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1.	 Introduction

Some synthesis techniques for cascaded lossless commensurate 
lines have been proposed in literature [1-5]. All this techniques 
employs iterative methods. So synthesis process is realized by 
step by step. To be able to obtain the value of an element, the de-
signer has to synthesize the network section before the desired el-
ement. In this case, numerical errors accumulate, and get bigger. 
So to be able to obtain error-free element values, explicit synthe-
sis formulae must be used. In this paper, these formulae have been 
derived for the networks containing up to three cascaded com-
mensurate lines. Each element value in a network can be obtained 
independently without any error.

In the derivation, the network is described by scattering param-
eters in Belevitch form [6-7]. So in the following section, this 
form is explained briefly. Then synthesis formulae have been giv-
en, and finally an example has been solved.

2.	 Characterization of Commensurate 	
	 Line Networks

Darlington representation of a transmission line network is given 
in Fig. 1. Here, 11( )S λ  represents the bounded real (BR) input re-
flectance function, jλ = Σ + Ω  is the conventional Richards vari-
able associated with the equal-length transmission lines (Unit ele-
ments, UEs), or so-called commensurate transmission lines [8]. In 
detail, tanh pλ τ= , where p jσ ω= +  is the complex frequency 
and τ  is the commensurate delay of the transmission line. Spe-
cifically on the imaginary axis ( 0Σ = ), the transformation takes 
the form ( tan )j jλ ωτ= Ω = .

A compact representation of scattering matrix in terms of three 
canonic polynomials is represented by Belevitch [6]. For a loss-
less two-port, the canonic forms of the scattering matrix is giv-
en by [6,7]
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where ( ) / ( ) 1f fµ λ λ= − = ± . For a lossless two-port with re-
sistive termination, energy conversation requires that

( ) ( )TS S Iλ λ− = ,	 (2a)

where I is the identity matrix and “T” designated the transpose of 
the matrix. The explicit form of (2a) is known as the Feldtkeller 
equation and given as

( ) ( ) ( ) ( ) ( ) ( ).g g h h f fλ λ λ λ λ λ− = − + − 	 (2b)

In (1) and (2b), ( )g λ  is the strictly Hurwitz polynomial of nth de-
gree with real coefficients, and ( )h λ  is a polynomial of nth  degree 
with real coefficients. The polynomial function ( )f λ  includes all 
transmission zeros of the two-port; its general form is given by

/ 22
0( ) ( )(1 )nf f λλ λ λ= − ,	 (3)

where nλ  specifies the number of cascaded equal-length trans-
mission lines (Unit elements, UEs) contained in the two-port, and 

0 ( )f λ  is an arbitrary real polynomial. According to (3), there may 
be a finite number of transmission zeros in the right half of the λ −
plane. Realization of transmission line network functions having 
such factors require, in general, complicated structures like cou-
pled lines, Ikeno loops et cetera, which are difficult to implement 
and, therefore, undesirable [9, 10].

A powerful class of networks contains simple, series or shunt, 
stubs and equal-length transmission lines only. Series-short stubs 
and shunt-open stubs produce transmission zeros for λ = ∞ , cor-
responding to the frequency / 2ω π τ=  and odd multiples there-
of. Series-open stubs and shunt-short stubs produce transmission 
zeros for 0λ =  (i.e., 0ω = ). For such networks, the polynomial 
function ( )f λ  takes the more practical form

/ 22( ) (1 )nkf λλ λ λ= − 	 (4)

where nλ  is the number of equal-length transmission lines in cas-
cade, k is the total number of series-open and shunt-short stubs, 
and the difference ( )n n kλ− +  gives the number of series-short 
and shunt-open stubs. Here, n denotes the degree of the two-port, 
which is also the degree of ( )g λ . The synthesis of the input im-
pedance, 11 11( ) (1 ( )) /(1 ( ))inZ S Sλ λ λ= + − , for this case, is accom-
plished by extracting poles at 0 and ∞ , corresponding to stubs, 
while equal-length transmission lines are extracted by employ-
ing Richards extraction method [1]. Alternatively, the synthesis 
can be carried out in a more general fashion using the cascade de-
composition technique by Fettweis, which is based on the factor-
ization of transfer matrices [2]. Also, the algorithm proposed in 
[5] can be used to synthesize the cascaded commensurate trans-
mission lines.

3.	 Explicit Synthesis Formulae

The three canonic polynomials ( )g λ , ( )h λ  and ( )f λ  are in the 
following form for cascaded commensurate transmission lines;

1
1 1 0( ) n n

n ng g g g gλ λ λ λ−
−= + + +K
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Fig. 1: Darlington representation of a transmission line network.
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1
1 1 0( ) n n

n nh h h h hλ λ λ λ−
−= + +K ,

2 / 2( ) (1 )nf λ λ= − .

Firstly, by using the coefficients of these polynomials, the follow-
ing dummy parameters and the constant K must be calculated as,
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Then obtain the modified polynomials g and h via the following 
equations,

( ) ( )mg g Kλ λ= ⋅ ,	 (7a)

( ) ( )mh h Kλ λ= ⋅ .	 (7b)

Now calculate the new dummy parameters defined by (5) by using 
the modified polynomials ( )mg λ  and ( )mh λ . Then element values 
of the network seen in Fig. 2 can be calculated via the equations 
seen in Table 1.

4.	 Example

Let us synthesize the network described by the following polyno-
mials via the proposed procedure explained in the previous sec-
tion and the method given in [5], and then compare the results.

3 2( ) 1.3438 0.875 0.625 0.25h λ λ λ λ= − − − − ,

3 2( ) 1.6563 3.5 3.125 1g λ λ λ λ= + + + ,

2 3/ 2( ) (1 )f λ λ= − .

If we calculate the dummy parameters and the constant K, we 
found the following results,

a0 = 0.375, a2 = 1.3125, b1 = 1.25, b3 = 0.1563, d0 = 0.625, d2 = 
2.1875, c1 = 1.8750, c3 = 1.5001, K(n=3) = 0.4

After multiplying the polynomials ( )g λ  and ( )h λ  by ( 3) 0.4nK = = ,  
the following new parameters are obtained using the coefficients 
of the polynomials ( )mg λ  and ( )mh λ ,

a0 = 0.15, a2 = 0.525, b1 = 0.55, b3 = 0.0625, d0 = 0.25, d2 = 0.875, 
c1 = 0.75, c3 = 0.6.

Then via Table 1, the element values are calculated as,

3 2 10.5, 1, 0.5, 0.6Z Z Z R= = = = .

If we solve the same problem via the method in [5], the following 
results are obtained,

3 2 10.5, 1, 0.49999, 0.6Z Z Z R= = = = .

As can be seen from the above results, explicit formulae give the 
exact results, but the other method has a very small error. So if the 
number of commensurate lines is three or less, the proposed syn-
thesis procedure can be used precisely.

5.	 Conclusion

In this work, explicit formulae for the synthesis of cascaded loss-
less commensurate lines have been derived analytically. It is 
shown that if the number of lines is three or less, the derived for-
mulae give exact results. Also to be able to find an element value, 
there is no need to synthesize the network up to this element. Each 
element value can be calculated independently.
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Table 1: Explicit synthesis formulae.
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Fig. 2.  Cascaded lossless commensurate line network.
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