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Abstract-We study distributed estimation of a source cor-
rupted by an additive Gaussian noise and observed by sensors
which are connected to a fusion center with unknown orthog-
onal (parallel) flat Rayleigh fading channels. The fading com-
munication channels are estimated with training. Subsequently,
source estimation given the channel estimates and transmitted
sensor observations is performed. We consider a setting where
the estimated channels are fed-back to the sensors for optimal
power allocation which leads to a threshold behavior of sensors
with bad channels being unused (inactive). We also show that
at least half of the total power should be used for training.
Simulation results corroborate our analytical findings.

I. INTRODUCTION

In a typical wireless sensor network(WSN), a large number
of sensors that each one observes the physical phenomenon
represented by a parameter 0 are deployed randomly in
a geological zone, and transmit their observations to the
fusion center (FC) over the wireless channels. FC which has
less limitations in terms of processing and communication,
whereas sensors have limited processing and communication
capability because of their limited battery power, receives
transmissions from the sensors over the wireless channels so
as to combine the received signals to make inferences on the
observed phenomenon.

Over the past few years, research on distributed estimation
has been evolving very rapidly [1]. Universal decentralized
estimators of a source over additive noise have been con-
sidered in [2], [3]. Much of the literature has focused in
finite-rate transmissions of quantized sensor observations [1].
The observations of the sensors can be delivered to the
FC by analog or digital transmission methods. Amplify-and-
forward is one analog option, whereas in digital transmission,
observations are quantized, encoded and transmitted via
digital modulation. The optimality of amplify and forward
in several settings described in [4], [5]. In [5], amplify-
and-forward over orthogonal parallel multiple access chan-
nels(MAC) with perfect channel knowledge at the FC is
considered, where increasing the number of sensors is shown
to improve performance.
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Unlike our work in [6] which considers no channel status
information (CSI) at the sensor side with equal power alloca-
tion among sensors, here we consider power optimization in
this estimated CSI setting, trading off feedback complexity
with MSE performance. By doing this, we follow a two-step
procedure to first estimate the unknown fading channel coef-
ficients with pilots, and use channel estimates in constructing
the estimator for the source signal with linear minimum
mean square error (LMMSE) estimators. We characterize the
effect of channel estimation error on performance for optimal
power scheduling at the sensors, and imperfect estimated
channels at the FC.
We show that increasing the number of sensors will

eventually lead to a degradation in performance for a fixed
total power. Hence, in the absence of channel information,
deploying more sensors might not necessarily lead to better
performance. We also characterize the penalty paid for
estimating the channel to be factor of at least 4 (6 dB).

II. SYSTEM MODEL AND CHANNEL ESTIMATION

In our system model, as shown in Fig. 1, we consider a
wireless sensor network with K sensors whose kth sensor
observes an unknown zero-mean complex random source
signal 0 with variance 4o, corrupted by a zero-mean additive
complex Gaussian noise nk CA(O, or2 ). Since we assume
the amplify-forward analog transmission scheme, the kth
sensor amplifies its incoming analog signal 0 + nk by a
factor of ak and transmits it on the kth flat fading orthogonal
channel to the fusion center (FC). In Fig.1, gk CAf(O, or2)
and Vk C-(CO, or) are the flat fading channel gain and
the channel noise of the kth channel path, respectively.
The amplification factor ak varies with respect to the CSI
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Fig. 1. Wireless Sensor Network with Orthogonal MAC Scheme
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available at the sensor side. The kth received signal at the
FC is given as

Yk = gkak (O+nk) +vk ,k = 1,. . . ,K (1)

We will consider this receive model to estimate the source
signal 0. Our two-step strategy, as illustrated in Fig.2, is first
to estimate parallel channels, and then estimate the source
signal given the channel estimates. We will use a LMMSE
approach [7] for both steps. In the first phase, the sensors
send training symbols of total power Ptrn to estimate the
parallel channels {gkI}K . In the second phase the sensors
transmit their amplified data, which bear information about
0, with the optimally shared powers {pk}K 1 among the
sensors with respect to CSI. Note that the total power in the
two phases add to Pt0t. The fusion center uses the received
signal in the second phase and the channel estimates from
the first phase to estimate the source signal 0. To estimate

Fig. 2. Training and Data Transmission Phases

the parallel fading channels {gk}, 1 in the training phase,
we consider pilot-based channel estimation as illustrated in
Fig.3, where each sensor sends a pilot symbol to the FC
over its own fading channel. The receive model for a pilot
s transmitted over the kth channel is

Xk = gk S + vk (2)

where Xk is the received signal over kth channel and vk is
zero-mean additive complex Gaussian channel noise, nv
CA/(O, oa2). Since the total transmitted training power is Ptrn,
we have Ptrn = K s 2. According to our observation model

III. SOURCE ESTIMATION AND POWER ALLOCATION

After estimation of the unknown fading channels in the
first phase, in the second phase, we estimate the source
signal 0 by choosing an LMMSE type source estimator
given the channel estimates {gMk}k= in (3), and the received
signal Yi, . . , YK in (1). In other words, we obtain the
source estimator 0 in the presence of channel estimation error
(CEE). The resulting MSE of source estimator will be our
figure of merit. Exploiting the orthogonality principle of the
LMMSE estimator, it is possible to give the minimum MSE
in the presence of CEE as follows [8]

D=ao I K1( kU (92+2)pk+2)
( rk (gJ2 62) + (62 ) Pk + (J2J

with the following definitions:

Here, we express te cnannei
(4) and Ptrn K IS12 as

(5)

estimator variance o using

(6)

Substituting (6) into (5), it is straightforward to verify that
(5) is a convex function of {Ptrn, P1I. PK} by taking the
second derivative. For the purposes of optimization of the
MSE in (5) with respect to {Ptrn PI, ... PKI}, it suffices
to work with

K Pmk2 _( 2)Pk

(k k 62) + ((2 ) pk + 72
(7)

1

Fig. 3. Channel Estimation Scheme for Orthogonal MAC Channels

in (2), the linear minimum mean square error (LMMSE)
estimate g, of the channel g, is given as follows [7]

A_Et97g,X7C} [ gk X* I
gk E{9,1}[gkx2]Ef , [Xkl21

a2*
9

,
U2 + U2 S12
v 9

(3)

where (.)* denotes the complex conjugate and the channel
estimation error variance 62 is given as

62 - + s aT2 a2

U2 + (72 IS2av 9

(4)

The above function is a general form of the convex objective
functions considered in the sequel. We will work with special
cases of (7) to obtain MSE expressions both in the presence
and absence of CEE. Before we optimize the training power,
we will briefly review the perfect CSI case.

A. Perfect CSI Case

With perfect CSI both at the FC and sensor side, the
variance of the CEE is zero, 62 = 0, and the normalized
estimated channel powers are equal to the normalized chan-
nel powers 7k = 'lk Vk. By substituting 62 = 0 and 7k = '7k
in (7), the optimization problem for the perfect CSI case is
obtained as follows

a kPkmin -vE 'T

P1, ,PK k=1 '7kPk+ I

K
s.t. Pk< Ptot

k=1
Pk>O , k =1,2, ,K, (8)
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where the optimization is with respect to the transmit powers
at the sensors. This problem is considered in [5] for the best
linear unbiased estimator (BLUE). Adapting to the LMMSE
case, the optimum powers are given by

(6)
A2Ptrn 0

(7) (8)
A2 > 0 Ptrn > 0

1

k- EI
MEA

( ~ + r4 '712) k (Per) (9)

where A := TmlTm > T(per)} is the set of active sensors
whose data transmission powers are positive (i.e. Pk > 0 or
equivalently Tlk > T(Per)), and the threshold value T(per) iS
given by

T(per) (10)

The sensors whose channel powers are below the threshold
level are turned off in the data transmission phase.

B. Estimated CSI Case

In the estimated CSI case, we assume that parallel chan-
nels {gk k= are estimated at the FC and the channel
estimates are fed back from the FC to sensors in order to
perform the optimal data power allocation strategy. So, after
training, the remaining power Ptot -Ptrn is optimally
shared among the sensors. Therefore, substituting (6) into
(7) we get the objective function of the following convex
optimization problem

K

min S Tlk71 PtrnPk
Pt,n,Pi, ,PK k=1 'kkPtrnPk + K(Pk + ¢Ptrn + K

K

s.t. Ptrn+Pk < Ptot
k=1

Ptrn > 0

Pk>0, k= 1,2, ,K. (11)

Now we solve the problem in (11). The Lagrangian function
is given by

K ='k_EPtrnPk
k7=1k ¢PtrnPk + K(Pk + ¢Ptrn + K

K K

-AI(Ptot-Pt- Pk)-A2Ptrn-5P§kPk
k=1 k=1

and the following Karush-Kuhn-Tucker conditions are de-
rived from the Lagrangian function [9]:

K -yKk ( (Pk + 1) Pk (1)
AA=1 (7k ¢PtrnPk + K(Pk + ¢Ptrn + K)2

Al ttky-1k( (¢Ptrn + K) Ptrn
('k (PtrnPk + K(Pk + (Ptrn + K)2

(2)
0 Vk,

K (3) (4) K (5)
A1(Ptot-Ptrn -Pk) °0 A1> , Ptrn+SPk< Ptot

k=l k=l

(9) (10) (I 1)
PkPk = 0 Vk Pk >_ 0 Vk Pk > 0Vk. (12)

where (12.1) and (12.2) are obtained by 8LI8Ptrn 0 and
8LI8Pk = 0, respectively. We will assume 0 < Ptrn < Ptot
which means A2 = 0 as seen from the condition (12.6). From
conditions (12.9) and (12.11) active sensors with Pk > U
have corresponding Lagrange multipliers ,k = 0. We now
want to determine how much optimum data transmission
power has to be allocated for each active sensor. The condi-
tion (12.2) can be rewritten for active sensors (i.e., Pk > 0
and Ilk = 0) as

Pk+ (1l+p A1P, Pk > 0 (13)

Using (13), it follows that for active sensors (Pk > 0) we

have r1k > A (I + K ). This means that r1k if exceeds
the following threshold

T(est) = (1 + ,jK) (14)

the kth sensor will be activated in the data transmission
phase. In the equations (13) and (14), the Lagrange multiplier
A1 still needs to be determined. Let the active sensor set be
defined as B := '7I1 > T} for the estimated CSI case.
Recalling E Pe = Ptt- Ptrn, we sum both sides of (13)

CEB

1+ K ' 1+ K)(P>t, nl_ / A/1 (PItl ) 1

Ptot Ptrn+5 P1+ K: + K (15)
£EB'7 Ptrn 1EB Ptr

Solving for A1 in (15) and substituting into (13) and (14)
the optimal data power Pk* and the threshold level T(est) are
obtained as

'7k

k- E P4n
'7k+ KpEB Ptrn

1+ K

'7k + K
Ptrn

and

Ptot
1 + K

Ptrn + K J

V 1,k > T(est) (16)

( (+ K) ~2
Tr(est) =ID (1

Ptrn+(1+)fE
L1P1 (17)

\Ptot -BPtrn + (I + K
)

I

respectively. As seen from (16) and (17), the optimum data
transmission power per sensor and the threshold depend on
the training power Ptrn. We now want to find the optimum
training power Ptrn. Substituting (12.2) into (12.1), we get
the following equation,

trn
2

trn

K
(18):pB2 +I

1gEB 1gEB
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and note that the total optimal training power Pt*,, depends
on the power of active sensors, Pf . Equations (16) and (18)
show that Pk* and Pt*rn depend on each other and the channel
realizations. Since the total training power Ptrn must be
selected without knowing the channel realizations, we would
like to bound it with a value that is not channel dependent.
Toward this goal, we use Cauchy-Schwartz inequality,

I: 2 > I

fEB

(E) > ()E 2

where IB is the cardinality of the set of active sensors.
Substituting the above lower bound into (18), and using
Z Pe = Ptt-Pt*,P, on the right hand side, we obtain the
£EB
following lower bound on the optimal training power Pt*,,:

PtotPtrn >- 2
(20)

which establishes that the total training power should be
chosen at least half of the total power.

C. Comparison of Perfect and Estimated CSI Cases

In subsection, we want to find the relationship between
total power of the perfect and estimated CSI cases, P1(Pter)
and P(jes), that would ensure that the MSE in the two cases
would have the same distribution, for a finite number of
sensors and large total power. More concretely, our goal
is to determine the ratio of the total powers of the perfect
and imperfect CSI cases for identical distributed MSEs while
total power goes to infinity. Since Pt*,, > Ptot/2 from (20),
when Ptot -) oc, the optimum training power Pt*n -' °o
which means that channel estimation error variance goes to
zero (62 -) 0) as seen from (6). Eventually, the estimated
channel powers approach to the true channel powers r1k -'
Tlk Vk since channel estimates approach to true channels
-k gk Vk. Additionally, with large total powers, all the

sensors become active, for both perfect and estimated CSI
cases because threshold levels in (10) and (17) go to zero
as the total powers goes to infinity. Under these conditions,
we wish to make the objective functions for perfect and
estimated CSI cases in (8) and (11) equal which ensures
that the resulting solutions will be the same. The objective
functions in (8) and (11) are equal if and only if

K K IK + (i+ Jr) est)
Ptrn (Ptrn pk (et

where Pk (P ) and Pk (st) are the powers
sensor in the perfect and imperfect chz

K
tively. Keeping in mind E Pk(Per)

k=l
both sides of (21) by Pk (Per) and summir
(21) as

K Pk

k=1 Pk(

Multiplying both sides of (22) by P(est) p(Pter) and inverting
both sides of the equation, we have the following expression
for the power ratio P(Per) p(est)

tot t;ot
p(per) pp(est) (ot K p(per) 1

tot petot Ptrn tot (23)tot) + + j(2p(3t
p(estot Ptrn WK (pto / p(t),

Recalling P(Per) -) 00 together with P(est) -, oC, from (9)tot ~~~~~~~tot
and (16) we obtain the limit of the kth summation term in
(23) as follows

Pk (per)
p(per)

lim tot
p(est) Pk (est)

tot --I'Ip(est)
tot

1
1 urn ~~p,-t)p (e st ) --,I etot

tot -0

1
1-r'

(24)

where we used r1k - Tlk, and r is defined as the asymptotic
ratio between the training and the total powers of the
estimated CSI case as follows

r,= l{im Ptrn
(est) --,Ip(est)
tot tot

(25)

For a given r, substituting (24) and (25) into (23) and taking
the limit, the asymptotic power penalty ratio between the
total powers of perfect and estimated CSI cases that make
the MSEs identical is obtained as

p(per) 1 1 1

p(est) ePt(ot) r 1 r) ( ) (26)
totis -cr00 tot

It is clear from (26) that the maximum ratio is obtained as

p(per)
lim tot

p(est) p(est)
Ptot --,I tot

1
4

(27)

when r = 1/2 (50% training power). We can thus conclude
that for large total transmit powers, the penalty paid for not
knowing the channel is 6 dB, which is achieved when Ptrn
is half the total power.

IV. NUMERICAL RESULTS

In Fig.4, we illustrate that there is an optimum number
1 (21) of sensors that minimize the MSE. We also observe that

Pk (per) the number of sensors that minimize the MSE increases as
the total power Pt3t increases for the estimated CSI case

allocated to the kth with a 60%c training power ratio. Fig.4 confirms that the
annel cases, respec- MSE performance in the estimated CSI case is exhibiting
p(per) multiplying a degradation beyond an optimum number of sensors.

In Fig.5, the power penalty ratios on the horizontal axis
ng, we can reexpress can be read off when the average MSEs are equal (the y-axis

is one), and the power penalty ratio P(Per) p(etst) is seen
to be about 0.24 for the MSE performances of perfect and

_=1 (22) imperfect channel cases to be equal with r = PtrnlP(es8t)est) 60%c when the sensor powers are optimized.
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The curves in Fig.6 are plotted for various training
power ratios for the estmated CSI case. In this figure,
we observe that the asymptotic ratios of total powers are
roughly Pt(Pter) Pt(et) = 0.25, 0.24, 0.21 and 0.16 for r

Ptrnt (ost 0.5, 0.6, 0.7 and 0.8, respectively, which is
predicted by (26).

V. CONCLUSIONS

In this work, we study the effect of fading channel
estimation error on the performance of distributed estimators
of a source 0. A two-phase approach was employed where in
the first phase, the fading coefficients are estimated, and in
the second phase, these estimates and the received signal are
used to estimate the source 0. The optimum training power
in this setting was shown to be greater than half the total
power. In assessing the loss in total power due to channel
estimation in this optimized sensor power setting, we used an
asymptotic analysis where the total transmit power was large.
It was found that the power penalty ratio between perfect and
imperfect CSI cases was about 6 dB.

60% of Ptot =1 dB, 10 dB 2=1 2=1

Fig. 4. Average MSE vs. number of sensors for the estimated CSI case
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