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Abstract

Systems employing multiple transmit and receive antennas,
known as multiple input multiple output (MIMO) systems can
be used with OFDM to improve the resistance to channel im-
pairments. Thus the technologies of OFDM and MIMO are
equipped in fixed wireless applications with attractive features,
including high data rates and robust performance. However,
since different signals are transmitted from different antennas
simultaneously, the received signal is the superposition of these
signals, which implies new challenges for channel estimation.
In this paper we propose a time domain MMSE based channel
estimation approach for MIMO-OFDM systems. The proposed
approach employs a convenient representation of the discrete
multipath fading channel based on the Karhunen-Loeve (KL)
orthogonal expansion and finds MMSE estimates of the uncor-
related KL series expansion coefficients. Based on such an ex-
pansion, no matrix inversion is required in the proposed MMSE
estimator. Also the performance of the proposed approach is
studied through the evaluation of minimum Bayesian MSE.

1. Introduction

In order to accomplish the high-data rate goal and efficiently
support high quality wireless services, several physical layer-
related techniques have to be developed for future wireless sys-
tems. One approach that shows real promise for substantial
capacity enhancement is to employ multicarrier transmission
and, in particular, orthogonal frequency division multiplexing
(OFDM) [1] . OFDM has lately been extensively considered
for use in wireless/mobile communications systems, mainly in
WLAN standards such as the IEEE802.11a and its European
equivalent ETSI HIPERLAN/2 due to its robustness to multi-
path, its high-data rates, and its efficient use of bandwidth [1]
. The attractiveness of OFDM systems stem from the fact that
these systems transform the frequency-selective channel into a
set of parallel flat-fading channels. The information is thus split
into different streams sent over different sub-carriers thereby re-
ducing intersymbol interference (ISI) and allowing for high data
rates without adding complexity to the equalizers [2].

Systems employing multiple transmit and receive antennas,
known as multiple input multiple output (MIMO) systems can
be used with OFDM to improve the resistance to channel im-
pairments. Thus the technologies of OFDM and MIMO equip
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fixed wireless applications with attractive features, including
high data rates and robust performance. However, since differ-
ent signals are transmitted from different antennas simultane-
ously, the received signal is the superposition of these signals,
which implies new challenges for channel estimation.

Multipath fading channels have been studied extensively,
and several models have been developed to describe their vari-
ations. In many cases, the channel taps are modeled as general
lowpass stochastic processes, the statistics depend on mobility
parameters. A different approach explicitly models the mul-
tipath channel taps by the Karhunen-Loeve (KL) series repre-
sentation. In the case of KL series representation of stochastic
process, a convenient choice of orthogonal basis set is one that
makes the expansion coefficient random variables uncorrelated.
When these orthogonal bases are employed to expand the chan-
nel taps of the multipath channel, uncorrelated coefficients are
indeed represent the multipath channel. Therefore, KL repre-
sentation allows one to tackle the estimation of correlated mul-
tipath parameters as a parameter estimation problem of the un-
correlated coefficients [3]. Exploiting KL expansion, the main
contribution of this paper is to propose a computationally effi-
cient, pilot-aided MMSE channel estimation algorithm. Based
on such representation, no matrix inversion is required in the
proposed approach. The performance of the proposed approach
is explored based on the evaluation of the minimum Bayesian
MSE for the random KL coefficients.

Notation used in this paper are standart. Upper- and lower-
case bold letters denote matrices and vectors, respectively. (.)7
denotes the transpose and (.)*! denotes the Hermitian transpose.
The Kronecker product of matrix A and B is denoted as A ®B.
Matrix I,, and matrix 0,, stand for identity matrix and zero ma-
trix of order n, respectively. diag(a) denotes the diagonal ma-
trix whose diagonal is composed of vector a, o2 stands for the
variance of the random variable z. tr(A) stands for the trace
operator which is equals to the sum of the matrix A’s diagonal
elements.

2. System Model
2.1. Channel Model

The system under consideration is depicted in Figure 1. Con-
sider a system with N transmit antennas and Ng receive an-
tennas. At each transmit antenna the data is first modulated
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Figure 1: MIMO-OFDM System

by an IFFT, and a cyclic prefix of length v is added. Here
v > L — 1, where L is the maximum length of all channels.
The channel impulse response vector between ‘" transmit an-
tenna and j*" receive antenna is

hji = [hi[0], hya[1], -+, hya[L — 1] M

The channel frequency response vector between i*”* transmit an-

-th

tenna and j“"* receive antenna is

H;; = diag{Fihy;}. 2)

where F% € C**F is composed of the first left L columns of
K-point FFT matrix, and K is the number of the subcarriers in
one OFDM symbol.
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Vector h; € CNT% is denoted as the combined channel im-

pulse response vector from all the transmit antennas to the 5"
receive antenna:

T
T 1T T
h] = |:hj17hj27"'7thTi| . (4)
According to (4) all of the channel impulse responses vector

h € CM between entire transmit and receive antennas where
M 2 NrNrL can be shown

h = [th,hQT,...,h%R]T . (5)

The channel considered in this paper is SUI (Stanford Uni-
versity Interim) model which can be used for simulations, de-
sign, development and testing of technologies suitable for fixed
broadband wireless applications. The parameters of these mod-
els were selected based upon statistical model described in [5].

2.2. MIMO-OFDM System Model

We assume that the transmitted OFDM symbol is a; =
[ai[1],ai[2],- - ,a:[K])]", € 25 where = modulation sym-
bol alphabet.Thus, the received superposition signal block vec-
tor r; = [rj[1],75[2],--- ,m;[K]]" € C¥ of the j*" receiver
after FFT can be expressed as

r=A (INT ® Fi) h; + ;. ©6)

where A = [A1,As,---,An,] € CE*N1E s data su-
per matrix that transmitted from all transmit antennas, A; =
diag (a;) is data matrix that transmitted from ¢*" transmit an-
tenna. 1; = [n;[1],n;[1],--- ,m; [K]]" € C¥ is the noise vec-
tor at the 7" receiver. We assume that the noise is white and the
noise autocorrelation matrix is Cp, = E [njnﬂ = o’lIg.
The system model given in equation (6) is similar to a multi-
input single-output system model.The system model which in-
cludes all received signals that will used as a basis for the chan-
nel estimation is:

r=(Ing @ A (Ing @ Ff) ) b+, ™

wherer = [r1" 2", -+ 1Ny, T € CVRE i received sig-
nal block vector of all receiver after FFT, n € CNrE is white
noise and its autocorrelation matrix is Cyy = 0°In, k. An ap-
proach adapted herein explicitly models the channel parameters
by the KL series representation and estimates the uncorrelated
expansion coefficients.

']

3. MMSE Estimation of KL Coefficients
3.1. Pilot aided estimation

Pilot symbol assisted techniques can provide information about
an undersampled version of the channel that may be easier to
identify. In this paper, we therefore address the problem of
estimating multipath channel parameters by exploiting the dis-
tributed training symbols. Considering (7), and in order that the
pilot symbols are included in the output vector for our estima-
tion purposes, we focus on a under-sampled signal model. As-
suming K, pilot symbols are uniformly inserted at known loca-
tions of the OFDM block at i* transmit antenna, the Nr K, x 1
vector corresponding the FFT output at the pilot locations be-
comes

P = <1NR © AP <1NT ® Ff()) h+ 7P e CVrEr (g)

where

AP |:A11)7A1277 o 7A7VT} S (CKPXNTKP

AP = diag (aa,aza, cen ,aKpA)
and A is pilot spacing interval, Ff(p is a FFT matrix generated
based on pilot indices, and similarly n? is the under-sampled
noise vector that is statistically equivalent to 7.

For the convenience of description in the time domain
MMSE channel estimation, the received signal vector in equa-
tion (8) can be rewritten as:

rf=Ah+n?. 9)

where A £ AP (INT ® F@p) and A £ (INR ® A). Equa-
tion (9) offers a Bayesian linear model representation. Based on
this representation, the minimum variance estimator for the time
domain channel vector h, conditional mean of h given r, can be
obtained using MMSE estimator. We should clearly make the
assumptions that h ~ A" (0, Cn), n” ~ N (0,Cnp) and h is
uncorrelated with n?. Therefore, MMSE estimate of h is given
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AH A term in equation (10) is easily simplified as follows by
Kronecker product properties [7]:

~\NH ~
A A = {(INR ®A)" (Iv, ®A)}

= <INR ® AHA> . (11)

Bii -+ Bing
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where

B, £ (Fi,)"(AD)"A?Fx, . (13)

For MMSE channel estimation we require ATAtobe diagonal.
To do this the training sequence on different transmit antennas
must not only be orthogonal but also phase shift orthogonal for
phase shifts in the range {—L +1,--- , L 4+ 1} [8]. In this case
(12) will be

[ K I i=j
A"A =K, In,.1 (15)

Substituting (15) in (11)
AT A = <INR ® AHA> — K, L (16)
Then according to (16) and (10), we arrive at the expression

h= (K, Tu +0°Cy ") AT (17
Since as obtained in (17) MMSE estimation still requires the in-
version of Cp it therefore suffers from a high computational
complexity. However, it is possible to reduce complexity of the
MMSE algorithm by diagonalizing channel covariance matrix
with an KL expansion.

3.2. KL Expansion

Channel impulse response h is a zero-mean Gaussian process
with covariance matrix Cy, . The KL transformation is therefore
employed here to rotate the vector h so that all its components
are uncorrelated.

The vector h, can be expressed as a linear combination of
the orthonormal basis vectors as follows:

M
h=> gy =vg. (18)

1=1
where W = 1,12, -+ ,¥um), ;s are the orthonormal basis
vectors, & = [g1,92, - ,gM]T, and g; is the weights of the

expansion. If we form the covariance matrix Cy, as

Ch=UA 0", (19)

where Ag = E [g"”g], the KL expansion is the one in which
Ag of Cy, is a diagonal matrix (i.e., the coefficients are uncor-
related). If A is diagonal, then the form WA ¥¥ is called an
eigendecomposition of Cy, . The fact that only the eigenvectors
diagonalize Cy, leads to the desirable property that the KL co-
efficients are uncorrelated. Furthermore, in Gaussian case, the
uncorrelateness of the coefficients renders them independent as
well, providing additional simplicity. Thus, the channel estima-
tion problem in this application equivalent to estimating the iid
complex Gaussian vector g KL expansion coefficients.

3.3. Estimation of KL Coefficients

In contrast to (9) in which only h is to be estimated, we now
assume the KL coefficients g is unknown. Thus the data model
(9) is rewritten as

r’ = A¥g +n”. (20)

which is also recognized as a Bayesian linear model, and recall
that g ~ NV(0, Ag). As a result, the MMSE estimator of g is

&= Ag (KpAg +0°Ty) w7 AP =T A™7 1)

where
I = Ag(KyAg+0°Iu) "
A A
= dia g, 9 (22)
g{Agle+U2 )‘QAIKP+02}
and Ag,, Ag,, -+, Ag,, are the singular values of the Ag

It is clear that the complexity of the MMSE estimator in
(17) is reduced by the application of KL expansion. However,
the complexity of the g can be further reduced by exploiting the
optimal truncation property of the KL expansion [9].

4. Performance Analysis: Bayesian MSE

For the MMSE estimator g, the error is
e=g—8g. (23)

Since the diagonal entries of the covariance matrix of the
error represent the minimum Bayesian MSE, we now derive co-
variance matrix C. of the error vector. From the Performance
of the MMSE estimator for the Bayesian Linear model Theorem
[6], the error covariance matrix is obtained as

-1
C. = (A;l + (AT c;,lA\If)

= O (Kdu+0’A7Y) =0T (24)

and then the minimum Bayesian MSE of the full rank estimator

becomes

N 1 1
Buse(g) = Mtr(Cs) Vil (o°T)

M

1 Ags
= =N 79 2
MZ,:Z1 1+ K\, SNR 25)

where SN R = 1/0? and tr denotes trace operator on matrices.



5. Simulations

In this section, we will illustrate the merits of our channel es-
timator through simulations. We use avarage mean square er-
ror (MSE) and bit-error rate (BER) on a 2 x 2 MIMO-OFDM
system as our figure of merits. We consider SUI-3 type fad-
ing multipath channel for fixed broadband wireless applica-
tions. In [5], it is shown that the number of taps is L = 3,
the tap delays are fixed, the equivalent taps in all channels
have equal power and that taps with different delays are un-
correlated within a channel as well as between channels and,
the antenna correlation coefficient for this type of SUI chan-
nel is peny = 0.4.Transmission bandwidth is divided into 128
tones. A QPSK MIMO-OFDM sequence passes through chan-
nel taps and is corrupted by AWGN (0dB, 5dB, 10dB, 15dB,
20dB, 25dB and 30dB respectively). We use a pilot symbol
for every eight (A = 8) and sixteen (A = 16) symbols. The
MSE at each SNR point is averaged over 500 realizations. We
compare the experimental MSE performance and its theoreti-
cal Bayesian MSE of the proposed MMSE estimator with Least
Squares (LS) estimator. Fig. 2 confirms that MMSE estima-
tor performs better than LS estimator at low SNR. However,
two approaches has comparable performance at high SNRs. To
observe the performance, we also present the MMSE and LS
estimated channel BER results together in Fig. 3. It also shows
that the MMSE estimated channel BER results are better than
LS estimated channel BER especially at high SNR.

6. Conclusion

We consider the design of low complexity MMSE channel esti-
mator for MIMO-OFDM systems in Fixed Broadband Wireless
channels. We first derive the MMSE estimator based on the
stochastic orthogonal expansion representation of the channel
via KL transform. Based on such representation, we show that
no matrix inversion is needed in the MMSE algorithm. There-
fore, the computational cost for implementing the proposed
MMSE estimator is low and computation is numerically stable.
Moreover, the performance of our proposed method was studied
through the MMSE estimator performance measure Bayesian
MSE.

—*— Simulation Results: MMSE Estimator
—F&— Simulation Results: LS Estimator

—o— Theoretical Bmse
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Figure 2: Mean Square Error
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Figure 3: Bit Error Rate
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