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Design of Practical Matching Networks With Lumped
Elements Via Modeling

Binboga Siddik Yarman, Fellow, IEEE, Metin Sengul, and Ali Kilinc

Abstract—It is a common practice to utilize commercially
available software tools to design matching networks for wireless
communication systems. Most of these tools require a properly
selected matching network topology with good initial element
values. Therefore, in this paper, a practical method is presented
to generate matching networks with initial element values. In the
implementation process of the proposed method first, the driving
point immitance data for the matching network is obtained in a
straight forward manner without optimization. Then, it is modeled
as a realizable bounded-real input reflection coefficient which in
turn yields the desired matching network with reasonable element
values. Eventually, the initial design is improved by optimizing the
performance of the matched system employing the commercially
available computer-aided design (CAD) packages. An example
is given to illustrate the utilization of the proposed method. It is
shown that new method provides excellent results as a front-end
when utilized together with CAD tools.

Index Terms—Broadband matching, modeling, real frequency
techniques.

I. INTRODUCTION

FOR all microwave communication systems, design of wide
band matching networks or so called equalizers have been

considered as an essential problem for engineers [1]. In this re-
gard, analytic theory of broadband matching [2], [3] and com-
puter-aided design (CAD) methods are available for the de-
signers [4]–[6]. It is well known that analytic theory is diffi-
cult to utilize. Therefore, it is always preferable to employ CAD
techniques to design matching networks. All the CAD tech-
niques optimize the matched system performance. As the result
of this process, element values of the matching network are ob-
tained. It should be mentioned that performance optimization
is highly nonlinear with respect to element values and requires
very good initials. In this respect, selection of initial element
values is crucial for successful optimization. Therefore, in this
paper, a well established initialization process is introduced for
matching problems. The new initialization method is based on
the reflectance modeling via fixed point iteration (FPI). In the
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Fig. 1. Single matching arrangement.

following sections first, the theoretical aspects of the new “ini-
tialization method” is introduced. Then, the implementation al-
gorithm is presented. Finally, utilization of the algorithm is ex-
hibited by designing a matching network for a measured passive
load.

II. GENERATION OF ROUGH ESTIMATE OF DRIVING POINT

INPUT IMPEDANCE FOR MATCHING NETWORK

Let us consider the single matching arrangement as shown
in Fig. 1. It is well known that the matching network can
completely be specified by the positive real (PR) driving point
impedance or by the corresponding bounded real (BR) re-
flectance . If one generates

as a proper data set to optimize the transducer
power gain (TPG) of the matched system, then it can be modeled
as a PR impedance which in turn yields the desired matching
network via synthesis. In fact, Carlin’s real frequency line seg-
ment technique (RF-LST) is known as the best method to gen-
erate the proper or realizable data set for [7], [8]. In Carlin’s
approach, is assumed to be minimum reactance function and
its real part is represented by line segments such that

, passing through -selected pairs
designated by . In this regard, break
points (or break resistances) are considered as the unknowns
of the matching problems. Then, these points are determined via
nonlinear optimization of TPG, expressed as

TPG (1)

In (1) and are the real and the imaginary parts of
the measure load data , respec-
tively, and the imaginary part of
is also expressed by means of the same break points . It is
noted that coefficients are known quantities and they are
determined in terms of the pre-selected break frequencies
which specify frequency location of the break points . Simi-
larly, coefficients are also known and generated by means
of Hilbert transformation relation given for minimum reactance
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functions. In this case, let designates the Hilbert transfor-
mation operator, then .

In the new technique proposed in this paper, the RF-LST is
simply omitted and data for are generated without optimiza-
tion in a straight forward manner as follows.

For a desired shape of TPG which can even be spec-
ified as a set of data points, the ratio defined by can
directly be computed under the perfect cancellation condition of
the imaginary parts (i.e., ). Actually, this assump-
tion is a practical one, which maximizes TPG of the matched
system over the band of operation.

On the other hand, it is well known that existence of the load
network will lower the ideal flat gain from , down to
a level in the pass band. Furthermore, TPG must de-
crease monotonically out side of the band. In this case, one can
always select a reasonable-realizable shape for TPG, such as
Butterworth or Chybeshev forms, and then, generates the ratio
specified by under the perfect cancellation condi-
tion. Thus, the data set for the driving point impedance given
by

(2)

is computed over the measured frequencies of the load net-
work.

Let us now derive the ratio when perfect cancel-
lation occurs on the imaginary parts. In this case, TPG is given
by

TPG (3)

or

TPG TPG
TPG

(4)

where is a uni-modular constant and lands itself while
taking the square-root of TPG . Obviously, is derived as
a function of the TPG. Hence, for a selected-suitable gain form,
the impedance is approximated as

(5a)

(5b)

At this point, it is crucial to choose the form for TPG to de-
scribe the matched system performance. In this regard, it may
be desirable to have an equal ripple gain shape within the pass-
band as desired in many practical problems. Then, the following
low-pass-Chebyshev form may be utilized:

TPG (6a)

where is the ripple factor and is the order Cheby-
shev polynomial. The degree specifies the total number of re-
active elements in the equalizer topology. TPG takes its max-
imum value at the zeros of the Chebyshev polynomial

. It is minimum TPG when . Ob-
viously, is specified by

(6b)

Fig. 2. Selection of the sign of �.

and the average flat gain level is determined as

(6c)

Let us point out that beyond simple matching problems, it is
almost impossible to determine the ideal value of analyti-
cally. Selection of the sign of the uni-modular constant of (4)
is important to end up with realizable driving point impedance

. In this regard, it is appropriate to flip the sign of along the
frequency axis as TPG fluctuates around its mean value
within the passband. For example, when working with Cheby-
shev forms of (6), it is known that TPG changes its direction of
movement up and down at the roots of the Chebyshev polyno-
mial . Starting with , the sign of is flipped as
the frequency of moves between the roots of of
(6a) as shown by Fig. 2.

Once, the data for the driving point impedance
is generated, then it is modeled employing the reflectance
based method presented in the following section. Finally, the
reflectance model is synthesized yielding the desired equalizer
topology with initial element values. Eventually, performance
of the matched system is optimized utilizing the commercially
available CAD packages.

III. REFLECTANCE BASED DATA MODELLING VIA FIXED-POINT

INTERPOLATION

In this section, the reflectance data specified by
are considered as the input reflection co-

efficient of a lossless equalizer and it is modeled as a ra-
tional-bounded real scattering coefficient in Belevitch form as

(7a)

where represents the normalized angular frequency. In the
classical literature however, it is referred as the “real frequency.”

On the real frequency axis, let the numerator polynomial be

(7b)

and the denominator polynomial be

(7c)

Then, at selected points , the real part and the imagi-
nary part are determined by manipulation as follows:

(7d)
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and

(7e)

From (7), one can readily obtain and as

(8a)

and

(8b)

The above equations indicate that, if the denominator poly-
nomial is known, then the numerator
polynomial can readily be obtained.
In fact, this way of thinking constitutes the crux of the method
in the following manner.

At the first glance, the equalizer topology may be constructed
with lumped elements, namely by inductors and capacitors. In
this case, the model built for the BR reflection coefficient
will be expressed as a function of the classical complex variable

. Thus, one can write

(9a)

or employing the concept of interpolation, at a given single fre-
quency , the following equation must be satisfied:

(9b)

Since belongs to a lossless-reciprocal
two-port and is specified by the given data, then rest of the scat-
tering parameters of are also represented in Belevitch form
as

and (10a)

satisfying the losslessness condition of

(10b)

where “ ” designates the complex conjugate (or para conju-
gate) of the given complex valued quantity. Thus, on the real
frequency axis is given by

(10c)

It should be noted that the numerator polynomial of
includes transmission zeros of the matching network to

be designed. At the frequencies where vanishes, the re-

flectance data becomes unity. Hence, the real fre-
quency zeros of is dictated by the given reflectance data.
Furthermore, some practical considerations shape the polyno-
mial form of which in turn specifies the strictly Hurwitz de-
nominator polynomial as described in the following para-
graph.

For many practical problems, it is customary to work with
low-pass LC ladders with all transmission zeros located at in-
finity demanding . This means that for a given BR
reflection coefficient , one can readily com-
pute the amplitude square of the denominator polynomial , by
selecting a proper form of . Thus,

(11)

Hence, (11) describes a known quantity over the specified fre-
quencies with pre-selected . In this case, the Hurwitz polyno-
mial can be constructed by means of well established nu-
merical methods [9].

Briefly, data points given by (11) for , describe an
even polynomial such that

(12)

Coefficients can easily be found by
linear or non linear interpolation or curve fitting methods.
Then, replacing by , one can extract from

using explicit factorization techniques.
At this point, the roots of may be computed and then

is constructed on the left half plane (LHP) roots of
as a strictly Hurwitz polynomial.

Once is generated, then and
are computed which in turn yields the numerical pair

of by means of (8). Let desig-
nate the numerator polynomial of . In this
representation are the arbitrary real co-
efficients, and specifies the total number of elements in the
matching network.

Thus, data points corresponding to the real and the imaginary
parts of are given by

(13a)

where if is even. if is odd

(13b)

where if is even. if is odd.
Then, one can immediately determine the unknown real co-

efficients by means of straight linear
interpolation over the selected frequencies.
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At this point it is crucial to point out that polynomials
and must satisfy the losslessness condition of

rather than on the
frequencies selected for interpolation. Therefore, herewith, an
iterative approach which is named as the “interpolation via
fixed-point interpolation” is introduced which yields the con-
sistent triple of satisfying the losslessness
condition.

A. Fixed-Point Interpolation of

In this section, let us first briefly review the technique, as it
is described in classical numerical analysis text books such as
[10].

Zeros of a nonlinear function can be
determined using the iterative loop described by

(14a)

It is straight forward to prove that for any initial guess ,
(14a) converges to one of the real root if

and only if .
For the problem under consideration, in fact, the numerator

polynomial can be determined point by point by means
of an iterative process which may be described employing (9b)
over the selected frequencies such that

(14b)

In this case, one has to show that the term describes a
function for which .

In the following, first the iterative process of (14b) is de-
scribed, then its convergence is proven.

After selecting , in (14b), is generated solely in
terms of the given data employing the explicit factor-
ization of (12) as described above. Then, the first loop is initiated
by computing over the chosen
set of frequencies and using (13), analytic
form of is obtained by means of a linear interpolation al-
gorithm.

Employing the losslessness equation

(15a)

is generated on the LHP roots of . Hence, the
second iteration loop starts on the computed which
yields . Then, is constructed yielding etc. Iterative
loops continue until . Here, is selected as a
negligibly small positive number to terminate the iterations.

The above process describes the interpolation of via over
the selected frequencies. As a matter of fact, the denominator
polynomial can be described in terms of the numerator poly-
nomial by using losslessness condition

(15b)

Using (15) in (14) one obtains

(16)

where and it is specified by the given data.
In short, right-hand side of (16) describes a function in

such that
Therefore, describes a convergent process pro-

vided that . In fact, is also specified by
means of and pre-selected . Then, practically,

over the entire frequencies by bounded real-
ness; except at isolated points where hits unity. Thus, for the
given reflection coefficient data, the polynomial form of is
readily obtained via of which in turn results in a re-
alizable driving point reflectance .

The above results can be collected under the following the-
orem to generate the reflectance based circuit model.

B. Theorem: Modeling via Fixed-Point Interpolation

Referring to Fig. 1, let be the
input reflectance coefficient data of the lossless matching net-
work specified over the real frequency points such that

for all frequencies. Let be the
real normalized bounded real scattering parameters of the loss-
less matching network described in Belevitch sense. Once,
the polynomial of is selected properly, then, the it-
erative process described by (14b) is always con-
vergent and yields the numerator polynomial of
satisfying the losslessness condition of .

Obviously, proof of this theorem follows as in above.
Depending on the modeling problem under consideration, nu-

merical implementation of the method may require some care.
Therefore, in the following section some practical issues are
covered.

IV. NUMERICAL ASPECTS

In order to end up with a successful equalizer design, the fit
between the generated reflectance data and the model must be as
good as possible. In this regard, it has been experienced that the
following numerical implementation which is called the “Foster
Approach” improves the quality of data fitting [9].

For the sake of completeness of the paper herewith, the Foster
Approach is summarized.

A. Foster Approach to Model the Given Data

In this approach, is decom-
posed into its minimum and
Foster parts as in [9]. Thus, it is expressed as .
In this representation, is a minimum reactance function and
its imaginary part is computed using the Hilbert transformation
relation such that

(17)

This integral can easily be computed numerically since
rolls off within couple of octaves outside the band of
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operation depending on the shape of TPG. In practice, one
octave beyond the upper edge of the pass band is even sufficient
to assume .

In this case, is modeled using the
method. The Foster part is specified point by point over the
real frequencies such that with

and it is modeled employing the Foster form given
by

(18)

In (18), residues , , and are determined via linear
interpolation or curve fitting techniques provided that the poles

are fixed properly in advance outside the passband [9]. In
many daily life problems however, it is sufficient to employ only
the first term or the second term of . Rarely, the first two
terms or some times one or two finite poles may be required in
the foster part to improve fitting quality.

B. Selection of the Transmission Zeros

One of the crucial issues of the design process is the selection
of the transmission zeros of the equalizer which are included
in the numerator polynomial of the transfer scattering pa-
rameter . When working with lumped el-
ements, it is well known by classical theory that has the
following general form [10]:

(19)

such that where is the degree of the
denominator polynomial
and specifies the total number of elements in the equalizer to be
designed.

General form given by (19) is almost impossible to be man-
ufactured physically. Therefore, in many matching problems

is selected when appropriate. In
other words, designers prefer to employ the simplest form of

. Depending on the matching problem, rarely the band-
pass forms may be utilized.

On the other hand, if hits the real frequency axis at
some points then in (19), will be the count of these hits
and the real frequency zeros are easily placed in as the
multiplicative terms of .

C. Normalizations

In the course of design process, numerical stability is main-
tained by means of frequency and impedance normalizations. In
other words, all the computations must be carried out in the nor-
malized domain. Eventually, de-normalization is performed on
the final element values of the matching network. In this regard,
it may be appropriate to normalize the frequencies at the upper
edge of the frequency band. For the impedance normalization,
standard termination may be utilized.

D. Selected Forms of TPG

It has been experienced that utilization of monotone roll-off
Chebyshev transfer functions are useful to generate matching
networks with initial element values. For low-pass proto-types,
TPG is given by

TPG (20)

The above form results in an equal ripple monotone-roll-off
transfer function over the frequency band .

For bandpass problems described by , first,
the frequency band dictated by (20) must be normalized to yield
the desired band width over such that

and then it is shifted by an amount
of to obtain the required shape of the TPG in the
frequency interval specified by . This process
replaces the frequency of (20) by

(21)

E. Equalizer Design Based on Driving Point Admittance

So far, the lossless matching network to be designed has been
described in terms of its PR driving point impedance

or equivalently by the corresponding BR reflection
coefficient . Certainly, the above de-
scription can as well be made by means of PR admittance func-
tion which in turn results in

. In this case, TPG given by (1) expressed in terms
of admittances as TPG ;
where load is the load admit-
tance. Similarly, (4) becomes . Then, rest of the no-
tation is preserved through out the modelling process described
in this paper.

Eventually, the lossless equalizer is built by synthesizing ei-
ther the driving point admittance or the impedance function
which ever is preferred.

For the sake of clear understanding, let us now summarize
the details of the proposed design procedure in the following
algorithm.

V. ALGORITHM: CONSTRUCTION OF LOSSLESS MATCHING

NETWORKS WITHOUT OPTIMIZATION

This algorithm outlines the procedure to construct lossless
equalizers for single matching problems without optimization.

Inputs:
• Measured load data in the form of impedance or

admittance: where
designates the total sample points.

• Desired form of the TPG TPG over the entire
frequency band: It should be noted that this form can be
input either in closed form as in (6) or as sample points.
In this manner, monotone-roll off Chebyshev forms is
recommended as in Section IV-E.

• Realizable gain levels and over the pass band:
In this regard, and are selected with practical
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considerations. For example, a low-pass matching
network which is free of ideal transformer, demands

. On the other hand, may be selected as the
allowable minimum gain level in the passband.

• Lower ( or ) and the upper ( or ) edges of
the passband.

• Normalization frequency (or ), Impedance
Normalization Number in ohms.

• : Desired number of elements in the equalizer.
• Selected form of the numerator polynomial of the

transfer scattering parameter (see Section IV-B).
• : Stopping criteria selected to terminate the fixed-point

interpolations. Note that if the computations are run on
PC, is usually selected as .

Outputs:
• Analytic form of the input reflection coefficient of

the lossless equalizer given in Belevitch form of

. It is noted that this algorithm
determines the coefficients and

, which in turn optimizes the matched
system performance.

• Circuit topology of the lossless equalizer with element
values: The circuit topology with element values is
obtained as the result of the synthesis of in
series with the foster section. Synthesis is carried out
in Darlington sense. That is, is synthesized as a
lossless two-port which is the desired equalizer.

Computational Steps:
Step 1:

(a) Normalize the measured frequencies with
respect to and set all the normalized
angular frequencies

(b) Normalize the measured load impedance
with respect to normalization number

and ;
over the entire

frequency band. It should be noted that
if the load is specified as the measured
admittance data then, the normalization
resistance multiplies the measured real
and the imaginary parts of the admittance
data (i.e., ;

).
Step 2: Employing and , compute the ripple

factor as in (6b).
Step 3: Compute the real roots of the Chebyshev polynomial

in ascending order
for the given degree .

Step 4: Using the positive roots, constitute frequency
intervals such that

Step 5: Compute using (4) over the frequencies for
which the load data is measured. In the course of
computations set when .

Step 6: Compute the real part
point by point and using line segment

approach, extrapolate it beyond the measured
frequencies. At this step, it may be suitable to
fix at DC (i.e., ) and for

for low-pass designs (i.e., when
).

Step 7: Generate the minimum reactance function
point by point using (17) and compute the Foster
data over the measured
frequencies .

Step 8: Generate the reflection coefficient

over the measured frequencies.
Step 9: Employing the method, model the reflection

coefficient as
. Note that

the process described by (7)–(16) stops when
.

Step 10: Using the Foster approach, model the generated
data given for as in (18). It should be remarked
that in practice, the Foster part must be as simple
as possible. The simplest situation is no Foster
part. However, a simple Foster topology may be
described with a single inductor and perhaps in
series with a capacitor or it may be just a single
series capacitor. On the other hand, step 7 and
this step can simply be omitted if one directly
generates and models the reflectance data given by

as
in step 8.

Step 11: Synthesize the modeled reflectance as a lossless
two-port terminated in . In this step,
decomposition technique of Fettweis [11], zero
shifting method or simple continuous fraction
expansion can be used to end up with equalizer
topology with normalized-initial element values.
Then, actual element values are obtained by
de-normalization. In this case, actual element
values are given by

Eventually, the above algorithm can be integrated with a com-
mercially available CAD package to further improve the perfor-
mance of the matched system via optimization [4]–[6].
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VI. COMMENTS ON THE NONLINEARITY OF TPG FUNCTION

In order to appreciate the usage of the newly proposed FPI
technique presented above, let us comment on the nature of the
matching problem as far as its nonlinear behavior is concerned.

Assume that we try to solve the matching problem using the
well commercialized CAD procedures where the designer first
selects the circuit topology and then, determines its element
values to optimize the TPG of the matched structure. In this re-
gard, consider a simple case where we start with a low-pass LC
ladder which consists of -sections. Let us designate the ele-
ments values of this ladder by . In other words, either
designates a series inductance or a shunt capacitor . Let us
now derive the driving point impedance in terms of the
elements values when the source end is terminated in unit
resistance.

Thus, is given by

For example if , . For ,
; or yields

where

As far as the measure of the nonlinearity is concerned, the
polynomial is said to be linear in variable

, the polynomial is quadratic
in and . Similarly, polynomials and have
degree of nonlinearity and in variables ;
( ,2,3,4,5) respectively.

Obviously, nonlinearities double when we work with the
norms of the above polynomials.

For example, the even polynomial

has degree of nonlinearity in variables since its
leading coefficient is specified by
doubling the nonlinearity.

In short, we say that for an -element ladder network, degree
of nonlinearity of the norm function is in el-
ement values . Now, let us consider the scattering parameters

and of the LC ladder under consideration.

By proper normalization, is given by

where and
.

The transfer scattering parameter is specified as
. It should be noted that losslessness condition

requires .
Now, let us consider the simplest hypothetical matching

problem where the source and the load networks are purely
resistive.1 In this case, the TPG is given by

or equivalently the denominator polynomial

As explained above, has the nonlinearity degree of
in terms of the element values since the nonlin-

earity is specified by the norm function

On the other hand, nonlinearity is always quadratic in terms
of the real coefficients of the polynomial
no matter what the total number of circuit elements are.

For the matching problem under consideration, maximization
of the gain function is equivalent to minimization of the polyno-
mial in terms of the selected unknowns over the specified
bandwidth. In the theory of optimization, it is well known that,
if the degree of the nonlinearity of the objective function, which
is subject to minimization, goes beyond 2 (in this case )
then, one may easily be trapped in local minima and perhaps ul-
timate convergence becomes impossible.

Therefore, the designer, who starts the matching problem
with the selection of appropriate circuit topology, must have
excellent initial element values to end up with a successful
optimization.

On the other hand, if the designer initiates the matching net-
work design on the real coefficients of the polynomial , for
sure, the optimization is quadratic and the convergence is guar-
anteed. This is the situation for the hypothetical problem stated
above.

If the load network is complex then, optimization becomes
even harder on the element values. However, the newly proposed
FPI method is always convergent as proven above and results in
optimum matching network topology with element values.

It should be noted that for narrow bandwidth problems, effect
of the high degree nonlinearities beyond 2 may be neglected for

1This is actually the well-established filter design problem. We can always
understand matching problem as a special filter design problem where resistive
terminations are degenerated gradually to converge to the given complex source
and the load impedances [1].
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TABLE I
GIVEN NORMALIZED IMPEDANCE DATA

the small frequency values. In this case, one may wish to di-
rectly start with a simple circuit topology with one or two el-
ements in the matching network then, proceeds with optimiza-
tion on the element values. However, for wideband matching
problems, this approach usually does not work due to nonlinear
behavior of the TPG function unless one starts with good ini-
tial element values. Therefore, it is highly recommended to gen-
erate the matching network topology with element values using
the design procedure presented in this paper. Having obtained
the matching network topology with excellent element values,
one can always carry out further simulations and re-optimize the
physical dimensions of the circuit layout employing the com-
mercially available CAD packages.

Let us now present an example to design a practical matching
network for a physical one port device described in the fol-
lowing section.

VII. EXAMPLE

In this section, an example is presented to design a practical
matching network for a physical one port device for which the
normalized impedance data is given by Table I.

It should be noted that the above data can easily be modeled
using the FPI technique as a capacitor in parallel with
a resistance (i.e., type of load). In this case,
using Fano’s or Youla’s relations [1]–[3], the ideal flat gain level

is computed as

Let us design the equalizer over the normalized pass band of
. Thus, a low-pass Chebyshev transfer function of

(6) can be utilized. In this manner, let us choose and
, then the ripple factor is found as

TABLE II
CALCULATED TPG, �, R , X AND X DATA

Fig. 3. Lumped element equalizer topology with initial element values: L =

0:3311, L = 0:6550, L = 0:6078, C = 3:8438, C = 4:8705, R =

0:3796.

Fig. 4. Performance of the matched system designed with lumped elements.

To ease the physical implementation, let us employ only four
elements in the equalizer topology. Thus, selecting , pre-
selected form of TPG is found as TPG with

.
Using the above inputs, the proposed design algorithm is run.

Thus, the quantities , minimum reactive impedance
and Foster part are computed

point by point as listed in Table II.
Eventually, the driving point reflectance is modeled and syn-

thesized as follows. First the reflectance
which corresponds to the minimum reactance driving point
impedance is modeled utilizing the FPI technique. Thus, se-
lecting , and polynomials are found as
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Then, the Foster data is modeled as a simple series inductor
.

Finally, is synthesized and it is con-
nected in series with the Foster part yielding the equalizer
topology with initial element values as shown in Fig. 3.

As it is seen from Fig. 4, initial performance of the matched
system looks pretty good. However, it is further improved
via optimization utilizing the commercially available design
package called Microwave Office of Applied Wave Research
Inc. (AWR) [4]. Thus, the final normalized elements values are
given as , , , ,

, . For comparison purpose, both
initial and the final performances of the matched system are
depicted in Fig. 4.

VIII. CONCLUSION

Design of practical matching networks is one of the essential
problems of the microwave engineers. In this regard, commer-
cially available computer-aided design tools (CAD-Tools) are
utilized. Once the matching network topology is provided, these
packages are excellent tools to optimize system performance
by working on the physical dimensions of the circuit elements.
From the practical point of view, the designer prefers to select
a proper topology suitable for production. At this point, initial-
ization process becomes very crucial, since the system perfor-
mance is highly nonlinear in terms of the element values of the
chosen circuit topology. Therefore, in this paper, an “Easy to
Use” initialization procedure is proposed to construct lossless
equalizers for matching problems. The new procedure consists
of three major steps. In the first step, for a pre-selected TPG
form, optimum input reflectance of the equalizer is generated
as data set. Then, this data is modeled as a Bounded-Real re-
flectance function via method. Finally, it is synthesized as a
lossless two-port in resistive termination yielding the desired
equalizer topology with initial element values. Eventually, the
actual performance of the matched system is improved utilizing
a commercially available CAD tool which in turn results in the
physical layout of the matching network to be manufactured as
a microwave monolithic integrated circuit. An example is pre-
sented to construct matching networks with lumped elements.

It is exhibited that the proposed method provides very good
initials to further improve the matched system performance by
working on the element values. Therefore, it is expected that the
proposed design procedure is used as a front-end for the com-
mercially available CAD packages to design practical matching
networks for wireless or in general microwave communication
systems.
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