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Abstract—We construct a robust localization framework to
handle noisy measurements in wireless sensor networks. Tra-
ditionally many approaches employ the distance information
gathered from ranging devices of the sensor nodes to achieve
localization. However the measurements of these devices may
contain noise both as hardware noise and as environmental
noise due to the employment conditions of the network. It is
necessary to provide a general framework that handles such
a noise in data and yet still be applicable within several
localization algorithms. In order to handle noise in distance
measurements, our framework utilizes convex constraints and
confidence intervals of a random variable. At the end of the
localization process nodes are assigned to a set of feasible regions
with corresponding probabilities. The accuracy of the localization
can be adjusted and the framework can easily be embedded to
work within previously suggested localization algorithms.

I. INTRODUCTION

Many applications and systems from areas such as envi-
ronment and habitat monitoring, weather forecast, and health
applications require use of many sensor nodes organized as a
network collectively gathering useful data; see [1] for a survey.
In such applications it is usually necessary to know the actual
locations of the sensors. Sensor network localization is the
problem of assigning geographic coordinates to each sensor
node in a given network. Global Positioning System, GPS,
is the most well-known location service in use today [2],
but due to its power consumption, cost, size and inability
to locate with desired precision for some applications (an
inexpensive GPS receiver can locate positions within ten
meters for approximately 95% percent of measurements [3]),
GPS usually is considered a last resort solution. It may be
feasible to implement a GPS based solution for a small scaled
ad-hoc network, but one may not consider to implement it on
a large scale network of more than 100 nodes [2]. Finding
global coordinates of the nodes assuming limited use of GPS-
embedded nodes is the main motivation behind the sensor
network localization problem. Many localization algorithms
assume the existence of the distance information between
neighboring nodes [8], [12], [15]. Such information may be
gathered by employing one of the existing techniques such as
time difference of arrival (TDOA) [16], [17], time of arrival
(TOA) [18], received signal strength indication (RSSI) [12],
[19] or by using an optical receiver [20]. Although many of
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these algorithms successfully localize the given network sim-
ply employing the gathered distance information, one problem
that remains unresolved is the handling of the noise in the input
data. Most algorithms assume the input data is noise-free. We
provide a robust localization framework, which uses normally
distributed distance measurement constraints as a basis to
model noisy data and provide possible areas as a result of the
localization on a given set of nodes. Our framework is general
in the sense that it can be implemented to work with different
types of noise-free localization algorithms. The framework
does not rely on the existence of anchors, nodes with a priori
location information, either by the use of a GPS or being
placed at known positions. Without anchors, algorithm can
find local coordinates which prove to be useful in applications
relying on relative coordinates such as geographic routing. The
only requirement is that each node is equipped with a ranging
device to make distance measurements to neighbor nodes.

II. PREVIOUS WORK

There is significant amount of previous work on wireless
sensor network localization. An important distinction between
the previous work lies on the model of computation. Cen-
tralized algorithms achieve localization by doing most of the
work in a limited number of central computers (more capable
nodes). Three main approaches in centralized localization [4]
are multidimensional scaling [5], linear programming [6] and
stochastic optimization approaches [7]. In distributed algo-
rithms the computation required in the localization process
is distributed to the nodes. There is no need to have a
global information related to the network. A node needs only
the information from its neighbors in order to achieve the
localization [8]–[12]. Handling noise is an important aspect
of these algorithms. Noise may be present in the system as
an hardware noise or environmental noise. Hardware noise is
easy to model, and is usually modelled as Additive Gaussian
White Noise. In contrary, modelling the environmental noise
is more tricky. Some class of algorithms use the Noisy Disk
model for ultra sound and radio signal strength as it is easy
to use in theoretical analysis and simulations. Noisy disk
model has two parts, connectivity and noise. Connectivity
component determines the maximum distance where two
nodes are assumed to have a connection between themselves.
The disk model with no noise is called the Unit Disk [23].
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Fig. 1. Localization of a sample network. Anchors are marked with arrows.

We use a model similar to the noisy disk described in [8].
The parameters of the model used in [8] is borrowed from
Cricket Location Support System [24]. In fact the noisy disk
is not capable of modelling the environmental noise, but our
model can be tailored to work with such a realistic model
for both environmental noise and the radio propagation. The
novel experimental approach proposed in [23] can be used
to model noise for simulation purposes. It includes collecting
the real-world distance measurements between sensors for
predetermined distance intervals and using randomly selected
samples from the real-world data to model noise, which they
call Sampled Noise and Sampled Connectivity. Two of the
algorithms that are closely related to ours are [9] and [10].
Sextant framework [9] is one of the area based localization
algorithms. It uses connectivity information to extract non-
convex constraints and utilizes the negative information. It
does not assume uniform transmission radii (i.e a unit disk
graph) or symmetric connectivity. Sextant uses bezier curves to
represent geographic constraints. Our algorithm uses polygon
approximation to represent geographic constraints. The preci-
sion of our algorithm can be adjusted. In [10] both angle and
distance information is used. Circular areas are approximated
to polygons and the resulting constraints are solved using
linear programming formulations.

III. ROBUST LOCALIZATION FRAMEWORK

Let G = (V,E) represent a real-world sensor network with
n nodes and m edges. Nodes with a priori location information
are called anchors and are denoted with A where A ⊂ V .
Each pair of nodes u, v ∈ V that are within a sensing range
is represented with edge (u, v) ∈ E. We assume that nodes
have means for measuring distances to the neighboring nodes.
Each such measurement is modelled as a gaussian random
variable d where the measured distance dm is the mean of d
with variance σ2. We assume that σ2 is a preset parameter
of the network. We use the confidence interval concept as
a basis to represent a normally distributed measurement in
our framework. Confidence interval is an interval in which a
measurement or trial falls corresponding to a given probability
distribution [25]. It is possible to use a distribution other
than gaussian as well. The only modification would be to use

confidence intervals associated with the assumed distribution.
Simulations in [8] assume the distance measurements between
sensors are gaussian and the variance of these measurements
is based on the Cricket location support system [24]. The
experimental approach proposed in [23] may also be used
if the real-world data of sensors is provided. Sampled noise
and sampled connectivity approaches in [23] make use of
real-world measurement noise and connectivity information to
model noise in simulations. Within our framework the goal of
robust localization is to assign each node u ∈ V with a set
of feasible regions, Fu = {Fu1, Fu2, . . . , Fur}. The resulting
feasible region assignment of a simple network consisting of
15 nodes with 4 anchors is given in Figure 1. Each feasible
region Fui ∈ Fu consists of a set of simple polygons (possibly
with holes) and is associated with a confidence cui that
represents an approximate probability of u being within Fui

where
∑r

i=1 cui ≤ 1. Since we assign confidences to feasible
regions, the confidence values of polygons within a feasible
region are all equal and cui 6= cuj unless i = j. We note that
anchors constitute a special case where the feasible region
consists of a single polygon which is a point. The confidence
of the polygon is set to 1 for this special case.

A. Constructing Feasible Regions
Let node s be the source of a measurement to a node t,

where Fs is previously constructed. We construct Ft from
Fs by using the measured distance |st| = N(dm, σ

2), where
(s, t) ∈ E and N indicates the normal distribution with mean
dm and variance σ2. First case occurs if s is an anchor, the
second is the not-an-anchor case. In the anchor case Ft con-
sists of three feasible regions, Ft = {Ft1, Ft2, Ft3}. Let ps be
the location of the anchor s. Ft1 is the innermost ring between
the circles centered at ps with dm−2σ and dm−σ radii. Ft2 is
the middle ring between the circles centered at ps with dm−σ
and dm + σ radii. Finally, Ft3 is the outermost ring between
the circles with dm + σ and dm + 2σ radii; see Figure 2.
Simulating the confidence intervals of the normal distribution,
the confidence values associated with each feasible region are
assigned as c(Ft1) = c(Ft3) = 13.6% and c(Ft2) = 68.4%.
We note that the circles under discussion are approximated
with regular k-gons, where k is a preset parameter that plays
an important role in the complexity of the framework. In the
not-an-anchor case, since each Fsi is a set of polygons, before
defining the construction operation we provide an expansion
operation on polygons. Let P = (p1, p2, . . . , pq) ∈ Fsi be a
polygon with a centroid of pc. The expansion transformation
on P is defined as E(P, t) = (p1 + ~t1, p2 + ~t2, . . . , pq + ~tq)
where each vector ti has a magnitude of t and is in the
direction of the vector (−−−→pc, pi). Each Fsi gives rise to three
feasible regions Fti, Fti′ , Fti′′ :

Fti = {(E(P, dm − σ)− E(P, dm − 2σ)) : P ∈ Fsi}
Fti′ = {(E(P, dm + σ)− E(P, dm − σ)) : P ∈ Fsi}
Fti′′ = {(E(P, dm + 2σ)− E(P, dm + σ)) : P ∈ Fsi}

The first terms are the outer boundaries and second terms are
the holes. The confidence values associated with each feasible
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Fig. 2. Feasible region construction when s is an anchor located at ps. (a)
Confidence intervals; (b) Feasible regions of t and approximating the circles
with a k-gon when k = 6.

region are c(Fti) = c(Fti′′) = c(Fsi) × 13.6% and c(Fti) =
c(Fsi)×68.4%. An example for this construction can be seen
in Figure 3 where Fs = {Fs1, Fs2, Fs3}. The feasible regions
Fs1, Fs2 consist of eight simple polygons each whereas Fs3

contains only two.

B. Updating Feasible Regions via Intersections

Using the construction method described in the previous
subsection we can deduce a feasible region for each edge
(s, t) ∈ E. If there are multiple edges incident on node t, the
feasible regions arising from all the neighbors’ measurements
must be updated for each edge. We describe the update
procedure inductively. Let dt denote the degree of node t,
i.e. the number of neighbors within its sensing range. If
dt = 1, the feasible region can simply be computed using
the described construction method. Now for dt > 1, assume
the set of feasible regions Ft for dt − 1 neighbors is already
computed. Let F ′t be the set of feasible regions constructed
according to the measurements of the dth

t neighbor. Let
Ft = (Ft1, Ft2, . . . , Ftw) and F ′t = (F ′t1, F

′
t2, . . . , F

′
ty). The

new feasible region after the update becomes:

Ft = Ft ∩ F ′t =
w⋃

i=1

Fti ∩
y⋃

j=1

F ′tj

=
w⋃

i=1

y⋃
j=1

Fti ∩ F ′tj

Each Fti ∈ Ft is intersected with all regions of F ′t .
Union of these partial intersections gives us the resulting
polygons. After the intersection operation we need to assign
new probabilities to feasible regions created as a result of an
intersection. Consider only a single element of Ft and F ′t . Let
Fti ∈ Ft and F ′tj ∈ F ′t be two feasible regions. Let pt be a
point in space that corresponds to the real location of node t.

Pr(pt ∈ Fti ∩ F ′tj) = Pr(pt ∈ Fti|pt ∈ F ′tj)× Pr(pt ∈ F ′tj)

If we have the a priori information that u ∈ F ′tj , the
probability of u being in Fti does not change, since the two
measurements are independent. However the probability of u
being in Fti − F ′tj is zero. In other words, the area where pt

(a) (b)

(c) (d)

Fig. 3. (a)Fs (b,c,d) Feasible regions constructed from Fs1, Fs2, Fs3

may be located in Fti changes, but the probability does not
and we have c(Fti ∩ F ′tj) = c(Fti)× c(F ′tj).

C. Post-Processing

As we approximate the confidence intervals using polygonal
regions some degeneracies may arise after the construction
or the update operations. Note that each feasible region is
assigned a unique confidence. Thus a degeneracy occurs if
two or more feasible regions overlap at a subregion in the
plane. This is undesirable as it would lead to an output set
of points with multiple confidence values. A second type
of a degeneracy occurs if more than one feasible region is
assigned the same confidence value. Note that by definition
each feasible region is assigned a unique confidence. We
provide a post-processing algorithm not only to handle these
two degenerate cases but also to limit the growth of the output
number of feasible regions which is exponential in the worst
case. The post-processing procedure, shown in Algorithm 1, is
applied after each of the construction and update operations.

a) (Type-1 degeneracy) Check overlaps: We check every
pair of feasible regions Fti, Ftj . If the area of the intersection
is between r1% and r2% of the smaller region, then we create
a new feasible region Fti ∩ Ftj with confidence equal to the
average of c(Fti) and c(Ftj), and the new region is excluded
from the parent feasible regions.

b) (Type-2 degeneracy) Preserve uniqueness: For each
confidence value c associated with an existing feasible region,
we go through the list of feasible regions and create a list L
of regions with confidence c. We create a new feasible region
equal to

⋃
∀Fti∈L(Fti) with confidence c×|L|. We then remove

every Fti ∈ L from the set of feasible regions.
c) Limit growth: We first discard regions with low prob-

ability by removing each Fti with c(Fti) < ε for some prede-
fined ε close to zero. Next we apply an approximate reduction.
For each pair of feasible regions Fti, Ftj , if |c(Fti)−c(Ftj)| <
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Algorithm 1 Post-processing of feasible regions
1: procedure POST-PROCESS(Ft, D, α)
2: HANDLE DEGENERACIES(r1, r2) //if any
3: //Limit Growth
4: DISCARD REGIONS WITH LOW PROBABILITY(Ft, ε)
5: while |Ft| > D do
6: HANDLE DEGENERACIES(r1, r2) //if any
7: APPROXIMATE REDUCTION(Ft, α)
8: α← α− ε

α, where α is predefined, we construct a new region Fti∪Ftj

with confidence equal to c(Fti) + c(Ftj). We continue the
reduction in iterations each time with a lower α value until
D, the desired number of feasible regions, is reached.

D. Complexity Analysis

All geometric objects, including the circles, used in the
framework are represented as polygons. Polygons may contain
holes. For the construction operation both the expansion and
the difference operations can be done in time linear in the size
of the input which is determined by the number of vertices
of all polygons in the input feasible region Fs. Let m be
the maximum number of polygons in a feasible region and
k be the maximum number of vertices in a single polygon.
Then the running time of a construction applied to Fs is
O(mkn), where n is the number of feasible regions in Fs.
We limit n to a constant within our framework and k is a
predefined constant. This implies that a single construction
requires time O(m). The number of committed construction
operations is O(|V |) as for each node u ∈ V in the network,
only one incident edge is processed via the construction and
the rest of the edges incident on u are handled via the
updates. Therefore all constructions throughout the network
require O(m × |V |) total time. We note that if not bounded
by the post-processing operations and the succeeding updates
the size of the input feasible region may grow exponentially.
Since each construction creates 3n feasible regions where
its ancestor has n feasible regions, the number of feasible
regions may grow to be of order 3|V |. As for the updates, each
update operation decreases the total area covered by a feasible
region, but the number of subregions, i.e. polygons with
different confidence values, may increase. In order to reduce
the growth we use the approaches proposed in the previous
subsection. Each update entails an intersection between two
arbitrary polygons, possibly with holes. Given two polygons
with k vertices each, the running time of the intersection is
O(k2 + k× k′), where k′ is the number of intersection points
between the two polygons [26]. Since we assume k and k′

are constant the running time of all intersections required by
an update is O(m2). The same holds for the union operations
committed within an update. Finally the number of updates
is O(|E|). Therefore the total time required by all updates is
O(m2 × |E|2). We note that the same bound applies to the
post-processing algorithm as well.

Our framework uses three confidence intervals of the normal

Fig. 4. Average area assigned when average degree changes from 8 to 16

random variable. One may increase the number of intervals
used in the algorithm to provide more accuracy. However
after three confidence intervals, adding more intervals becomes
infeasible as each extra interval increases the complexity of the
algorithm while contributing very little to the accuracy. For
instance using 5 confidence intervals rather than 3, increases
the accuracy only by 4.2% for a normal distribution.

IV. EXPERIMENTAL EVALUATION

A. A Sample Localization Algorithm

In order to evaluate the proposed localization framework to
handle noisy measurements, we describe a sample localization
algorithm that embeds our proposed framework. The algorithm
employs the centralized model of computation and is similar
in essence to the order-based algorithms of [15], [27]. We
note that since our framework does not impose any limitations
beyond the measurement model and its representation, any
other localization technique such as distributed algorithms
similar to that of [10] could also be tailored to work with
our framework. In an order-based localization algorithm an
ordering π = u1, u2, . . . un on the nodes in V is assumed.
Each ui ∈ V has at least t neighbors that come before it in π.
For a trilateration order t = 3 [27], whereas for bilaterations
t = 2 [15]. Each node is taken in this order and localized based
on the localizations of its preceding neighbors in π. We note
that for a trilateration ordering if no noise in measurements
is assumed then a unique localization of every node in the
network is guaranteed with one traversal. Our localization
algorithm is similar. As we go through the nodes in order,
we take the next node u, apply a construction on u operation
with reference to its first left neighbor, and apply updates
referencing each of the rest of its preceding neighbors. After
each construction and update we apply the post-processing
procedure. For a single traversal of the complete network the
complexity analysis provided previously applies directly. Once
the traversal of π finishes, we start a reverse traversal where
we traverse the inverse of π applying the same procedures.
These back-and-forth traversals continue until no further im-
provements on the feasible regions are possible.
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Fig. 5. Average area assigned when a changes from 4 to 8

B. Experimental Results

We implemented the proposed robust localization frame-
work to handle noisy measurements. We also implemented
the described localization algorithm that embeds our frame-
work. The implementations are coded in C++, using the
LEDA library [28]. All the implementations and the experi-
ments are freely available at http://hacivat.khas.edu.tr/∼cesim/
handleNoise.rar. We inspect the affects of several parameters
within the proposed localization framework. One parameter
is k, the number of vertices on the k − gon that is used to
approximate a circle. Second parameter is the variance and the
mean of d = N(dm, σ), the normal random variable modelling
distance measurements between sensor nodes. As σ increases
the area of the feasible regions can grow accordingly. For our
experiments we use randomly generated graphs with varying
average degrees. Thus average degree is another parameter
of our experimentation. Finally, the number of anchor nodes,
a, in a given network, directly affects the outcome of the
localization process. We use a number of performance mea-
sures: The number of nodes that are localized, i.e. a feasible
region assigned to that node, the number of nodes whose real
locations are found to be in their feasible regions, and the
average area of the feasible regions.

All random graphs in our experiments are generated in a
450x450 unit square area, with 30 nodes. A point in figure
indicates an average of the results after applying the algorithm
to 10 different random graphs. In the first of our experiments
plotted in Figure 4, we generated random graphs with varying
average degrees. The parameters other than average degree are
fixed to k = 20, σ = 20, a = 4. In almost all instances the
real locations of the nodes are found to be in their respective
feasible regions assigned by the algorithm. Figure 4 shows
that the area of feasible regions decrease with the increase in
average degree. There are only 12 instances in 50 runs used to
create the Figure 4 that the algorithm failed to localize a node
or two. In the second experiment plotted in Figure 5 we fix the
average degree to 14 depending on the results obtained from
the first experiment and change a to see how it effects the

Fig. 6. Average area assigned when k changes from 5 to 30

outcomes. There are again 12 instances in all 50 runs plotted
in Figure 5 that has a node or two that are not localized by the
algorithm. Since the number of nodes in network is fixed to
30, then an increase in a decreases the average area of feasible
regions.

In the third experiment plotted in Figure 6 we fix a to 4 and
the average degree to 7, depending on the results of first two
experiments. We change k to see how it effects the results of
the localization. An increase in the number of vertices in the
initial approximation of a circle helps localization cover the
circle with more accuracy and increase the area covered in a
circle. The next experiment plotted in Figure 7 is designed to
evaluate how σ effects the outcome of localization, while the
other parameters are fixed, a = 4, k = 20, average degree=7.
As σ increases the area of the feasible regions increases,
since an increase in σ implies more inaccuracy in distance
measurements. The running time plot in Figure 8 for varying
k values is given for a network of 20 nodes where a = 4,
average degree = 7, and σ = 15. A single point in this plot is
the average time in seconds needed to process a random graph
by the algorithm. The increase in k has a significant effect on
the running time of the algorithm. It may be preferable to use
smaller k values with simple sensor configurations.

V. CONCLUSION

We provide a robust localization framework to handle
noisy measurements in wireless sensor networks. The provided
framework is general in the sense that it is independent of the
employed localization algorithm and can easily be tailored to
work with many different types of algorithms be it centralized
or distributed. An important direction for future work is to
embed the proposed framework within a distributed paradigm
of localization and evaluate the results.

ACKNOWLEDGMENT

The authors would like to thank Alon Efrat for fruitful
discussions and valuable comments.

713



769

Fig. 7. Average area assigned when variance changes from 5 to 30

Fig. 8. Average running times when k changes from 5 to 30
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