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Abstract—The navigation of autonomous mobile robots as a
group is considered in this paper. Definitions adopted from the
graph theory are given to characterize the robot group. A local
steering strategy is proposed such that when each robot in the
group applies this steering scheme, the overall result is that the
whole group is displaced without losing its connectivity. This is
achieved using only limited-range position sensors and without
any communication between the robots.

I. INTRODUCTION

There are some tasks that are either impossible or infeasible
to be accomplished by a single robot. A group of robots, rather
than a single robot, are intuitively expected to be successful
in performing such tasks. Indeed, one can see several species
in nature which exhibit very beautiful examples of collective
working. Schooling fish, flocking birds, ant and bee colonies
are quite well-known for their collective working behaviors
[11-[3].

Several works are available in the literature which utilize the
cooperation of autonomous agents. One of the first efforts to
model species which work collectively was given for flocking
birds in 1987 [4]. In that work, it is asserted that large group
behaviors arise as a result of simple principles about the
motion of each member of the group. An important application
of this idea in discrete-time was given in 1995 [5]. Since then,
the concept of cooperative motion has greatly evolved. The
formation of robot groups [6]-[8] as well as the utilization
of potential functions and artificial forces to accomplish a
group behavior [3],[9],[10] has been widely studied. Some
methodologies rely on limited communication between robots
for desired group task [11],[12]. A more general discussion
of the initial studies conducted in this area and concept
development can be found in [13] and the references therein.

In this paper, we develop a methodology for the navigation
of autonomous robots in connected groups, using concepts
from graph theory. The connectivity of robot groups is first
defined similarly, and a local steering strategy is built, which
guarantees the connectivity of the group for the whole time of
interest. We assume that the robots have no communication
capability and their position sensors are of limited range.
These assumptions make our work more realistic, as we
form an analogy between the mobile robots and aggregating
organisms in nature. There are other works in the literature too,
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which make use of graph theory, such as [14]-[17]. However,
as far as we know, no work is available yet that guarantees the
connectivity of the robot group without using communication.
In [15] and [16], it is assumed that a state vector consisting of
position and velocity is measurable and every robot can sense
any other robot in the group without any restrictions. These
works and also the study in [18] assume group connectivity
during the motion as a pre-requisite for the success of their
methods. However, in the current study, a methodology is
presented that results in the navigation of a robot group having
dynamic topology using only limited-range position sensors
with guaranteed connectivity. Therefore, our work aims to fill
an important gap in this field.

This paper is organized as follows: In the following sec-
tion we present the formulation of the problem based on
elementary graph theory. In Section III, we propose a local
steering strategy for the autonomous motion of the robots.
The computational cost of the steering strategy is analyzed in
Section IV and a method for the simplification of computations
is presented. The proposed methodology is tested for several
groups of robots in Section V. Concluding remarks and a
discussion are provided in Section VI.

II. PROBLEM FORMULATION

The robots in this study are assumed to be identical in
physical properties. No communication between the robots is
considered. Each robot, represented by R, can move in all
directions and is equipped with limited-range position sensors.
The position sensors can accurately sense other robots within
range. This establishes a link between the sensing robot and
each robot in its sensing range. We assume that the sensing
capability is continuous and available equally in all directions.
Sensing other robots means acquiring the position information
of the robots in the neighborhood. Note that this does not
imply recognizing a specific robot. The robots have no ID’s.
Moreover, each robot does not even know its own label.

A number of such mobile robots constitute a group. The
problem studied in this work is the navigation of an au-
tonomous mobile robot group. We use a graph-theoretic ap-
proach to formulate the problem. The following definitions are
adopted from graph theory. The interested reader is referred
to standard textbooks such as [19] or [20] for details.



Definition 1: A group G is a set of autonomous mobile
robots {R;, i = 1,..., N}, that can be connected by links.

Definition 2: The group G is connected if there is a path
from any robot to any other robot in the group through links.
A group which has at least one pair of robots having no path
inbetween is disconnected.

The robots’ position sensors are assumed to provide con-
tinuous and exact position information in all directions in a
range denoted by d,,,4.. That is, each robot can continuously
scan its surrounding space (a sphere of radius d,,,, ). Since we
assume that this sensing range is limited and the total number
of robots in the group can be large, a robot may not sense all
other robots in the group. Based on this, we define subgroups
as follows.

Definition 3: A subgroup S; is a group of robots sensed
by the robot R;.

Since there are N robots in the group, by definition, there
are N subgroups, i.e. one for each robot. S; has a spherical
shape with R; lying at its center. If R; cannot sense any other
robots in the group, then S; is an empty set. Obviously, a
necessary condition for the connectivity of a group is that
none of the subgroups is an empty set. On the other hand,
letting the largest distance between the robots in G be denoted
as Dz, G will be connected according to Definition 2,
if dmas > Dmaz. However, one faces nontrivial and more
interesting cases whenever d,, 4 << Dpnaz, Which corresponds
to robot groups of a relatively large number of individuals
having limited sensing ranges.

Fig. 1 depicts a group consisting of three robots. It is seen
that Ry € S1, and Ry € Ss. This establishes the links C7o and
(b1, respectively. The links between Rs and Rgs are formed
likewise. Note that the robot Ro has the position information
of both Ry and Rj3, but Ry and R3 cannot sense each other,
as the distance between Ry and Rj is larger than d,,q;.

The group is required to navigate from a starting location to
a target location. We assume that the location of the target is
unknown to all group members except one robot. This robot
is assigned as the leader of the group and denoted as Ry,. The
leader has the same physical properties and capabilities as the
other robots. The only difference is that the direction of the
target is given to Ry so that it can determine its movement
using this target information. However, in this study, the
leadership is hidden. None of the robots recognize the leader
as a distinguished group member. In other words, if Ry is
sensed by a robot R;, i.e. Ry € S;, R; can only see it as
one of its neighbors and the leadership of R; does not affect
the local steering strategy of I2;. In the remaining part of the
paper, we will consider the group of N robots as one leader,
Rp, and N —1 as followers, R;, where j =1,...,N — 1.

Using these definitions and assuming that a set of robots
initially form a connected group; our objective now is to de-
velop a decentralized steering methodology that yields efficient
navigation of the group while preserving its connectivity in the
sense of Definition 2.

Fig. 1. Tllustration of a robot group with three robots and subgroups

III. AUTONOMOUS MOTION

At any time t, let t + At be the next sampling time, where
At > 0 is the interval at which a robot senses the positions
of other robots in its range. We will denote the position of a
robot R; at time ¢, as X;(¢), ¢ = 1,..., N. Since all robots
in the group steer autonomously, we will set up local moving
rules for each robot. Here, we propose a local steering strategy
that is inspired by the preliminary study of Reynolds in [4].
At each time ¢, while the leader R aims in a given global
target direction, each follower robot I;, j = 1,...,N — 1,
acquires the positions of other robots in its sensor range, i.e.
in the subgroup S;, and determines a local target location for
itself. This is most conveniently described in terms of the local
coordinates of [?;, with R; being at the origin. Let us denote
the position vector in local coordinates as z(t). We will use a
notation such that the superscripts in x relate the coordinate
frame to a robot, and the subscripts in x indicate which robot’s
position it is. For example, ], represents the position vector
of Ry, in the coor_dinate frame of R;. By definition, the local
position vector 2’ of R; in its own coordinate frame is zero.

J
For the robots in S;, i = 1,..., N, we have

) 2 Xut) - Xit), k=1,....M (1)

where M is the number of robots in S;. Then, we propose the
following local steering strategy.

Local Steering Strategy: At each sampling time ¢, each robot
in the group computes a target location for the time ¢ + At
and moves towards that location, such that,

1) for each fgllower robot R;, j=1...,N —1, the target
location (¢ + At) minimizes a cost function, .J (7 (t +
At)), derived from the positions of the robots in Sj,

2) for the leader Ry, the target location is always towards

the given global target,

and for both R}, and the follower robots R ;, the movement is
subject to

25t + A1) < 5 (dmax — max [l (£)]]) )

N =

where i = 1,..., N and 2 (¢) is as defined in (1).



Note that both % (t) and zi(t + At) are positions in
coordinates of the local reference frame attached to R; at time
t. The position that R; is aiming at, i.e. z¢(t+At), is restricted
by an upper bound in (2). This upper bound is incorporated
to guarantee the connectivity of the group.

Several types of cost functions can be used in implementing
the local steering strategy. One example of these cost functions
may be given for each follower robot R; as

J($§ (t+ At)) = max Hx; (t+ At) — xi(t)

E

which makes each robot try to decrease the distance to the
farthest robot that it senses. Another possible approach could
be to force the robots to keep their distances with the robots
in their subgroups as close to a desired distance as possible.
Let us denote the desired distance as dy (dg < dpae). Then
we can define a suitable cost function for each follower robot
R;,j=1,...,N—1,as

M 2
Tt +a0) =3 (It + a0 2 (1) - do) . @)

k=1

Regarding the connectivity of the group we can state the
following theorem.

Theorem 1: Consider a group G of N autonomous mobile
robots which are connected at ¢ = 0 as defined in Definition 2.
If the robots in the group move according to the Local Steering
Strategy defined above, the group preserves its connectivity for
t>0.

Proof: Let R, and R, be any two robots within their
mutual sensing range, that is, R, € S and Ry, € S, at time
t. Let M, and M, be the number of robots in S, and S,
respectively. From (2), we have

2]q(t+ A1) +max ||z ()] < dmaw s k=1, Mo (4)
and

2|zt + At)| + max |2} (1) < dmag , L=1,-., Mp. (5)

Noting that maxy ||zf(¢)|| >
[z (®)]]. and |25 (£)]] = [l (¢)

25 (¢ + A + 2yt + A + 25 (@) < dmaz-— (©)

g (@), max; |27 (8)]] >
, it follows from (4) and (5),

Further, by triangular inequality, we get
o (t + At) = (@5 (1) + 2t + A1) < dmaz- ()

Note that the term x{ (t)+ % (t+At) is the position of R;, at
time ¢+ At as expressed in the local coordinate frame attached
to R, at time t. Therefore, (7) shows that the distance between
the robots R,and Ry, will not be larger than d,,,. This holds
for any robots R, and R} providing R, € S, and Ry € S,.
Hence, any two robots sensing each other at time ¢ will still
be linked when they moved to their locations at ¢+ At; that is,
they will stay connected. Since group connectivity is formed
through those robots which sense each other, and the group is
connected at ¢ = 0, it will also be connected for ¢ > 0. [ |

Remark 1: According to Theorem 1, the robots in the group
can move simultaneously. However, another possibility is to
assign certain time slots to each robot so that only one robot
can move in the group at a time. This sequential movement
can be achieved without communication, using synchronized
clocks. If this is applied, then the constraint on the motion
given in (2) can be relaxed so that

75t + A < dimaz — max |2}, (1) ®)

For such a sequential motion, Theorem 1 still holds with the
bound in (8).

Remark 2: For both types of coordinated (sequential or
simultaneous) motion of the robots, each subgroup S; will
keep the robots that are initially in S;. So, the number of robots
in §; will not decrease; nevertheless, it may grow as new
robots appear in the sensing range of R; and hence, become
a member of S;.

IV. COMPUTATIONAL REMARKS

The robots in this study are supposed to be quite simple
and limited devices, especially from the computational point
of view. Our purpose is to provide a decentralized control
methodology which can be applied to such simple robots, yet
also lead to a satisfactorily good group navigation. Below,
we propose an iterative method to reduce the computational
burden in the implementation of the Local Steering Strategy.

The minimum points of the cost function given in (3) are
the locations which each follower robot R; aims to reach at
each sampling time. The minimization of (3) requires higher
computational power as the number of robots in S; increases.

When there is only one robot, say R,,, in a subgroup S,
the solution is a circle in R? or a sphere in R3. In this case,
the solution set has infinite number of points which minimize
J, but the robot I2; selects the nearest point in the solution set.
This leads to the movement of IZ; in the line which connects
R; to R,,. The movement direction is either towards R,, if
the distance between R; and R,, is larger than dy, or away
from R,, if the distance is smaller than dy. Obviously, no
movement is required if R; is already on an optimal point at
that time.

When there are only two robots, say R,, and R,, in S,
one may consider different cases as far as the number of the
optimal points is concerned. If the distance between R,, and
R,, is larger than or equal to 2 dy, the optimal point is unique
both in R? and R?, and is at the center of the line segment
which connects R,,, and R,,. Otherwise, in R2, there are two
optimal points which lie symmetrically at each side of the line
connecting R, and I2,,. The robot R; selects the nearest point
as the local target. In R?, the number of the optimal points are
infinite and they lie in a circle whose center is the center of
the line segment connecting R,, to R, . This line segment is
also normal to the circle of solution points. Again, the robot
R; aims at the point on this circle which is nearest to itself.

It is clear that, the computation task is relatively easy when
only one or two robots are sensed by each follower robot
at a time. However, whenever three or more robots are in



a subgroup S;, the minimization of J given by (3) requires
the solution of a set of nonlinear equations. At the extremum
points, we have

0 =D ; 2
p ; 7 (It + a8 = 2ft) - o) =0 ©)
which results in a nonlinear set of equations. The solution of
the system in (9) may not be unique. After solving this system,
whether or not the solution points are a minimum must then
be tested. If more than one minimum is present, we find the
global minimum by evaluating the cost function given in (3)
at these points.

It should be noted that the optimal points are computed for
each follower robot R; at every sampling time. The location
of the optimal points depends on the positions of the robots
in the subgroup S;. Since the sensed robots in S; also move
autonomously, the location of the computed optimal points
will change at each time. This change will very likely happen
before they are reached by ;. Hence, the solution will provide
only a direction to the optimal points, because the solution will
change before R; gets to that location.

This fact gives us the chance to decrease the computational
burden in the Local Steering Strategy. Rather than solving
for the minimum points of the cost function, each robot R;
can move in the direction of the negative gradient of the cost
function, evaluated at the position of R; for each time. That
is,

. , OJ (2% (t + At

zh(t+At) = 25(t) — M

5 (10)
O (t + At)

@d (t+At) =27 (1)

where v > 0 is a positive gain, and a:; is the position vector
of R; in its local coordinates. From (3) it follows that
J
0J (z;(t + At)

) j
5‘x§:(t + At) B 2; (ij(t + At) — ()] - do)
(t)

2t 4+ At) — 2d
il ) f (1D
k

x —2
|} (t + At) —
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Further, since xﬁ (t) =0, from (10) and (11) we obtain

[EA0]

The gain « in (12) is adjusted to assure the constraint given
by (2). The application of (12) is much simpler than solving
the system in (9). It gives the direction of the next movement
and the movement in this direction is applied only if it satisfies
the inequality in (2). In the next section, we will test the
proposed methodology with the local steering of robots in the
direction of the negative gradient, as given in (10).

M
2+ A1) =27 Y (0] - do) (12)
k=1

V. SIMULATION RESULTS

We verify the theorems and theoretical results of previous
sections by computer simulations. The simulations are per-
formed in MATLAB and the working space is a section of

zy-plane in R2. The sensor range (dmqy) 1S 8 units, and
desired distance (dp) is 5 units. The following scenario is
applied: A group of robots start navigation under the Local
Steering Strategy. The local steering is achieved by the use
of (12) with the gain v = 0.01. Total simulation length is
2600 iterations. The trajectory to be followed by the leader
is piecewise linear having turns at the 400, 800 and 2200""-
iterations. The trajectory of the leader is seen by the dashed
lines on the figures.

In the first part of the simulations, four robots are present:
One leader and three follower robots. The result is seen
in Fig. 2. Initially, the leader is sensed only by the robot
at (—14,—6), and the robot at (—22,4) senses only the
robot at (—19,0). The connectivity of the group is preserved
throughout the navigation. In Fig. 3, the same group navigates
sequentially with synchronized clocks. Towards the end of the
simulation, all robots sense at least two robots; this increases
the connectivity of the group.

In the second part of the simulations, we include 17 robots.
This is important to show the efficiency of our methodology
for large robot groups. The sensor range (d,q.) and desired
distance (dy) are taken as 12 and 6 units, respectively, in this
case. The navigation of the robots is seen in Fig. 4. Since the
number of robots is high, we analyze this navigation in three
parts. Fig. 4a reflects the first 800 iterations of the simulation.
Although the robots are initially distributed over a rather large
area, the algorithm gathers them in the very beginning of the
simulation. However, the leader looks to be a little bit apart
from the group. When the sensor range is large, the number of
sensed robots increases. If the leader and the rest of the group
are on separate sides of a fictitious plane, the robots just behind
the leader are affected by the other robots in their subgroup so
that the negative gradient of the cost function is not towards
the leader but towards the rest of the group. For that reason,
the leader adjusts its motion according to the group that it
leads. When the group lags behind, the leader waits for the
group to preserve the connectivity. Fig. 4b depicts the view
at about the 1200*"-iteration and Fig. 4c shows the positions
of all robots at the end of the simulation. Only the trajectory
of the leader is provided in these figures, and the trajectories
of the follower robots are omitted in order not to make the
figures too complex.

Fig. 5 displays the connectivity of the group of 17 robots
during the navigation. Initially, the group starts navigation
with a connectivity formed of 59 links. The number of links
increases gradually as the navigation continues. After the sharp
turn in the trajectory of the leader at the 800-iteration,
the number of links reaches a value of 136. It is clearly
seen that the connectivity is increased during the navigation
with the proposed scheme. Also note that for the case of 17
robots, the maximum possible number of links in the group is
17-(17—1)/2 = 136. Hence we can say that in this simulation
the methodology has provided a navigation with maximum
connectivity. However note that it cannot always be possible
to reach the maximum possible number of links in the group.
Larger number of the robots and desired distances inbetween
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Fig. 3. Navigation of 4 robots (sequential movement, see Remark 1)

them and smaller sensor ranges may result in a connectivity
with a number of links less than the maximum possible value.

VI. CONCLUSIONS

The connectivity of mobile robot groups has been studied in
this work. Whenever there is neither a central control mecha-
nism nor communication between the robots, the autonomous
motion of mobile robots can break up group connectivity.
We have proposed a local steering strategy to preserve group
connectivity throughout navigation that has been inspired by
some animal groups such as schooling fish and flocking
birds. In the proposed methodology, there is a certain optimal
distance that each robot tries to maintain between itself and
the other robots it senses. The movement of the robots is
restricted by fixed bounds so that the connectivity of the group
is guaranteed.

The simulations have verified the success of the methodol-
ogy. The groups have not only preserved but also increased
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connectivity during navigation, for both the simultaneous
motion and sequential motion cases.

The relation of the desired distance dg to d,, .. is of interest.
When d,,q. > dy, the number of sensed robots in each
subgroup becomes larger and this increases the tendency of
each follower robot to track the rest of the follower robots
rather than the leader. Our steering strategy gives its best
results when 0.5 dpee < do < 0.9dp0-

The upper bound for the motion given in (2) may cause
a special case in which all the robots in the group go into
deadlock. This pathological case occurs especially if the initial
distances between all the robots are as large as d,,,,,.. However,
Theorem 1 still holds in this case. To avoid this deadlock case,
one may relax the magnitude constraint in (2) for the robots
that are at the corners of the subgroups.

The proposed methodology does not address collision avoid-
ance, as it arises naturally as a result of the Local Steering
Strategy. As long as dy > 0, that is, the desired distance is
nonzero, the strategy provides each robot with local targets
that are neither too far nor too close to neighbor robots.

This study has provided a simple yet reliable methodology
for the navigation of mobile robots in connected groups. The
fact that no communication or hierarchy among the robots
is required allows new members to be accepted to the group
very easily. Similarly, the departure of some members from the
group does not cause any problems for the rest of the group
as long as they do not break the overall connectivity. Further
studies may focus on loosening the restrictions imposed in
the local steering strategy without breaking the connectivity
and may consider obstacles in the paths of the robots. The
methodology can also be combined with a formation control
mechanism.
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