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Performance Analysis of Transmit and Receive
Antenna Selection over Flat Fading Channels

Tansal Gucluoglu, Member, IEEE, and Tolga M. Duman, Senior Member, IEEE

Abstract— The paper considers two different antenna selection
schemes for space-time coded systems over flat fading channels.
First we explore antenna selection at the transmitter side based
on the received signal to noise ratios. We then study the joint
selection of receive and transmit antennas. Both schemes assume
a slowly fading channel (i.e., quasi-static fading) and require
some limited feedback from the receiver to the transmitter. By
computing upper bounds on the pairwise error probabilities and
conducting extensive simulations, we show that the space-time
coded systems achieve full diversity even with antenna selection
provided that the code is full rank. These results are extensions
of earlier work on antenna selection for MIMO systems [1] which
only considers receive antenna selection.

Index Terms—Space-time coding, MIMO communications,
antenna selection, transmit/receive antenna selection, spatial
diversity, Rayleigh fading channels, pair-wise error probability.

I. INTRODUCTION

THE use of multiple antennas have become popular as
the channel capacity for multiple input multiple output

(MIMO) systems over wireless links increases substantially
[2], [3]. With the motivation of attaining high data rates and
low error rates in these systems, space-time codes (STC) [4]–
[6] which can achieve full spatial diversity can be employed.
On the other hand, a major drawback in realizing MIMO
systems is the cost of implementing multiple radio frequency
(RF) circuits. As mobile devices are desired to be small, hav-
ing multiple RF transceivers in a single unit has considerable
realization issues such as proper isolation, increased price,
etc. Furthermore, the computational complexity of signal pro-
cessing required by MIMO transceivers, especially space-time
decoders, increases exponentially with the number of transmit
antennas. Because of these limiting factors, application of
antenna selection [7]–[9] can be an effective technique to
reduce the cost and the complexity of STC systems. With
antenna selection, a limited number of all available antennas
(both at the transmitter and the receiver) can be used with
a reduced number of RF chains still providing full diversity
benefits in MIMO communications.

In the literature, there has been considerable research on
antenna selection recently. A general overview of the capacity
and performance of MIMO systems with antenna selection is
presented in [7], [10]. Receive antenna selection is studied
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extensively in [11]–[13]. In [1], the authors consider antenna
selection at the receiver based on maximizing the signal-to-
noise ratio (SNR) over quasi-static flat fading channels. The
performance degradation of STC systems when the MIMO
subchannels experience correlated fading [14] and the perfor-
mance with fast fading [15] are also studied. The number of
works on transmit antenna selection is also increasing [16],
[17]. In [18], by simulations, the authors demonstrate that
transmit antenna selection combined with space-time trellis
codes can achieve full available diversity. However, they do
not perform an analytical error-rate analysis. Two algorithms
are presented to select the number and subset of active
transmit antennas in a correlated multiple-input multiple-
output (MIMO) multiple access channel in [19]. An adaptive
transmit antenna selection based on the minimization of the
conditional pairwise error probability is proposed in [20].
Transmit antenna selection in uncoded spatial multiplexing
systems is also considered and several selection algorithms
are proposed [21], [22]. In a practical system, it may be
desirable to employ antenna selection both at the transmitter
and receiver. Recently, selection algorithms based on capacity
maximization for joint transmit/receive antenna selection are
developed [23], [24]. However, to the best of our knowledge,
no error probability results for STCs with joint transmit and
receive antenna selection are available in the literature.

In this paper, we study the diversity gain that STCs
can offer over flat fading channels when transmit or joint
transmit/receive antenna selection is employed based on the
largest SNR observed. We perform a pairwise error probability
analysis for both cases. We show that if the space-time code
used achieves full-rank over flat fading channels, then antenna
selection does not degrade the diversity obtained compared
to that of the full complexity system. Furthermore, we show
that if the code does not achieve full diversity for the full-
complexity system, then performing antenna selection results
in a loss of diversity order. We note that the results are very
general, and apply for different space-time codes, and even
for concatenated coding schemes as they are only based on
pairwise error probabilities.

The paper is organized as follows: Section II presents the
system model. Section III discusses space-time coded systems
with transmit antenna selection. Section IV considers space-
time coded systems with joint transmit and receive antenna
selection. We comment on antenna selection for rank deficient
STCs in Section V. Finally, Section VI concludes the paper.

II. SYSTEM DESCRIPTION

In this section, we provide the system model and the
pairwise-error probability (PEP) for space-time coded MIMO

1536-1276/08$25.00 c© 2008 IEEE
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Fig. 1. Block diagram of space-time coded multiple antenna system with antenna selection over a flat fading channel.

systems over flat fading channel. Figure 1 shows the system
block diagram with antenna selection. The channel is modelled
as quasi-static flat Rayleigh fading where the channels for
different transmit and receive antenna pairs fade independently
and remain constant over the entire transmitted frame of
symbols. In order to determine the antennas to be used,
the pilot symbols can be transmitted from all available M
transmit antennas (could be in a round-robin fashion), and then
the SNR for each transmit antenna or joint transmit/receive
antenna combinations can be obtained. Once the selection of
transmit and receive antennas is done based on the largest
of the received SNRs, the receiver feeds back the indices
of the LT transmit antennas to be used at each frame. The
feedback information about the selected transmit antennas
requires at most M bits in each frame, thus, it does not slow
down the transmission rate significantly. After the selection of
antennas is performed, the information sequence is encoded
by the space-time encoder and then the coded sequence
is divided by a serial-to-parallel converter into several data
streams. The resulting data streams are then modulated and
transmitted through the selected LT antennas simultaneously.
At the receiver, space-time decoding is performed using the
demodulated signals from the selected LR receive antennas.

For general STC-MIMO systems, the received signal at the
receive antenna n at time k, can be written as

yn(k) =
√

ρ

M

M∑
m=1

hm,nsm(k) + wn(k), (1)

where hm,n is the fading coefficient between transmit antenna
m and receive antenna n, sm(k) is the transmitted symbol
from antenna m at time k, N is the number of receive
antennas, wn(k) is the noise sample at the receive antenna
n at time k, (k = 1, · · · , K), and K is the frame length.
hm,n and wn(k) are i.i.d. complex Gaussian random variables
having zero mean and variance 1/2 per dimension. ρ is the
expected SNR at each receive antenna. The received signals
at all antennas can be stacked in a matrix form as

Y =
√

ρ

M
HS + W, (2)

where the N × M channel coefficients matrix is given by

H =

⎛⎜⎝ h1,1 ... hM,1

...
. . .

...
h1,N ... hM,N

⎞⎟⎠ ,

the M × K codeword matrix is

S =

⎛⎜⎝ s1(1) . . . s1(K)
...

...
...

sM (1) . . . sM (K)

⎞⎟⎠ , (3)

and the N × K noise matrix W contains the noise samples,
wn(k).

When the channel state information (CSI) is known at the
receiver, the PEP conditioned on the instantaneous CSI is the
same as the one for the case of an AWGN channel. Given H,
the PEP of erroneously receiving Ŝ, when S was transmitted,
is given by [1],

P (S → Ŝ|H) =
1
2
erfc

(√
ρ

4M
‖HB‖

)
, (4)

which can be upper bounded by employing the Chernoff bound
as

P (S → Ŝ|H) ≤ exp
(
− ρ

4M
‖HB‖2

)
, (5)

where B = S − Ŝ is the codeword difference matrix. ‖.‖2

represents the sum of magnitude squares of all entries of a
matrix (i.e., ‖V‖2 =

∑I
i=1

∑J
j=1 |vij |2 is the Frobenius norm

of the I × J matrix V, where vij is the entry of V at the
ith row and the jth column). To find the PEP over a MIMO
fading channel, we simply average this quantity in (5) over
the fading statistics [4], [25].

III. TRANSMIT ANTENNA SELECTION

In this section, we investigate the diversity order of a STC
with transmit antenna selection over quasi-static flat fading
channels. We will derive an upper bound on the PEP for
the case where an arbitrary number of transmit antennas are
used. Since the more interesting case is the one where at
least two antennas are selected, the channel codes in this case
are space-time codes (e.g., space-time trellis codes or space-
time block codes). The upper bound on the PEP expression
provides information on the achieved diversity and coding
gain which are useful in designing novel space-time codes
with transmit antenna selection. We note that when only one
transmit antenna is selected, any channel code for a single
antenna system can be used and although the derivations are
not provided here, full spatial diversity can still be achieved
in a straightforward manner.

Let us denote LT columns of the N×M channel coefficient
matrix H having the largest norms by h̃1, · · · , h̃LT . The
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indices of these columns correspond to the indices of the
selected transmit antennas. In order to derive an upper bound
on the PEP, we first need to compute the joint probability
density function (pdf) of the columns having the largest norms.
Similar to the approach in [1], the joint pdf of the columns of
H with the largest norms can be written as

fH̃1,··· ,H̃LT
(h1, · · · ,hLT )

= κ

( LT∑
l=1

[
1 − e−‖hl‖2

N−1∑
n=0

‖hl‖2n

n!

]M−LT

IRl
(h1, · · · ,hLT )

)
e−(‖h1‖2+···+‖hLT

‖2)

πNLT
, (6)

where κ = M !
(M−LT )!LT ! , IRl

(h1, · · · ,hLT ) is the indicator
function

IRl
(h1, · · · ,hLT ) =

{
1 if (h1, · · · ,hLT ) ∈ Rl

0 else

which is nonzero in the region Rl where column l (hl) has
the smallest norm among the selected LT columns, i.e.,

Rl =
{
h1, · · · ,hLT

: ‖hl‖ < ‖hk‖, k = 1, · · · , l − 1, l + 1, · · · , LT

}
.

Using the new channel matrix Ĥ with the selected columns
of H, the PEP can be upper bounded by averaging over the
above joint pdf as,

P (S → Ŝ)

≤
LT∑
l=1

∫
Rl

e
− ρ

4LT
‖ĤB‖2

κ

[
1 − e−‖hl‖2

N−1∑
n=0

‖hl‖2n

n!

]M−LT

e−
∑LT

i=1 ‖hi‖2

πNLT
dh1 · · · dhLT . (7)

We utilize the eigenvalue decomposition of BB∗ = UΛU∗

where U is a unitary matrix and Λ is a diagonal matrix with
eigenvalues of BB∗. We note that

‖ĤB‖2 = trace
(
(ĤU)Λ(ĤU)∗

)
=

LT∑
i=1

λi‖ci‖2, (8)

where ci is the ith column of ĤU, and

LT∑
i=1

‖ci‖2 = trace
(
(ĤU)(ĤU)∗

)
= trace

(
ĤUU∗Ĥ∗

)
= trace

(
ĤĤ∗

)
=

LT∑
i=1

‖hi‖2. (9)

Let us now assume that we have a full-rank space-time code
which means that the eigenvalues of the matrix BB∗ are all
positive (i.e., nonzero). Later, we will also consider the rank-
deficient STCs (where some of the eigenvalues of BB∗ are
zeros) as well. In order to simplify the PEP bound further, we

denote the minimum of λ1, ..., λLT by λ̂ > 0 and note that
LT∑
i=1

λi‖ci‖2 ≥
LT∑
i=1

λ̂‖ci‖2

≥
LT∑
i=1

λ̂‖hi‖2. (10)

Hence, the expression can be further upper bounded as

P (S → Ŝ)

≤
LT∑
l=1

∫
Rl

e
− ρ

4LT

∑LT
i=1 λ̂‖hi‖2

κ

[
1 − e−‖hl‖2

N−1∑
n=0

‖hl‖2n

n!

]M−LT e−
∑LT

i=1 ‖hi‖2

πNLT
dh1 · · · dhLT . (11)

To simplify this expression further, we can use the following
result (as in [1])

g(v) = 1 − e−v
N−1∑
n=0

vn

n!
≤ vN

N !
, (12)

for v > 0, and write the lth term of the right hand side of the
PEP bound as,

Il ≤ κ

∫
Rl

e
− ρ

4LT

∑LT
i=1 λ̂‖hi‖2

[‖hl‖2N

N !

]M−LT

1
πNLT

e−(‖h1‖2+···+‖hLT
‖2)dh1 · · · dhLT . (13)

Then, with the change of variables hnl = σnle
θnl , unl =

σ2
nl where ‖hl‖2 =

∑N
n=1 unl (with differential units dhnl =

σnldσnldθnl, dunl = 2σnldσnl) and after taking the integral
with respect to dθ over [0, 2π], we obtain

Il ≤ κ

∫ ∞

0

· · ·
∫ ∞

0

e
− ρλ̂

4LT

(
(u11+···+uN1)+···+(u1LT

+···+uNLT
)
)

(
(u1l + · · · + uNl)N

N !

)M−LT

e−(u11+···+uNLT
)du11 · · ·duNLT .

(14)

Note that for analytical tractability, we evaluate the integral
throughout the whole space which results in a looser upper
bound. To obtain simpler expressions, we write the upper
bound of Il as Il ≤ I(1)

l I(2)
l with

I(1)
l = κ

∫ ∞

0

· · ·
∫ ∞

0

e
− ρ

4LT

∑LT
i=1,i�=l λ̂(∑N

n=1 uni)

e
−
(∑LT

i=1,i�=l

∑N
n=1 uni

) LT∏
i=1,i�=l

N∏
n=1

duni

I(2)
l =

∫ ∞

0

· · ·
∫ ∞

0

e
− ρ

4LT
λ̂
∑N

n=1 unle−
∑N

n=1 unl

⎛⎜⎝
(∑N

n=1 unl

)N

N !

⎞⎟⎠
M−LT

du1l · · ·duNl.

Using
∫∞
0

e−kxdx = 1
k , we obtain

I(1)
l = κ

⎛⎝ 1∏LT

i=1,i�=l

(
1 + ρλ̂

4LT

)
⎞⎠N

. (15)
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For I(2)
l , we first use vn = unl and note that(

N∑
n=1

vn

)NM−NLT

=
N∑

n1=1

· · ·
N∑

nNM−NLT
=1

vn1 · · · vnNM−NLT
,

(16)

and vn1 · · · vnNM−NLT
=
∏N

n=1(vn)ln such that
∑N

n=1 ln =
NM − NLT . Then we obtain

I(2)
l =

(
1

N !

)M−LT
∫ ∞

0

· · ·
∫ ∞

0

e
−∑N

n=1(
ρλ̂

4LT
+1)vn

N∑
n1=1

· · ·
N∑

nNM−NLT
=1

N∏
n=1

(vn)lndv1 · · · dvN .

(17)

Changing the order of summation and integration and using∫ ∞

0

xme−axdx =
m!

am+1
, (18)

results in

I(2)
l =

(
1

N !

)M−LT N∑
n1=1

· · ·
N∑

nNM−NLT
=1

l1! · · · lN !

( ρλ̂
4LT

+ 1)l1+1 · · · ( ρλ̂
4LT

+ 1)lN+1
.

(19)

At high SNRs, from I(1)
l and I(2)

l we obtain

P (S → Ŝ) ≤ M !
(M − LT )!LT !(N !)M−LT

(
1

λ̂NM

)
⎛⎝ N∑

n1=1

· · ·
N∑

nNM−NLT
=1

l1! · · · lN !

⎞⎠(
ρ

4LT

)−MN

.

(20)

This result shows that the diversity order is MN which is
the full diversity available in the system. The coding gain
depends on the minimum of the eigenvalues of the square of
the codeword difference matrix, BB∗. Obviously, the coding
gain with antenna selection will be lower than that of full-
complexity system. If a full-rank STC is used, λ̂ will be
nonzero and one way to design new codes suitable for transmit
antenna selection would be maximizing λ̂ of all codes having
full rank BB∗. Although not shown here, the analysis for
the simplest case of one transmit antenna selection is much
simpler and agrees with the above PEP bound. That is, the
diversity advantage of NM can be achieved even when only
one transmit antenna is selected based on the instantaneous
SNR at the receiver.

Figure 2 shows the plots of exact PEP from (4), PEP bound
from the expression (5) and derived PEP bound from (20)
(where averaging is done over selected fading channels using
Monte Carlo simulations) for the system with M transmit and
N = 1 receive antennas (to have small diversity orders of
MN = M ) when only LT = 2 transmit antennas are used
in actual transmission. Two codeword matrices with QPSK
symbols

S =

(
1 j −1 −j
j 1 −j −1

)
Ŝ =

(
1 1 1 1
1 1 1 1

)
,

0 2 4 6 8 10 12 14 16 18 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Signal to Noise Ratio (SNR) in dB

P
ai

rw
is

e 
E

rr
or

 P
ro

ba
bi

lit
y 

(P
E

P
)

 

 

M=3, N=1, pep bound from (20)
M=5, N=1, pep bound from (20)
M=3, N=1, pep bound from (5)
M=5, N=1, pep bound from (5)
M=3, N=1, exact PEP from (4)
M=5, N=1, exact PEP from (4)
M=3, N=2, exact PEP from (4)

Fig. 2. PEP for a full rank code with transmit antenna selection, LT = 2.
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Fig. 3. FER for a full rank 4 state STTC from [4] with transmit antenna
selection, LT = 2.

where j =
√−1 are used in the simulations. We observe that

when M = 3 and M = 5, the diversity order is 3 and 5
respectively (regardless of the PEP bound). We also note that
when M = 3, N = 2 diversity becomes 6. These results verify
that full diversity can be achieved as expected theoretically
when full rank codes are used. Figure 3 shows frame error rate
(FER) plots for the M transmit and N = 1 receive antenna
systems (with LT = 2) when the 4-state space-time trellis
code (STTC) from [4] with a frame length of 130 QPSK
symbols is used. As seen from the plots, with no antenna
selection, this STTC achieves full space diversity of order 2
when M = 2 and N = 1. When the number of available
transmit antennas is increased to M = 3 and M = 4, while
still using LT = 2 of them for transmission, the diversity order
becomes 3 and 4, respectively. We note that this difference in
the diversity orders can only be observed for very high signal
to noise ratios.

IV. JOINT TRANSMIT AND RECEIVE ANTENNA SELECTION

In this section, we investigate the diversity orders of STCs
over flat fading channels with antenna selection both at the
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transmitter and the receiver. We first derive the PEP when only
one antenna on both sides are selected. Then, we consider
selection of more than one antenna, where we first select a
receive antenna resulting in the maximum SNR and then select
some of the transmit antennas corresponding to the selected
receive antenna for ease of analytical tractability. We note that
this simplified selection rule is more practical since it will
result in a faster selection by eliminating the search of all
possible antenna combinations. This type of selection can be
suboptimal in obtaining the largest possible SNR for the entire
system, i.e., the antennas resulting in the largest SNR may
not be selected. However, we will see that this suboptimal
selection still attains full diversity. We also consider multiple
transmit and receive antenna selection schemes to study the
setup in a more comprehensive manner.

A. Selection of Only One Transmit and One Receive Antenna

We will first study the simplest case in which only one
antenna is selected at the transmitter and the receiver. In this
case, unlike simplified selection rule as described above, the
selection is implemented in only one step by finding the largest
channel coefficient from the channel matrix. We also note that
since there is only one transmit antenna selected, any channel
code designed for single antenna system over flat fading can
be used.

Our PEP analysis starts with the selection of the complex
entry h, from H, the channel gain (having the largest norm)
corresponding to the selected transmit and receive antenna
pair. Then, the system model can be written as

X =
√

ρ

M
hS + W, (21)

where the received signal matrix X is of size 1×K , transmitted
signal matrix S is of size 1 × K . Then, the upper bound on
the conditional PEP can be written as

P (S → Ŝ|h) ≤ exp
(
−ρ

4
‖hB‖2

)
, (22)

and taking average over all possible h

P (S → Ŝ) ≤
∫

C1
exp

(
−ρ

4
‖hB‖2

)
fh(h)dh, (23)

where C1 is the 1 dimensional complex space and fh(h)
denotes the pdf of h which is a complex Gaussian random
variable and can be written as

fh(h) = MN
(
1 − e−‖h‖2

)(MN−1) 1
π

e−‖h‖2
. (24)

We can utilize eigenvalue decomposition BB∗ = UΛU∗

where U is a unitary matrix and Λ is a diagonal matrix with
eigenvalues of BB∗. For the 1 transmit and 1 receive antenna
selection case, BB∗ is 1 × 1, and thus, Λ = λ and U = 1.
Then we can write

P (S → Ŝ) ≤ MN

∫
C1

exp
(
−ρ

4
λ‖h‖2

) (
1 − e−‖h‖2

)(MN−1)

1

π
e−‖h‖2

dh.

(25)

Using h = σejθ , dh = σdσdθ and
∫ 2π

0 dθ = 2π, we obtain

P (S → Ŝ) ≤ 2MN

∫ ∞

0

e−
ρ
4 λσ2

(
1 − e−σ2

)(MN−1)

e−σ2
σdσ.

(26)

For further simplification, we use the upper bound in (12) to
obtain

P (S → Ŝ) ≤ MN

∫ ∞

0

e−( ρλ
4 λ+1)vv(MN−1)dv. (27)

Then, with (18), we easily arrive at

P (S → Ŝ) ≤ MN
(MN − 1)!(
ρλ
4 + 1

)MN
. (28)

In this final PEP expression, we observe that the diversity
advantage of MN , as in the full-complexity system, can be
achieved. We also note that the coding gain depends on the
eigenvalue, λ, of the square of the codeword difference matrix,
BB∗. This result is quite useful since we can use just one
transmit antenna and one receive antenna and utilize all the
benefits of the MIMO systems. However, it is trivial as well
since this is nothing but selection combining out of MN
independent fading coefficients.

B. Selection of 2 × 1 Antennas from a 3 × 2 System

Having studied the simplest selection case, we will now
obtain the PEP when more than one transmit antenna are
selected in order to analyze the full-rank STCs with joint
transmit and receive antenna selection over quasi-static flat
fading channels. We now consider a special case where there
are M = 3 transmit antennas and N = 2 receive antennas.
Our goal is to select two transmit antennas (LT = 2), and one
receive antenna (LR = 1).

Using the simplified selection rule, we start with the selec-
tion of one row, r, of H with the largest norm (or SNR). The
joint pdf of the selected row, r, is

fR(r) = N

(
1 − e−‖r‖2

M−1∑
m=0

‖r‖2m

m!

)N−1

1
πM

e−‖r‖2
, (29)

where R is the random variable representation of row r =
[c1, c2, c3]. With the definition vi = |ci|2, 1 ≤ i ≤ 3, the pdf
can be written as

fĈ1,Ĉ2,Ĉ3
(c1, c2, c3) = 2

(
1 − e−(v1+v2+v3)(

1 + (v1 + v2 + v3) +
(v1 + v2 + v3)

2

2

))
1

π3
e−(v1+v2+v3),

(30)

where Ĉi is the random variable with realization ci. After se-
lecting one row with 3 entries, we select 2 channel coefficients
with the largest norms. Then the resulting pdf is

fĈ1,Ĉ2
(c1, c2) = fC1,C2(c1, c2|G), (31)

where the event G is defined as the first two elements, C1, C2,
having the largest norms. Using Bayes’ rule, we get

fĈ1,Ĉ2
(c1, c2) =

P (G|C1 = c1, C2 = c2)fC1,C2(c1, c2)
P (G)

,

(32)
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where fC1,C2(c1, c2) is the joint pdf of any two elements in
the selected row and can be obtained as

fC1,C2(c1, c2) =
∫

fC1,C2,C3(c1, c2, c3)dc3. (33)

After using the pdf expression in (30) and taking the two
dimensional integral with respect to the angle and magnitude
of the complex number c3, fC1,C2(c1, c2) becomes

fC1,C2(c1, c2) =
(

1
π2

)(
2e−(v1+v2) − e−2(v1+v2)(

7
4

+
3
2
(v1 + v2) +

1
2
(v1 + v2)2

))
.

(34)

The other term in (32) can be written as

P (G|C1 = c1, C2 = c2) = P (|c3|2 < |cm|2), (35)

where |cm|2 = min(|c1|2, |c2|2). With further simplification,

P (G|C1 = c1, C2 = c2) = P (|c3| < |cm|) = P (σ3 < σm),
(36)

where σ3 = |c3| and σm = |cm| and finally

P (G|C1 = c1, C2 = c2) =
∫ 2π

0

∫ σm

0

fC3|C1,C2(c3|c1, c2)dc3,

(37)
where we use dc3 = σ3dσ3dθ3 for complex integration and
fC3|C1,C2(c3|c1, c2) is the pdf of the third entry of the selected
row when the first two entries C1 = c1, C2 = c2 are known.
Using Bayes’ rule, the conditional pdf can be written as

fC3|C1,C2(c3|c1, c2) =
fC3,C1,C2(c3, c1, c2)

fC1,C2(c1, c2)
. (38)

Since vi = |ci|2, for brevity of expressions, we note that

fĈ1,Ĉ2
(c1, c2) =

1
P (G)

∫ vm

0

fC1,C2,C3(v1, v2, v3)dv3. (39)

Then, the final pdf of the selected two entries will be

f
Ĉ1,Ĉ2

(c1, c2) =

(
− 6

π2

)
e−(v1+v2+vm)

+

(
3

π2

)
e−2(v1+v2+vm)

(
7

4
+

3

2
(v1 + v2 + vm) +

1

2
(v1 + v2 + vm)2

)
+

(
3

π2

)(
2e−(v1+v2) − e−2(v1+v2)

(
7

4
+

3

2
(v1 + v2) +

1

2
(v1 + v2)2

))
.

(40)

Using this derived pdf of the selected channel coefficients, the
PEP bound can be written as

P (S → Ŝ) ≤
∫ ∫

exp
(
−ρ

8
‖ĤB‖2

)
fĈ1,Ĉ2

(c1, c2)dc1dc2.

(41)
Similar to the derivations in the transmit antenna selection,
this upper bound is not affected when ‖ĤB‖2 is replaced with
λ̂v1 + λ̂v2 where λ̂ = min(λ1, λ2). This integration is quite
lengthy and with the help of computing tools (e.g. symbolic
integration in Matlab), the result can be obtained as

P (S → Ŝ) ≤ 512 + 752α + 52α2 + 346α3

(α + 4)3(α + 2)4(α + 1)2
≈ 346 × α−6,

(42)
where α = (ρ/8)λ̂ and the last approximation is obtained by
considering large SNRs. From this PEP bound, we observe
that the maximum diversity order which is the exponent of
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Fig. 4. Comparison of the exact PEP and the upper bounds on PEP for a full
rank code with joint transmit/receive antenna selection for λmin = 4, λ1 =
4, λ2 = 12, M = 3, LT = 2, N = 2, LR = 1.

the SNR term, ρ, at high SNRs is MN = 6. i.e, full spatial
diversity is achieved with full rank STCs as in the full-
complexity case. We note that in the PEP derivation for this
special case, we used computing tools and again showed that
full diversity is achieved. Tighter bounds can be obtained using
similar techniques to design better codes. However, when the
number of antennas increases such tools do not help. Thus, we
would like to derive other analytical PEP bounds for selection
of arbitrary number of antennas.

To verify our analytical derivations, we have simulated
several systems. However, due to space requirements, the
results for only one case are provided. Figure 4 shows the
PEP plots for the system where M = 3 transmit and N = 2
receive antennas are available, but only LT = 2 transmit and
LR = 1 receive antennas resulting in the largest received
SNRs are used. We use the same codeword pair as provided
in the previous section. The exact PEP plot is obtained by
averaging the PEP expression in (4) over the fading channel
statistics after selection. Similarly, the PEP bound plot is
obtained by averaging the upper bound on the PEP shown
in expression (5) over the fading channel statistics after the
selection. The analytical PEP bound is obtained from the
derived upper bound in the expression (42) with λ1 = 4,
λ2 = 12, and thus λmin = 4 (eigenvalues of the square of the
codeword difference matrix BB∗). We note that the derived
PEP bound shows that full diversity is achieved and it further
upper bounds the exact PEP. Although not shown, when
the eigenvalues are close to each other, then the difference
between the derived upper bound and exact PEP bound is
smaller.

C. Selection of LT × 1 Antennas from an M × N System

Having studied a special case, we now consider the selection
problem with an arbitrary number of transmit and receive an-
tennas. In the following PEP derivation, we focus on selecting
LT out of M transmit and one out of N receive antennas.

The joint pdf of the row with the largest norm, which is
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selected from the N × M channel matrix H, is

fR(r) = N

(
1 − e−‖r‖2

M−1∑
m=0

‖r‖2m

m!

)(N−1)

1
πM

e−‖r‖2
,

(43)
where r = [c1, c2, . . . , cM ] containing M complex channel
coefficients. With the definition vi = |ci|2, 1 ≤ i ≤ M and
w = v1 + v2 + . . . + vM , the pdf can be written as

fĈ1,Ĉ2,...,ĈM
(c1, c2, . . . , cM )

= N

(
1 − e−w

M−1∑
m=0

wm

m!

)(N−1)

1
πM

e−w. (44)

After finding the pdf for the selected row which corresponds
to the channel coefficients for the selected receive antenna,
we select LT transmit antennas. For simplicity, we call
the pdf for the largest LT elements of the selected row
fĈ1,Ĉ2,...,ĈLT

(c1, c2, . . . , cLT ) as f . Similar to set of equations
in (31-39), f can be written as

f =
(

N.M !
(M − LT )!LT !

)
LT∑
p=1

∫ vp

0

· · ·
∫ vp

0

(
1 − e−w

M−1∑
m=0

wm

m!

)(N−1)

1
πLT

e−wIRp(v1, · · · , vLT )dvLT +1 . . . dvM , (45)

where IRp(v1, · · · , vLT ) is the indicator function which is 1
if and only if vp is the minimum of all vi for 1 ≤ i ≤ LT ,
otherwise, IRp(v1, · · · , vLT ) = 0. After using the result in
(12), we obtain

f ≤
(

N.M !
(M − LT )!LT !

) LT∑
p=1

∫ vp

0

· · ·
∫ vp

0

(
wM

M !

)(N−1)

1
πLT

e−wIRp(v1, · · · , vLT )dvLT +1 . . . dvM . (46)

We note that

(v1 + · · · + vM )M(N−1) =

(
M∑
i=1

vi

)M(N−1)

,

=
M∑

i1=1

· · ·
M∑

iM=1

vi1 · · · viM(N−1) ,

(47)

where the indexes ik in vik
, k ∈ {1, · · · , M(N − 1)}, take

values from the set J = {1, · · · , M}. Assume the subscript
index j appears lj times among the subscripts of the term
vi1 · · · viM . Then,

vi1 · · · viM =
M∏

k=1

vik
,

=
M∏

j=1

(vj)lj , (48)

such that
∑M

j=1 lj = M(N − 1). Therefore, we can use

(v1 + · · · + vM )M(N−1) =
M∑

i1=1

· · ·
M∑

iM =1

M∏
j=1

(vj)lj , (49)

to obtain

f ≤ β
M∑

i1=1

· · ·
M∑

iM(N−1)=1

LT∑
p=1

∫ vp

0

· · ·
∫ vp

0

M∏
j=1

(vj)lj e−vj IRp(v1, · · · , vLT )dvLT +1 . . . dvM , (50)

where β =
(

N.M!
(M−LT )!LT !

(M !)(N−1)

)
. Each integral can be written as

follows∫ vp

0
v

lj
j e−vj dvj = lj !

⎡⎣−e−vp

lj∑
k=0

v
(lj−k)
p

(lj − k)!

⎤⎦
= lj !

⎡⎣−e−vp

lj∑
m=0

vm
p

m!

⎤⎦ ≤ lj !
v
(lj+1)
p

(lj + 1)!
, (51)

where we used m = lj − k for a simpler expression, and the
result in (12) for the last inequality. Then the pdf becomes

f ≤ β

M∑
i1=1

· · ·
M∑

iM(N−1)=1

LT∑
p=1

LT∏
k=1

e−vk(vk)lk

M∏
j=LT +1

v
(lj+1)
p

(lj + 1)
IRp(v1, · · · , vLT ).

(52)

In order to write the PEP bound, we integrate over 0 ≤ vi ≤
∞ region instead of integrating in the region defined by IRp

which further loosens the upper bound, resulting in

P (S → Ŝ) ≤
∫ ∞

0
· · ·

∫ ∞

0
e−γ(v1+...+vLT

)β
M∑

i1=1

· · ·
M∑

iM(N−1)=1

LT∑
p=1

M∏
j=LT +1

v
(lj+1)
p

(lj + 1)

LT∏
k=1

e−vk (vk)lk

LT∏
k=1

dvk, (53)

where γ = ρ
4×LT

λ̂ and the integration with respect to angle
cancels out the πLT term. After interchanging the summation
and integration, then, taking the integrals for the two cases
k = p and k 
= p separately with the help of (18), we finally
obtain

P (S → Ŝ) ≤
M∑

i1=1

· · ·
M∑

iM =1

⎛⎝β
M∏

j=LT +1

1

(lj + 1)

⎞⎠
(
lp + (

∑M
j=LT +1(lj + 1))

)
!

(γ + 1)

(
lp+1+(

∑
M
j=LT +1(lj+1))

) LT∏
k=1,k �=p

lk!

(γ + 1)(lk+1)
. (54)

We observe that the exponent of γ, and thus the exponent of
the SNR term ρ, will be

∑M
j=1(lj + 1) = MN which shows

that full diversity is achieved even though only LT transmit
antennas and only a single receive antenna are used. This PEP
expression can be useful in designing new STCs with joint
transmit and receive antenna selection.

D. Selection of Arbitrary Number of Transmit and Receive
Antennas

Due to the complexity in deriving the joint pdf of the
selected channel coefficients for joint transmit and receive
antenna selection scheme for arbitrary number of antennas
LT > 1 and LR > 1, we do not deal with the PEP bound for
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Fig. 5. FER for a full rank STC using (5, 7)octal convolutional code with
joint transmit and receive antenna selection.
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Fig. 6. PEP (from (4)) for a full rank code with joint transmit/receive antenna
selection.

this case. Clearly, since we have shown that full diversity is
achievable with LR = 1, selecting multiple receive antennas
will also achieve full spatial diversity if a full-rank STC is
used.

Let us present an example. Figure 5 shows the FER plots
for the system with M transmit and N receive antennas. We
transmit a full rank STC, using (5, 7)octal convolutional code,
over 2 antennas. For M = 2 and N = 1, i.e. no antenna
selection, this STC achieves full space diversity order of 2.
With joint transmit and receive antenna selection, LT = 2 and
LR = 1, the diversity order increases to 6 for a system with
M = 3, N = 2. Figure 6 shows the PEP plots for the system
with joint transmit and receive antenna selection with LT = 2
and LR = 1. We use the same codeword pair as provided
in the previous section. With no antenna selection, the full
rank code achieves a diversity order of 2 for the M = 2,
N = 1 system. When M = 3, N = 2, the diversity order
increases to MN = 6 and when M = 3, N = 3 the diversity
order becomes 9 as expected. Obviously, the system with joint
transmit and receive antenna selection results in much lower
error rates although the same number of RF chains are used.

V. ANTENNA SELECTION WITH RANK-DEFICIENT

SPACE-TIME CODES

Until now, we considered full-rank STCs and observed that
they will achieve a spatial diversity of MN . To complete the
picture, we consider the performance of rank deficient STCs
with antenna selection. We consider two cases, i.e., transmit
antenna selection and joint transmit/receive antenna selection,
separately.

A. Transmit Antenna Selection

For rank-deficient space-time codes, when LT > 1 transmit
antennas are selected, the derivation of the PEP bound will
follow the same lines as that of the full-rank codes, i.e.,
expressions (6)-(19). When a space-time code is used with
rank q = rank(B) < LT < M , then (LT − q) many of the
λi terms will be zero. Therefore, Equation (15)

I(1)
l = κ

⎛⎝ 1∏LT

i=1,i�=l 1 + ρλ̂
4LT

⎞⎠N

,

and Equation (19),

I(2)
l =

(
1

N !

)M−LT N∑
n1=1

· · ·
N∑

nNM−NLT
=1

l1! · · · lN !

( ρλ̂
4LT

+ 1)l1+1 · · · ( ρλ̂
4LT

+ 1)lN+1
,

will be computed for only nonzero eigenvalues, where λ̂ is the
minimum of the nonzero eigenvalues. From the summation of
the SNR exponents for I(1)

l and I(2)
l , we see that the exponent

for rank-deficient codes will be at least Nq. With a similar
argument as in [1], we claim that this is the true diversity
order as opposed to MN for full-rank codes. The coding gain
depends on the eigenvalues of the codeword difference matrix.
We also note that the derivation of lower bound on PEP will
result in the same diversity order Nq (as in [1]). Therefore,
we claim that the diversity order will be Nq for rank deficient
STCs with transmit antenna selection.

After providing the theoretical diversity order, we now
present several examples to verify our expectations. Figure 7
shows the FER for the system with a rank deficient STC using
(3, 3)octal convolutional code. With no antenna selection, for
an M = 2 and N = 1 system, this STC achieves no
spatial diversity, as the rank of this code is only q = 1.
With transmit antenna selection LT = 2, when M = 5, the
diversity order still remains as 1. When M = 3, and N = 2
the diversity order becomes qN = 2 which corroborates our
theoretical expectation. Figure 8 shows the PEP plots from the
expression in (4) averaged over channel fading for the system
with transmit antenna selection with LT = 2. Two codeword
matrices with QPSK symbols

S =

(
j j j j
j j j j

)
Ŝ =

(
1 1 1 1
1 1 1 1

)
,

where j =
√−1 and rank q = 1, are used in the simulations.

We observe that the diversity order remains same qN = 1 for
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Fig. 7. FER for a rank deficient STC using (3, 3)octal convolutional code
with transmit antenna selection.

0 2 4 6 8 10 12 14 16 18 20
10

−3

10
−2

10
−1

10
0

Signal to Noise Ratio (SNR) in dB

P
ai

rw
is

e 
E

rr
or

 P
ro

ba
bi

lit
y 

(P
E

P
)

 

 
M=3, N=1
M=4, N=1
M=5, N=1

Fig. 8. PEP from (5) for a rank-deficient code with transmit antenna selection,
LT = 2 (for a fixed number of receive antennas, N = 1).

N = 1 and several different values of M ∈ {3, 4, 5}. Figure 9
shows the PEP plots with different number of receive antennas
where only LT = 2 out of M = 3 transmit antennas are used
in actual transmission. The achieved diversity orders are 2, 3
and 4 when N is 2, 3 and 4, respectively.

B. Joint Transmit and Receive Antenna Selection

For the PEP expression in (54) which is derived for LR = 1,
we note that if the underlying space-time code was a rank-
deficient code with rank q < LT , then the diversity order
would be q since N − q SNR terms would disappear due to
zero eigenvalues. Although we do not have a PEP expression
for arbitrary LT > 1 and LR > 1, based on empirical results,
we claim that the diversity order for rank-deficient STCs in
general case of selecting LT × LR from M × N system is
qLR.

Figure 10 shows the FER plots for a rank-deficient STC
with joint transmit and receive antenna selection where the
(3, 3)octal convolutional coded sequence is transmitted from
2 antennas. With no antenna selection, when M = 2 and
N = 1, this STC achieves no diversity, since the rank of this
code is only q = 1. With antenna selection, the diversity order
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Fig. 9. PEP from (5) for a rank-deficient code with transmit antenna selection,
LT = 2 (for different number of receive antennas).
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Fig. 10. FER for a rank deficient STC with joint transmit and receive antenna
selection.

still remains as qLR = 1 for larger systems with M = 3 and
N = 2, or with M = 4 and N = 3, as theoretically expected.
Although the diversity orders are the same, obviously, when
selection is done among more antennas, smaller error rates can
be obtained. Figure 11 shows the PEP plots for the system with
several M , N , LRs. We use the same rank-deficient codeword
pair as in the transmit selection example. With no antenna
selection, when M = 2 and N = 1, this STC achieves no
diversity (q = 1), although the available spatial diversity is 2.
When M = 3, N = 2, or M = 3, N = 3 the diversity order
remains as qLR = 1. For M = 3, N = 4 system, if LR = 2
receive antennas are used, then the diversity order becomes
qLR = 2. Similarly, if LR = 3 receive antennas are used,
then the diversity order becomes qLR = 3.

VI. CONCLUSIONS

In this paper, we have considered transmit and joint trans-
mit/receive antenna selection for space-time coded MIMO
systems over flat fading channels. We assumed that the antenna
selection is based on maximum received SNRs. We derived
PEP bounds and demonstrated that by employing antenna
selection full spatial diversity can be achieved provided that



GUCLUOGLU and DUMAN: PERFORMANCE ANALYSIS OF TRANSMIT AND RECEIVE ANTENNA SELECTION OVER FLAT FADING CHANNELS 3065

10 11 12 13 14 15 16 17 18 19 20
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Signal to Noise Ratio (SNR) in dB

P
ai

rw
is

e 
E

rr
or

 P
ro

ba
bi

lit
y 

(P
E

P
)

 

 

M=2, N=1, no selection
M=3, N=2, L

T
=2, L

R
=1

M=3, N=3, L
T
=2, L

R
=1

M=3, N=4, L
T
=2, L

R
=2

M=3, N=4, L
T
=2, L

R
=3

Fig. 11. PEP from (4) for a rank-deficient code with joint transmit/receive
antenna selection.

the underlying STC is full-rank. Otherwise, the diversity
achieved will depend on the rank of the codeword difference
matrix and the selected number of antennas. These results
mainly extend the results of [1] to a more complicated scenario
of transmit/receive selection.

REFERENCES

[1] I. Bahceci, T. M. Duman, and Y. Altunbasak, “Antenna selection for
multiple-antenna transmission systems: performance analysis and code
construction,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2669–
2681, Oct. 2003.

[2] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European
Trans. Telecommun., vol. 10, pp. 585–595, Nov. 1999.

[3] G. J. Foschini and M. Gans, “On the limits of wireless communication in
a fading environment when using multiple antennas,” Wireless Personal
Commun., pp. 311–335, Mar. 1998.

[4] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for
high data rate wireless communication: performance criterion and code
construction,” IEEE Trans. Inform. Theory, vol. 44, no. 2, pp. 745–764,
Mar. 1998.

[5] S. M. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Select Areas Commun., vol. 16, pp. 1451–
1458, Oct. 1998.

[6] A. Stefanov and T. M. Duman, “Turbo coded modulation for systems
with transmit and receive antenna diversity over block fading channels:
system model, decoding approaches and practical considerations,” IEEE
J. Select. Areas Commun., vol. 19, no. 5, pp. 958–968, May 2001.

[7] A. F. Molisch, “MIMO systems with antenna selection–an overview,”
Radio and Wireless Conference, vol. 37, no. 20, pp. 167–170, Aug.
2003.

[8] D. Gore and A. Paulraj, “MIMO antenna subset selection with space-
time coding,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 50, no. 10, pp. 2580–2588, Oct. 2002.

[9] A. Gorokhov, D. Gore, and A. Paulraj, “Receive antenna selection
for MIMO flat-fading channels: theory and algorithms,” IEEE Trans.
Inform. Theory, vol. 49, no. 10, pp. 2687–2696, Oct. 2003.

[10] A. Ghrayeb, “A survey on antenna selection for MIMO communication
systems,” Inform. and Commun. Technol., vol. 2, pp. 2104–2109, Mar.
2006.

[11] A. Ghrayeb and T. M. Duman, “Performance analysis of MIMO systems
with antenna selection over quasi-static fading channels,” IEEE Trans.
Veh. Technol., vol. 52, no. 2, pp. 281–288, Mar. 2003.

[12] T. Gucluoglu, T. M. Duman, and A. Ghrayeb, “Antenna selection
for space time coding over frequency-selective fading channels,” in
Proc. IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), vol. 4, no. 10, pp. iv-709–iv-712, May 2004.

[13] Q. Ma and C. Tepedelenlioglu, “Antenna selection for unitary space-
time modulation,” IEEE Trans. Inform. Theory, vol. 51, no. 10, pp.
3620–3631, Oct. 2005.

[14] I. Bahceci, Y. Altunbasak, and T. M. Duman, “Space-time coding over
correlated fading channels with antenna selection,” IEEE Trans. Wireless
Commun., vol. 5, no. 1, pp. 34–39, Jan. 2006.

[15] A. Sanei, A. Ghrayeb, Y. Shayan, and T. Duman, “On the diversity
order of space-time trellis codes with receive antenna selection over
fast fading channels,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp.
1579–1585, July 2006.

[16] Z. Chen, B. Vucetic, J. Yuan, and K. L. Lo, “Analysis of transmit
antenna selection/maximal-ratio combining in Rayleigh fading chan-
nels,” in Proc. International Conference on Communication Technology
Proceedings, vol. 2, pp. 1532–1536, Apr. 2003.

[17] Z. Chen, B. Vucetic, and J. Yuan, “Performance of Alamouti scheme
with transmit antenna selection,” Electron. Lett., vol. 39, no. 23, pp.
1666–1668, Nov. 2003.

[18] ——, “Space-time trellis codes with transmit antenna selection,” Elec-
tron. Lett., vol. 39, no. 11, pp. 854–855, May. 2003.

[19] R. Narasimhan, “Transmit antenna selection based on outage probability
for correlated MIMO multiple access channels,” IEEE Trans. Wireless
Commun., vol. 5, no. 10, pp. 2945–2955, Oct. 2006.

[20] J. Yuan, “Adaptive transmit antenna selection with pragmatic space-time
trellis codes,” IEEE Trans. Wireless Commun., vol. 5, no. 7, pp. 1706–
1715, July 2006.

[21] I. Berenguer, X. Wang, and I. Wassell, “Transmit antenna selection in
linear receivers: geometrical approach,” Electron. Lett., vol. 40, no. 5,
pp. 292–293, Mar. 2004.

[22] D. Gore, R. H. Jr., and A. Paulraj, “Transmit selection in spatial
multiplexing systems,” IEEE Commun. Lett., vol. 6, no. 11, pp. 491–493,
Nov. 2002.

[23] S. Sanayei and A. Nosratinia, “Capacity maximizing algorithms for joint
transmit-receive antenna selection,” in Proc. Thirty-Eighth Asilomar
Conference on Signals, Systems and Computers, vol. 2, pp. 1773–1776,
Nov. 2004.

[24] L. Dai, S. Sfar, and K. Letaief, “Optimal antenna selection based on
capacity maximization for MIMO systems in correlated channels,” IEEE
Trans. Commun., vol. 54, no. 3, pp. 563–573, Mar. 2006.

[25] J. G. Proakis, Digital Communications, 4th ed. McGraw-Hill Inc.,
2000.

Tansal Gucluoglu received the B.S. degree from
Middle East Technical University, Ankara, Turkey
in 1997, the M.S. degree from Syracuse University
in 2001 and the Ph.D. degree from Arizona State
University in 2006, all in electrical engineering. He
worked as an R&D Engineer at Karel Electronics,
Ankara (1997-2000) and at PPC, Manlius, New York
(2000-2001). He was a Research Associate (2001-
2004) and a Teaching Associate (2004-2006) at
Arizona State University. Since 2006, he has been an
Assistant Professor at the Department of Electronics

Engineering, Kadir Has University, Istanbul. His research interests include
channel coding, equalization and estimation for wireless communications.

Tolga M. Duman received the B.S. degree from
Bilkent University in 1993, M.S. and Ph.D. de-
grees from Northeastern University, Boston, in 1995
and 1998, respectively, all in electrical engineering.
Since August 1998, he has been with the Electrical
Engineering Department of Arizona State Univer-
sity. He is currently a full professor. Dr. Duman’s
current research interests are in digital communica-
tions, wireless and mobile communications, channel
coding, turbo codes, coding for recording channels,
and coding for wireless communications. He is the

co-author of the book Coding for MIMO Communication Systems published
by Wiley (2007).

Dr. Duman is the recipient of the National Science Foundation CAREER
Award and IEEE Third Millennium medal. He has served as an editor for
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS from 2003-2008,
and he is currently an editor for IEEE TRANSACTIONS ON COMMUNICA-
TIONS.


