089 0.089

MFL 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052 0.052

HHC 0.042 0.042 0.042 0.042 0.042 0042 0.042 0.042 0.042 0042 0.042 0.042

MST 0.032 0.032 0032 0.032 0.032 0032 0.032 0.032 0.032 0032 0.032 0.032

BCR 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029 0.029

ASD 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026  0.026

RAR 0.022 0.022 0.022 0.022 0.022 0022 0.022 0.022 0.022 0.022 0.022 0.022

GPA 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017

Table 20

Concept selection desirability index for marketability (M) (a=1)

Dimension Attribute enabler P; Ady Ay Sikjn Sakt S3ii1 Concept alternatives

A B C

RC DC 0.660 0.831 1.000 0.540 0.383 0.077 0.2962 0.2101 0.0422
UMC 0.660 0.169 0.000 0.636 0.290 0.074 0.0000 0.0000 0.0000

DR ENR 0.249 0.551 0.353 0.643 0.216 0.141 0.0311 0.0105 0.0068
DSR 0.249 0.267 0.364 0.506 0.402 0.091 0.0122 0.0097 0.0022
EXR 0.249 0.124 0.203 0.540 0.383 0.077 0.0034 0.0024 0.0005
AMS 0.249 0.058 0.073 0.564 0.368 0.068 0.0006 0.0004 0.0001

CS IPQ 0.091 0.232 0.232 0.165 0.705 0.130 0.0008 0.0035 0.0006
FCT 0.091 0.214 0.191 0.218 0.582 0.200 0.0008 0.0022 0.0007
QCC 0.091 0.129 0.158 0.683 0.237 0.080 0.0013 0.0004 0.0001
PRU 0.091 0.091 0.112 0.745 0.182 0.074 0.0007 0.0002 0.0001
BWR 0.091 0.080 0.089 0.636 0.290 0.074 0.0004 0.0002 0.0000
MFL 0.091 0.048 0.052 0.720 0.194 0.086 0.0002 0.0000 0.0000
HHC 0.091 0.034 0.042 0.218 0.582 0.200 0.0000 0.0001 0.0000
MST 0.091 0.035 0.032 0.540 0.383 0.077 0.0001 0.0000 0.0000
BCR 0.091 0.034 0.029 0.506 0.402 0.091 0.0000 0.0000 0.0000
ASD 0.091 0.031 0.026 0.564 0.368 0.068 0.0000 0.0000 0.0000
RAR 0.091 0.041 0.022 0.540 0.383 0.077 0.0000 0.0000 0.0000
GPA 0.091 0.031 0.017 0.720 0.194 0.086 0.0000 0.0000 0.0000

Total desirability indices (D;;) of marketability (M) for concept alternatives 0.348 0.240 0.054
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Table 21
Concept selection weighted index (CSWI) for concept alternatives

Concept Determinants

alternatives

Calculated weights for
alternatives

Marketability Competitive Profitability CSWI Normalization
(M) advantage (C) (P)
0.662 0.274 0.064

A 0.348 0.194 0.153 0.293 0.551

B 0.240 0.075 0.098 0.186 0.349

C 0.054 0.051 0.063 0.054 0.101

Total 0.533 1.000

factors). Small changes in the related weights might cause major
changes of the final ranking of the alternatives. Because the
weights of the determinants are usually based on subjective judg-
ments of the decision-maker, the stability of the final ranking un-

377

der varying the determinant weights should be checked out. For
this reason, we performed a sensitivity analysis based on a set of
scenarios that reflect alternative future developments or different
views on the relative importance of the determinants. By increas-
ing the weight of each determinant, we observed the resulting
changes of the priorities and the final ranking of the alternatives.
Therefore, we changed the weight of each determinant by increas-
ing its current weight by a certain value. For remember, the
weights of the determinants are calculated through a pairwise
comparison matrix using triangular fuzzy numbers. This matrix re-
flects the subjective judgments of the decision-maker. Also the
consistency index and ratio analysis is done to make sure that
the judgments are consistent. For example, to obtain the incremen-
tal value, 3% for the determinant, M, respectively, we constructed a
new pairwise comparison matrix (new evaluation rising from
changing conditions) using triangular fuzzy numbers, and made
its further calculations to observe how this positive change (3%)
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—=—B 0.349 0.351 0.356 0.358
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Fig. 3. Changes in the weight of the determinant, M (3%, 6% and 11%) in relation to the final weights of the alternatives (A, B and C).
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Fig. 4. Changes in the weight of the determinant, C (30%, 35% and 45%) in relation to the final weights of the alternatives (A, B and C).
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Fig. 5. Changes in the weight of the determinant, P (7%, 25% and 42%) in relation to the final weights of the alternatives (A, B and C).

in the current weight of M affect to the weights of the others, of
course the final ranking of the alternatives (A, B and C). The process
is also applied to determine other values (6% and 11%) as seen in
Fig. 3, as well as the values used for the other determinants (Figs.
4 and 5). We also develop a Microsoft Excel template to easily cal-
culate the variations in the priority weights of selected
determinant.

The relevance change, about 3%, for the determinant, M is calcu-
lated by using the following formula (the value of 0.683 for the
determinant, M was calculated from new pairwise comparison ma-
trix using triangular fuzzy numbers):

__ new_weight — current_weight
B current_weight

0.683 — 0.662
T 0662

Finally, we can say that any change of the weight of each determi-
nant in various levels does not change the final ranking of the alter-
natives. It means that the final ranking has stability.

After the team found out that the best concept is Concept A, they
carried out the following steps to translate the chosen concept
using the necessary information (i.e. BOM information, process
plan, assembly chart and so on) to reality: (1) estimate the manu-
facturing costs (i.e. component costs, assembly costs and overhead
costs), (2) reduce the costs of components (understanding the pro-
cess constraints and cost drivers, redesigning components to elim-
inating processing steps, choosing the appropriate economic scale
for the part process, standardizing components and processes), (3)
reduce the costs of assembly (keeping score, integrate parts and
maximize ease of assembly), (4) reduce the costs of production-re-
lated activities, (5) design and organize the necessary hardware
(i.e. machines, fixtures and tools) for some components of the
new system, (6) make a ramp-up or pilot manufacturing and (8)
schedule a serial production. Then, they introduced the new sys-
tem to the world markets at a limited number in order to firstly
see its performance. After a couple of months, a customer survey
showed that the new system perfectly met the needs and expecta-
tions of both customers and company. And, it is now very compet-
itive product in the world market.

Increment (%) x 100

x 100 = 3%

5. Conclusions

The objective of the research was, to use a fuzzy ANP-based ap-
proach to evaluate a set of conceptual design alternatives in a NPD

environment in order to reach to ultimate conceptual alternative
that satisfies the needs and the expectations of both customers
and company.

The back-end and front-end of product development mainly
affects to defining determinants, dimensions and attribute-ena-
blers used in the ANP method. Because the ANP needs well-de-
fined the elements in a decision network, which are obtained
from customer expectations, technical specifications and more
information created during development project in a NPD
environment.

As compared to the AHP, the analysis using the ANP is relatively
cumbersome, because a great deal of pairwise comparison matri-
ces should be constructed for a typical study. In our study, we built
great deal of pairwise matrices. Acquiring the relationships among
determinants, dimensions and attribute-enablers required very
long and exhaustive effort. On the other hand, advantage of the
ANP method is to capture interdependencies across and along
the decision hierarchies. It means that the ANP provides more reli-
able solution than the AHP. The full support of management in the
ANP will help to use their long experience and thus eliminate the
biases in the weights for conceptual design alternatives. Although
the AHP is easier to apply than the ANP, in this study, we selected
the ANP, both due to the fact that its holistic view and interdepen-
dencies accounted in the ANP, and due to the fact that it generates
more reliable solution than the AHP. Making wrong decision in
selecting the best concept can put a company into undesired risk
in terms of losing market share, cost and time.

The ANP approach illustrated in this paper has a few limitations
as well. For example, the outcome of the model is dependent on
the inputs provided by the decision-maker(s). The possibility of
bias of the decision-maker towards any particular alternative can-
not be ruled out while applying this model. Inconsistency may also
occur in the pairwise comparison of matrices, which may give
wrong results. There are a number of opportunities for expanding
the research presented herein. Its potential applicability in real-
world problems raises practical challenges that include issues such
as the problem structuring phase, the uncertainty analysis, and its
usefulness in a group decision-making environment, among others.
In addition, the number of criteria and their related sub-criteria
can affect to the applicability of fuzzy ANP method due to the fact
that the decision-maker(s) might have to make great deal of judg-
ments in constructing pair wise matrices.

For future work, it would be better to divide each kind of risk
into sub-factors in order to capture more reliable comparison
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judgments of the decision-makers. Furthermore, a knowledge-
based (KB) or an expert system (ES) can be integrated to help the
decision-maker(s) both make fuzzy pair wise calculations more
concisely, and interpret the results in each step of the fuzzy ANP.
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