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Abstract

A reflectance-based modeling method is presented, to obtain the distributed-element counterpart of a lumped-element
network, which is described by measured or computed reflectance data at a set of frequencies. Numerical generation of
the scattering parameters forms the basis of this modeling tool. It is not necessary to select a circuit topology for the
distributed-element model, which is the natural consequence of the modeling process. Our approach supplements the known
interpolation methods by a simple technique that does not involve complicated cascaded circuit topologies and whose numer-
ical convergence is proven. To illustrate the utilization of the proposed method, a lumped-element low-pass Chebyshev filter
is transformed to its distributed-element counterpart. The filter, designed for a frequency band around 1 GHz, was fabricated
and experimentally characterized. We find excellent agreement between measured and simulated transducer power gain over

the entire frequency band.
© 2007 Elsevier GmbH. All rights reserved.
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1. Introduction

For many communications engineering applications, cir-
cuit models are inevitable. In the literature, the common ex-
ercise to model a set of given data starts with the choice
of an appropriate circuit topology. In a next step, the ele-
ment values of the chosen topology are determined, to fit the
given data by means of an optimization algorithm. Although
this approach is straightforward, it presents serious difficul-
ties: First, the optimization is strongly nonlinear in terms of
the element values that may result in local minima or even
may prevent convergence. Secondly, there is no established
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process to initialize the element values of the chosen circuit
topology. Worst of all, the optimum model topology, which
describes the physical device optimally, is not known.

On the other hand, circuit models can be obtained by inter-
polation techniques [1-3]. For instance in [3], a set of posi-
tive real (PR) impedance data were specified in the complex
parameter plane, and unambiguous conditions to generate
such PR functions were stated. The data were interpolated,
step by step, by the formation of cascade blocks. Depending
on the nature of the data, a cascade block can be composed
of a Foster section, Brune C-type or Brune D-type sections,
or a Richards section. The use of such sections in a cascade
block introduces complex transmission zeros and requires
gyrators or perfectly coupled coils, which might render the
model impractical.

These problems can be overcome by the modeling tech-
nique presented in this paper: In this technique, it is neither
necessary to select a fixed network topology nor to force
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any complicated cascade structure into the model. Transmis-
sion zeros are placed as required by the physical nature of
the data. The unknown parameters are determined by best
fits to the given data via a nonlinear optimization algorithm.
Eventually, the driving point function is synthesized. Hence,
the desired network topology is obtained as a result of the
modeling process. Also, an efficient initialization algorithm
for the nonlinear optimization part is presented.

In the following section, a distributed-element two-port
is described in terms of its scattering parameters. Subse-
quently, the modeling algorithm is presented. Finally, the de-
sign and experimental verification of a Chebyshev filter with
distributed-elements is described, to illustrate the power of
the proposed method.

2. Mathematical framework
2.1. Scattering parameters

The modeling problem is defined as the generation of
a realizable bounded real (BR) reflectance function Si;(4)
that gives the best fit to a set of given reflection data S(jw).
Eventually, this BR reflectance is synthesized from a lossless
Darlington two-port with resistive termination, yielding the
desired circuit model (Fig. 1). Here, A = X~ + jQ is the con-
ventional Richards variable associated with the equal-length
transmission lines, or so-called commensurate transmission
lines [4]. In detail, A=tanh pt, where p=0+jw is the com-
plex frequency and t is the commensurate one-way delay
of the transmission line. Specifically on the imaginary axis
(2=0), the transformation takes the form (1=jQ=jtanwr).

Obviously, the solution for the Darlington representation
is not unique. The goal is, therefore, to achieve a reasonable
BR reflectance function such that the resulting circuit prop-
erly describes the physical behavior of the device with the
minimal number of elements.

Let S(jw;)=Skr (a)i)+jSX(wl'):p(a),~)ej¢(“"') be the given
reflectance data, with p(w;) <1 at all sample frequencies ;.
Let {Sy;(4); k, 1 =1, 2} designate the scattering parameters
of the corresponding distributed-element model that defines
the reciprocal, lossless two-port (i.e., the Darlington two-
port). For such a two-port, the scattering parameters may be
expressed in the Belevitch form as follows [5,6]:

Sw:[hu)&mq

S21(4)  S$22(4)
:__L_[imz) uf(—z)}
gW Loy —ph(=2)]’

where u= f(—2)/f (%) = £1. For a lossless two-port with
resistive termination, energy conversation requires that

)]

SHST(= =1, (2a)

where [ is the identity matrix and “T” designates the trans-
pose of the matrix. The explicit form of (2a) is known as

o— |
Lossless
S — Two-Port E]R

o—o

Fig. 1. Darlington representation of the distributed-element model.

the Feldtkeller equation and is given by
g(g(=2) =h(Dh(=2) + (D) f(=A. (2b)

In Egs. (1) and (2b), g(/) is the strictly Hurwitz poly-
nomial of nth degree with real coefficients, and i(4) is a
polynomial of nth degree with real coefficients. The poly-
nomial function f(4) includes all transmission zeros of the
two-port; its general form is given by

FO) = fo(A)(1 = 22)m/2, 3)

where n specifies the number of equal-length transmission
lines contained in the two-port, and fy(A) is an arbitrary
real polynomial. According to Eq. (3), there may be a fi-
nite number of transmission zeros in the right half of the
A-plane. Realization of distributed network functions hav-
ing such factors require, in general, complicated structures
like coupled lines, Ikeno-loops, etc., which are difficult to
implement and, therefore, undesirable [7,8].

A powerful class of networks contains simple, series or
shunt, stubs and equal-length transmission lines only. Series-
short stubs and shunt-open stubs produce transmission ze-
ros for A = oo, corresponding to the frequency w = m/2t
and odd multiples thereof. Series-open stubs and shunt-short
stubs produce transmission zeros for A =0 (i.e., @ =0). For
such networks, the polynomial function f (1) takes the more
practical form

FO) =2k = 2m2, 4)

where n; is the number of equal-length transmission lines in
cascade, k is the total number of series-open and shunt-short
stubs, and the difference n — (n, + k) gives the number of
series-short and shunt-open stubs. Here, n denotes the de-
gree of the two-port, which is also the degree of g(1). The
synthesis of the input impedance, Z;, (1)=(1+S11(4))/(1—
S11(4)), for this case, is accomplished by extracting poles at
0 and oo, corresponding to stubs, while equal-length trans-
mission lines are extracted by employing Richards extraction
method [9]. Alternatively, the synthesis can be carried out
in a more general fashion using the cascade decomposition
technique by Fettweis, which is based on the factorization
of transfer matrices [10].

2.2. Rationale of the modeling algorithm

As far as the modeling problem is concerned, one has to
generate realizable BR scattering parameters of the lossless
two-port of Fig. 1, such that the input reflection coefficient
S11(A) fits the given data S(jw): S11(jQ(w))=S(jw) at each
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frequency ;. This is not an easy task. In the following, a

practical modeling algorithm is described which, in addition,

guarantees the realizability of the scattering parameters.
From Eq. (1), for a given /; = A(®;), one can write

h(jQi) = S(jwi)g(j&:). &)

Eq. (5) indicates that, if the polynomial g(jQ)=gr(2) +
jgx () is known, the polynomial 4 (jQ2) =hg(Q) +jhx(Q)
can be readily obtained. In fact, this way of thinking consti-
tutes the key point of the proposed modeling method.

In order to determine g(j€2), it should be noted that
|S21(jQ)|? is given on the real frequency axis (namely,
A=0+4jQ) by

G
lg(iD?
The numerator polynomial f (1) includes the transmission

zeros of the filter to be modeled, with its practical form

given by Eq. (4). For given BR reflection coefficients S(jw),

one can readily compute the magnitude of g(j<), simply by
selecting the form of f(jQ):

1531 GDI> =1 — p*(jow) (6)

G =g(j)”

£GP

— o2(i 250y =
=gr(JD +8x(JO) = 1= 2Ga)’

(7N
where G(Q?) is an even polynomial in Q2. Hence, Eq. (7) de-
scribes a known quantity at each specified frequency. There-
fore, the strictly Hurwitz polynomial g(4) can be constructed
by means of well established numerical methods [11]. The
data points given by Eq. (7) for |g(j)|? describe a polyno-
mial such that

G =Go+ G+ +G,2">0; V2 (8

The coefficients {Gg, G1, G, ..., G,} can be determined
easily by linear or nonlinear interpolation or curve fitting
methods. Then, replacing Q? by —J2, the roots of G(—)»Z) =
g(A)g(—2) can be extracted using explicit factorization tech-
niques, and g(4) constructed from the left half-plane (LHP)
roots of G(—/%) as a strictly Hurwitz polynomial.

Let us describe the linear interpolation of G(2%). In
this regard, selected data points associated with +/ G(Q%)
is expressed in terms of the auxiliary even polyno-
mial P(Q%) = a9 + a1Q® + - + az(nd_l)Q“("d_])
where ng represents the total number of selected data
points to interpolate the polynomial P(Q%) = /G(Q%);
J=1,2,...,nq4. Thus, coefficients G; of Eq. (8) are given
as Go = aé which must be positive; for odd values of j,
Gj =22§l:_01)/2a,-ai_j; j=1,3,...,<2(ng — 1) for even
values of j, G; = a]2./2 + ZZé/zzoaiaizfj; j=2,4,...,<
2(ng — 1); and finally, G2, —1) = ai,—l' It should be noted
that in the above interpolation approach, the degree n of
the polynomial G(Qz) is set to ng — 1. Details of the linear
interpolation algorithm can be found in [11]. As can be

seen from the above explanations, positivity of G () is as-
sured with expense of reducing the degree of freedom in the
interpolation process. In return, one neither requires invok-
ing Strum’s theorem nor it is necessary to employ nonlinear
interpolation techniques to grant the positivness of G(2?).
Hence, computations are drastically simplified.

Once g(4) is generated, gg (j2) and gx (j€2) are computed
which, in turn, yield the numerical pair {/ g, h x} by means of
Eq. (5). Let k(1) = Zzzohk/lk designate the numerator poly-
nomial of S11(4) [see Eq. (1)], where {hy; k=0,1,2,...,n}
are arbitrary real coefficients. Thus, data points correspond-
ing to the real and the imaginary parts of z( jQ2) are given by

hr(Q) =) (=D hy @ (9a)
k=0

with m = n/2 for n even, and m = (n — 1)/2 for n odd.
Similarly,

(@) =) (=D Thy 2! (%)
k=1

with m =n/2 and m = (n + 1)/2 for even and odd n, re-

spectively.
Putting all pieces together, the unknown real coefficients
{hi; k=0,1,2,...,n} can be determined by means of

straight linear interpolation over the selected frequencies.

It is crucial to point out that g(4), A(4) and f(4) must
satisfy the Feldtkeller equation (Eq. (2b)). In this context,
the interpolation via fixed-point iteration [12] is introduced,
which yields consistent triples of {g(4), h(4), f (1)} satisfy-
ing Eq. (2b).

2.3. Reflection data modeling via fixed-point
interpolation

Let us first sketch the fixed-point iteration technique, as
described in classical numerical analysis text books such as
[13]. Zeros of a nonlinear function M(X) = F(X) — X can
be determined using the iterative loop described by

X" = F(xrb), (10)

It is straight forward to prove that, for any ini-
tial guess X, Eq. (10) converges to the real root
Xroot = limy 0 F (X)) if and only if | {5 | < 1; ¥X, where
the symbol | e | designates the absolute value.

For the problem under consideration, the polynomial
h(jQ) can be determined, point by point, by means of
an iterative process employing Eq. (5) over the selected
frequencies ; such that

RO (39:) = S(Gwg" ™ (i2). (11)

In this notation, one has to show that S - g describes a
function & = F (h) for which |‘31—£| < 1; Yh. In the following,
the iterative process defined by Eq. (11) is described first
and then its convergence is proven.
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Set r=1
Select n, n, and &

'

Form f(1)
Obtain g"”( %) from (7) and (8)

Calculate
K jtan wr)=S( jw)g"( jtan wr)
and form 4 from (9)
]
Y
Obtain g”(2)
by using 2”(4), £”(2) and eq.(2b)

Calculate
KD jtan( wr))=S( jw)g"( jtan(wr)
and form 4""V(2) from (9)

Calculate squared error
¢ jtan(wr))=h"( jtan( w1))-A""V( jtan(wr))
8 V=3 jtan(w1))]

r=r+l N

Y

Synthesize
Sn(=h"(2)/g"(2)

Fig. 2. Flowchart of the modeling algorithm.

Table 1. Input parameters of the iteration procedure

Fig. 2 illustrates the logical flow of the iteration loop; the
input parameters are summarized in Table 1.

After selecting f(2), g@ (1) is generated solely in
terms of the given data S(jw;) by explicit factorization of
Eq. (8). The first iteration loop is initiated by computing
R (iQi) = hr(2;) + jhx(2;) at the sample frequencies
{Q;; i=0,1,2,...,m}. Using Eq. (9), an analytic form
of hV(J) is obtained by means of a linear interpolation
algorithm. Rewriting Eq. (2b) with the help of Eq. (8)
leads to

GV (=) =g gV (=2)
=V DRV (=D + FO) (=)
=GV -2+ .+ nreVa, (12)

which allows to generate g(")(1) from the LHP roots of
G(l)(—lz). Hence, the second iteration loop starts with the
computed g1 (jQ;), which yield #®(jQ;). Then, g®? is
constructed yielding #® and so on. The iteration stops if
|h") — h=D| <5, where 0 < d < 1.

To prove the convergence of the iterative process, it should
be noted that the polynomial g can be described in terms of
the polynomial % by using Eq. (2b) again:

: . (=€) %)
Q) =h(jQ Q
8(jQ) = h(] )g(—jQ) + £ )g(—jQ)
=h(jQ)S11(—jQ) + f(j2) 521 (D). (13)
Inserting Eq. (13) in Eq. (11) one obtains
h(3Q) =h(iQ)p* + S () £ (j)S21 (—jQ). (14)

The right-hand side of Eq. (14) describes a function
F such that F(h) = hp2 + SnfS;l, where “x” desig-
nates the para-conjugate of the complex valued quantity.
Due to the bounded realness, dF/dh = p? <1 holds at
all frequencies, except for isolated points where p = 1.
Therefore, the iteration will converge. Clearly, the above
process describes contraction mapping yielding the unique
solution.

Input parameter

Explanation

S(jw;) = Sp(w;) +jSx(w;);i=1,2,....,m
n

n;

k

f

o

Reflectance data given at the sample frequencies w;
Desired number of distributed elements

Desired number of equal-length transmission lines
Desired number of series-open and shunt-short stubs
A polynomial constructed from the transmission zeros
Stopping criterion for the iterative process




M. Sengiil et al. / Int. J. Electron. Commun. (AEU) 62 (2008) 483489 487

3. Application to filter design: an example

In order to illustrate the algorithm described in Section 2,
the model was applied to a lumped-element low-pass Cheby-
shev filter. In this example, the distributed-element counter-
part of a five-element Chebyshev filter with 0.1 dB ripple
was derived. The lumped-element filter and its calculated
input reflectance data are given in Fig. 3 and Table 2, re-
spectively.

An alternative transformation applicable to the design
of distributed-element Chebyshev filters was proposed in
[15,16]. A major drawback of this approach, however, is the
deviation of the synthesized transducer power gain within
the passband from that of the lumped-element filter. This is
in contrast to our approach, where the transfer characteristic
is preserved over the entire specified frequency band (see
Figs. 5 and 7).

After selecting n=6, n ;=6 and k=0, the polynomial (1)
was constructed as f(A)=(1— IA02 =04 3)% 37 +1.
Then, S11(4) was generated as S11(4) = h(1)/g(A), where

h(2) = —10.4086.° — 3.262° — 11.8448,*

—3.33364% — 2.2268/2 — 0.70532 (15)
and
g(7) =10.456575 + 23.1667/° + 36.6585.*

+34.23822% 4+ 20.30942% + 6.8641/.+1.  (16)

The reflection coefficient S11(4) was synthesized by us-
ing Richard’s extraction [9]. In the next step, the desired
distributed-element Chebyshev filter model with the char-
acteristic impedances Z; was obtained, as illustrated by
Fig. 4. The delay 7 can be obtained as usual from the length /
of the distributed element and the phase velocity ¢ : t=1/c.

Fig. 3. Lumped-element low-pass Chebyshev filter with 0.1dB
ripple (normalized element values: Rg=Rp =1, L =L,=1.3712,
C1 =C3=1.1468, C, = 1.9750) [14].

If lis chosen as a fraction 1/ K of the wavelength A=c/ f,,
it follows that T =2n/K w,,. To provide a safe limit for the
end of the stop band, a scaled frequency 7 f,,, 7 > 1, may be
advantageous [9]. In the design, K =4, y=1.1, and w,,=0.9
were chosen (Table 2), eventually leading to a normalized
value of 1 =0.7933.

Fig. 5 displays a comparison of the transducer power
gain for the ideal lumped-element filter and the resulting
distributed-element version. The close matching of the two
curves illustrates that the distributed-element model presents
a satisfactory counterpart of the given lumped-element low-
pass Chebysheyv filter.

In a next step, the cutoff frequency was selected as f;, =
1 GHz, allowing the components of the designed distributed-
element Chebyshev filter to be de-normalized. The appro-
priate lengths and widths of the distributed elements were
computed by using the LineCalc program of ADS [17], with
the results summarized in Table 3.

Fig. 4. Distributed-element Chebyshev filter (normalized element
values: Rg = Ry, =1, Z; =0.6125, Z, = 1.5597, Z3 = 0.4625,
Z4 =1.6564, Z5 =0.5680, Zg = 1.2997, T = 0.7933).

1
-& Lumped Element Filter

% 0.8 = Distributed Element Filter
(O]
g
H 0.6
o
@
504
°
[2]
c
o
~ 0.2

0 R -

0 0.6283 1.2566 .8850

Normalized Angular Frequency

Fig. 5. Comparison between model and calculated data.

Table 2. Calculated input reflection data for the lumped-element Chebyshev filter with 0.1 dB ripple

Normalized frequency w; 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Re{S(jmw;)} 0 —-0.025 —-0.082 —-0.130 —-0.131 —0.075 0.0096 0.0551 0209 —0.032
Im{S(jw;)} 0 —-0.069 —0.098 —0.076 —0.023 0.0150  —0.006 —0.086 —0.149  —0.091
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Table 3. Widths and lengths of the distributed elements

7 Z> Za Zs Z6
Impedance () 30.6242 77.9855 23.1267 82.8195 28.4021 64.9835
Width (mm) 2.62 0.61 3.7 0.54 2.87 0.85
Length (mm) 22.5352 23.8795 222174 23.978 22.4457 23.5864

(a) (b)
Fig. 6. Fabricated distributed-element filters (a) with straight lines
and (b) with bended lines.

1
c
‘g 0.8 —-
[0) [-&- Straight Lines (Measurement)
—
q;" -5 Bended Lines (Measurement)
3 06
ﬂ: -6~ Nonideal Lines (Measurement)
[0
S
3 04
(2]
=
2
0.2
0
0 0.5

Frequency (GHz)

Fig. 7. Transducer power gain curves of the fabricated filters.

Finally, the filter was fabricated according to these design
values using copper plated Rogers R03203 substrates (di-
electric permittivity & =3.02, dielectric loss tangent Tan 6 =
0.0016, metal conductivity k = 5.8¢7 S/m, dielectric thick-
ness H=0.508 mm, and metallization thickness 7’ =17 um).
Fig. 6 shows the photographs of two versions of the fabri-
cated filter. In Fig. 6a, the distributed elements are laid out
as straight lines, while in Fig. 6b the elements are bent, to re-
duce the size of the filter. The occupied areas of the filter are
15.8cm#2.5cm=39.5cm? and 7.6 cm%3.9 cm=29.64 cm?
in Figs. 6a and 6b, respectively.

The measured transducer power gain of the two filters is
displayed in Fig. 7 (triangles and squares). Both versions
showed virtually undistinguishable performance. For com-
parison, the computed transducer power gain of the denor-
malized distributed-element filter is shown (diamonds). In
order to account for the unavoidable dissipation losses in
the transmission line elements, the geometry of the ideal
(i.e., lossless) filter elements had been accordingly adapted
by conventional CAD tools.

4. Conclusion

A reflectance-based tool was presented, to model the mea-
sured data obtained from a lumped-element network by
means of its Darlington equivalent. Unlike other techniques,
the proposed method does not require any choice of circuit
topology nor complex cascade blocks; the elementary struc-
ture of the circuit is the natural consequence of the new
modeling tool. The modeling algorithm and the related iter-
ation procedure were described in detail. As an application
example, a distributed-element Chebyshev filter was mod-
eled, designed, fabricated, and successfully experimentally
verified. Excellent agreement between simulated and mea-
sured transducer power gain were observed within passband
and stopband.

The new distributed-element modeling tool enhances the
analysis, design, and simulation capabilities of commercially
available CAD tools, to manufacture distributed-element
networks for high-speed, high-frequency analog/digital
communication systems.
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