
DISTRIBUTED ESTIMATION OVER PARALLEL FADING CHANNELS WITH CHANNEL
ESTIMATION ERROR

Habib Şenol∗
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ABSTRACT

We consider distributed estimation of a source observed by
sensors in additive Gaussian noise, where the sensors are con-
nected to a fusion center with unknown orthogonal (paral-
lel) flat Rayleigh fading channels. We adopt a two-phase ap-
proach of (i) channel estimation with training, and (ii) source
estimation given the channel estimates, where the total power
is fixed. We prove that allocating half the total power into
training is optimal, and show that compared to the perfect
channel case, a performance loss of at least 6 dB is incurred.
In addition, we show that unlike the perfect channel case, in-
creasing the number of sensors will lead to an eventual degra-
dation in performance. We characterize the optimum number
of sensors as a function of the total power and noise statistics.
Simulations corroborate our analytical findings.

Index Terms— Sensor Networks, Distributed Estimation,
Fading Channels, Channel Estimation

1. INTRODUCTION

A wireless sensor network (WSN) consists of spatially dis-
tributed sensors which are capable of monitoring physical
phenomena. Sensors typically have limited processing and
communication capability because of their limited battery
power. In most WSNs a fusion center (FC) which has less
limitations in terms of processing and communication, re-
ceives transmissions from the sensors over the wireless chan-
nels so as to combine the received signals to make inferences
on the observed phenomenon.
Especially over the past few years, research on distributed

estimation has been evolving very rapidly [1]. Universal de-
centralized estimators of a source over additive noise have
been considered in [2,3]. Much of the literature has focused in
finite-rate transmissions of quantized sensor observations [1].
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The observations of the sensors can be delivered to the FC by
analog or digital transmission methods. Amplify-and-forward
is one analog option, whereas in digital transmission, observa-
tions are quantized, encoded and transmitted via digital mod-
ulation. The optimality of amplify and forward in several set-
tings described in [4], [5]. In [5], amplify-and-forward over
orthogonal parallel MAC with perfect channel knowledge at
the FC is considered, where increasing the number of sensors
is shown to improve performance.
In this work, we consider unknown fading channels where

we follow a two-step procedure to first estimate the fading
channel coefficients with pilots, and use those estimates in
constructing the estimator for the source signal with linear
minimum mean square error (LMMSE) estimators. We char-
acterize the effect of channel estimation error on performance
for equal power scheduling at the sensors, and imperfect esti-
mated channels at the FC. We show that when the total power
for channel estimation and wireless transmission is fixed, in-
creasing the number of sensors will eventually lead to a degra-
dation in performance. Hence, in the absence of channel in-
formation, deploying more sensors might not necessarily lead
to better performance. We also find approximate expressions
for the optimum number of sensors to achieve minimumMSE
performance and we characterize the penalty paid for estimat-
ing the channel to be factor of at least 4 (6 dB).

2. SYSTEMMODEL AND CHANNEL ESTIMATION

We assume the wireless sensor network (WSN) has K sen-
sors and the kth sensor observes an unknown zero-mean com-
plex random source signal θ with zero mean and variance σ2

θ ,
corrupted by a zero-mean additive complex Gaussian noise
nk ∼ CN (0, σ2

n) as shown in Fig.1. Since we assume the
amplify-forward analog transmission scheme, the kth sensor
amplifies its incoming analog signal θ + nk by a factor of
αk and transmits it on the kth flat fading orthogonal chan-
nel to the fusion center (FC). In Fig.1, gk ∼ CN (0, σ2

g) and
vk ∼ CN (0, σ2

v) are the flat fading channel gain and the chan-
nel noise of the kth channel path, respectively. The ampli-
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Fig. 1. Wireless Sensor Network with Orthogonal MAC

fication factor αk is the same for all sensors since there is
no channel status information (CSI) is available at the sensor
side. The kth received signal at the FC is given as

yk = gk αk (θ + nk) + vk , k = 1, · · · ,K . (1)

Based on this receive model, we will estimate the source
signal θ. Our two-step strategy is first to estimate parallel
channels, and then estimate the source signal given the chan-
nel estimates. We will use a LMMSE approach [6] for both
steps. In the first phase, the sensors send training symbols of
total power Ptrn to estimate the parallel channels {gk}K

k=1.
In the second phase the sensors transmit their amplified data,
which bear information about θ, with a power of Pdat :=
|αk|2 (σ2

θ + σ2
n) = (Ptot − Ptrn)/K, same for each sen-

sor. Note that the total power in the two phases add to Ptot.
The fusion center uses the received signal in the second phase
and the channel estimates from the first phase to estimate the
source signal θ.
To estimate the parallel fading channels {gk}K

k=1 in the
training phase, we consider pilot-based channel estimation,
where each sensor sends a pilot symbol to the FC over its own
fading channel. The receive model for a pilot s transmitted
over the kth channel is

xk = gk s + νk , (2)

where xk is the received signal over kth channel and νk is
zero-mean additive complex Gaussian channel noise, νk ∼
CN (0, σ2

v). Since the total transmitted training power is Ptrn,
we have Ptrn = K|s|2. According to our observation model
in (2), the linear minimum mean square error (LMMSE) esti-
mate ĝk of the channel gk is given as follows [6]

ĝk =
E{gk,xk}[ gk x∗

k ]
E{xk}[ |xk|2 ]

xk =
σ2

g s∗

σ2
v + σ2

g |s|2
xk , (3)

where (·)∗ denotes the complex conjugate and the channel
estimation error variance δ2 is given as

δ2 =
(

1
σ2

g

+
|s|2
σ2

v

)−1

=
σ2

v σ2
g

σ2
v + σ2

g |s|2
. (4)

3. MSE OF SOURCE ESTIMATOR

In this section, we describe the estimation of the source signal
θ, and the resulting MSE which will be our figure of merit.

We use the LMMSE source estimator given the channel es-
timates {ĝk}K

k=1 in (3), and the received signal y1, . . . , yK

in (1). By doing this, we obtain the source estimator θ̂ in
the presence of channel estimation error (CEE). Using the or-
thogonality principle of the LMMSE estimator, it is possible
to show that the minimum MSE in the presence of CEE is
given by [7]

D = σ2
θ

(
1 +

K∑
k=1

γ η̂k (σ2
g − δ2)Pdat(

η̂k (σ2
g − δ2) + ζδ2

)
Pdat + σ2

g

)−1

(5)
with the following definitions:
Observation SNR γ := σ2

θ/σ2
n

Variance of ĝk σ2
ĝ = σ2

g − δ2

Total training power Ptrn := K |s|2
Data power, every sensor Pdat := (Ptot − Ptrn)/K

= |αk|2 σ2
θ (1 + γ−1)

Channel SNR ζ := σ2
g/σ2

v

kth estimated channel power η̂k := ζ |ĝk|2
σ2

ĝ (γ+1)

kth channel power ηk := ζ |gk|2
σ2

g (γ+1)

and we express the channel estimator variance δ2 using (4)
and Ptrn = K|s|2 as δ2 = (Kσ2

g)/(K +ζPtrn). Substituting
this into (5), it is straightforward to verify that (5) is a convex
function of Ptrn by taking the second derivative. Before we
optimize the training power, we will briefly review the perfect
CSI case.
In what follows, we adapt the best linear unbiased estima-

tor (BLUE) in [5] to the LMMSE case, since this will serve
as a benchmark to the CEE case we derive later. With CSI at
the FC, the variance of the channel estimation error is zero
δ2 = 0 and the normalized estimated channel powers are
equal to the normalized channel powers η̂k = ηk ∀k. By
substituting δ2 = 0 and η̂k = ηk in (5), the MSE expression
for the perfect CSI case is obtained as follows

D(per)(Ptot, K) = σ2
θ

(
1 +

K∑
k=1

γ ηk

ηk + K
Ptot

)−1

. (6)

It is straightforward to verify that (6) is a monotonically de-
creasing function of the number of sensors K. In contrast to
this perfect CSI case, we will later see that when the channel
is estimated, increase in the number of sensors will not always
improve performance.
We now consider the case where the FC has the LMMSE

estimates of the channel without feeding back the CSI to the
sensors, which transmit with equal power.

3.1. Optimum Training Power

It is clear that if the training power is too small, the result-
ing unreliable channel estimates will increase the MSE. On
the other hand, if the training power Ptrn is too close to Ptot,
then each sensor transmits with a small power Pdat = (Ptot−
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Ptrn)/K and the FC does not receive much information about
θ in the data transmission phase. To find the optimal Ptrn we
note that minimizing (5) and minimizing the sum in (5) are
equivalent. Using the definitions in the table and expression
for δ2 below the table, we obtain the following convex opti-
mization problem for the training power

min
0≤Ptrn≤Ptot

−
K∑

k=1

γ η̂k ζ (Ptot − Ptrn)Ptrn

η̂k ζ (Ptot − Ptrn)Ptrn + KζPtot + K2

(7)
Using Lagrange multipliers and the Kuhn Tucker condi-

tions for this one dimensional convex optimization problem,
the optimum value of the training power P �

trn can be shown to
be half of the total power: P �

trn = Ptot/2 [7]. We stress that
the optimum total training power Ptrn is always half of the
total power, regardless of the number of sensors, or the noise
level. Substituting this optimum value into (7), we reach the
following MSE expression

D(est)(Ptot,K) = σ2
θ

(
1 +

K∑
k=1

γ η̂k

η̂k + 4K
Ptot

(1 + K
ζPtot

)

)−1

.

(8)
It is easy to verify that the MSE performance of the source
estimator is going to degrade as K → ∞. To see this more
clearly, note that (8) increases to its highest value σ2

θ as the
number of sensor goes to infinity: limK→∞ D(est)(Ptot,K) =
σ2

θ . Recalling that σ2
θ is the worst possible variance for θ̂, it

is clear that increasing the number of sensors does not in-
definitely improve performance, but rather degrades it after
a certain number of sensors. This means that a finite opti-
mum number of sensors minimizing the MSE exists in this
imperfect CSI case.

3.2. Optimum Number of Sensors

In what follows, we obtain an approximate value of the op-
timum number of sensors. The optimum number of sensors
K� must be obtained by minimizing the expected value of
the MSEE{η̂k}[D] sinceK� can not depend on instantaneous
channel estimates. Since this expectation is not tractable, we
find an approximate value ofK� by minimizing a tight lower
bound on E{η̂k}[D]. We note that the MSE in (8) is convex
with respect to the sum and use the Jensen’s inequality

E[D(est)(Ptot, K)] ≥ σ2
θ

1 + E

[
K γ η̂k

η̂k+ 4K
Ptot

(1+ K
ζPtot

)

] (9)

where the expectations are with respect to η̂k. To minimize
(9) with respect to K, we treat K as a continuous parameter,
and differentiate (9) with respect to K to get the following
condition:

E

⎡
⎣ η̂2

k − 4K2

ζP 2
tot

η̂k

(η̂k + 4K
Ptot

(1 + K
ζPtot

))2

⎤
⎦

∣∣∣∣∣
K=K�

= 0 . (10)

Since the expectation above is still intractable, we note that
the variance η̂k is very small var[η̂k] = ( ζ

γ+1 )2 � 4K
Ptot

(1 +
K

ζPtot
). Treating the denominator as deterministic, and car-

rying out the required expectations, the optimum number of
sensors is approximated as:

K� ≈ round

(
ζPtot√
2(γ + 1)

)
, (11)

where the round(·) is the nearest integer. We note that even
though the optimum value in (11) is an approximation, it is
quite accurate as shown in the simulations. Moreover, when
the total power Ptot or the channel SNR ζ are large, the opti-
mum number of sensors increase. This is because when Ptot

is large, Ptrn = Ptot/2 will also be large, leading to almost
perfect channel estimates. This is in agreement with the fact
that in the perfect channel case in (6), the optimum number
of sensors is infinite since the performance always improves
with the number of sensors. From (11) we also see that if
the sensor observation SNR γ is increased, then it is best to
use a smaller number of sensors. To explain this, first recall
that in the perfect channel case, the reason the MSE improves
monotonically with K is because more sensors average out
the observation noise. In the imperfect channel case, how-
ever, the favorable averaging effect of having more sensors is
offset by having to learn all the channel coefficients {gk}K

k=1

with a fixed total training power Ptrn = Ptot/2, which results
in increased channel estimation error variance δ, which ulti-
mately degrades the MSE of θ. Therefore, the optimum value
of K that strikes a balance in this tradeoff, increases when
there is more noise to be averaged (smaller γ).

3.3. Comparison of Perfect and Imperfect CSI

In order to compare the MSE performances of the perfect and
the estimated CSI cases for a fixed number of sensors K, we
first note that the MSE expressions in (6) and (8) are ran-
dom variables. Hence it is appropriate to derive the condi-
tions under which the distributions of MSEs in (6) and (8)
are identical. We will do this by exploiting the fact that the
random variables ηk and η̂k have identical distributions (both
are exponential with mean b = ζ/(γ + 1)), and allow the
perfect CSI case and the imperfect CSI case to have differ-
ent total transmit powers Ptot

(per) and Ptot
(est) to see how

much more power would be needed in the imperfect CSI case
to get the same MSE distribution. The MSE expressions in
(6) and (8) have identical distributions if and only if the de-
terministic terms in the denominator of the sums are equal:
K/Ptot

(per) = 4K/Ptot
(est)(1 + K/(ζPtot

(est))). Solving
for Ptot

(est) we obtain

Ptot
(est) = 2Ptot

(per) + 2Ptot
(per)

√
1 +

K

ζPtot
(per)

, (12)
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which ensures that the expected MSE (averaged over the
channel distribution) will be the same. From (12) we see
that Ptot

(per)/Ptot
(est) ≤ 1/4, which is a penalty of at

least 6 dB for having to estimate the channel. The inequal-
ity becomes equal to 6 dB for large total powers Ptot

(est):
Ptot

(per)/Ptot
(est) → 1/4, which is easily seen from (12).

Recalling that half of the total power has to be spared for
training, we can conclude that another 3 dB is lost due to the
effect of estimation error at the FC.

4. NUMERICAL RESULTS

In Fig. 2 the simulation results indicate the accuracy of the
optimum number K� of sensors calculated from (11). We
found the analytical formula to be very accurate in a wide
range of settings. Even when the predicted number of sensors
do not match the simulations perfectly (e.g., when γ = 5
in the figure), the resulting minimum average MSE obtained
from (11) is very close to the minimum achievable average
MSE.
In Fig. 3 the perfect and imperfect CSI cases are com-

pared. It is seen that, for the two cases to have the same
performance (ratio of average MSEs in the y-axis equaling
unity), the total power for the estimated case is about 4 times
as much as the perfect channel case. This agrees with analyt-
ical results mentioned earlier.
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Fig. 2. Optimum number of sensors

5. CONCLUSIONS

To facilitate the estimation of the source θ, we estimated
the fading channel coefficients. We found that half the to-
tal power is the optimum amount of training to estimate the
fading channels, regardless of the SNR or the number of sen-
sors. For the same MSE performance of the source estimator,
it was found that at least a factor of 4 more total power is
needed when the fading channels are unknown, compared to
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Fig. 3. Power loss due to estimation

the case they are known perfectly. Unlike the perfect channel
case, there is an optimum number of sensors, and we found
an approximate formula to calculate this number.
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