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SUMMARY

One of the main drawbacks of orthogonal frequency division multiplexing (OFDM) systems is the phase
noise (PN) caused by the oscillator instabilities. Unfortunately, due to the PN, the most valuable feature
namely orthogonality between the carriers, is destroyed resulting in a significant degradation in
the performance of OFDM systems. In this paper, based on a sequential Monte Carlo method (particle
filtering), a computationally efficient algorithm is presented for estimating the residual phase noise, blindly,
generated at the output of the phase tracking loop employed in OFDM systems. The basic idea is to treat the
transmitted symbols as ‘missing data’ and draw samples sequentially of them based on the observed signal
samples up to time t. This way, the Bayesian estimates of the phase noise is obtained through these samples,
sequentially drawn, together with their importance weights. The proposed receiver structure is seen to be
ideally suited for highspeed parallel implementation using VLSI technology. The performance of
the proposed approaches are studied in terms of average mean square error. Through experimental results,
the effects of an initialisation on the tracking performance are also explored. Copyright # 2006 AEIT.

1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has

lately been extensively considered for use in wireless/

mobile communications systems, mainly in WLAN stan-

dards such as the IEEE802.11a and its European equiva-

lent ETSI HIPERLAN/2 due to its robustness to

multipath, its high-data rates and its efficient use of band-

width [1, 2]. The attractiveness of OFDM systems stems

from the fact that these systems transform the frequency-

selective channel into a set of parallel flat-fading channels.

The information is thus split into different streams sent

over different sub-carriers thereby reducing intersymbol

interference (ISI) and allowing for high-data rates without

adding complexity to the equalizers [3, 4].

One of the main drawbacks of OFDM systems is the

phase noise (PN) caused by the oscillator instabilities

[5]. Unfortunately, due to the PN, the most valuable fea-

ture namely orthogonality between the carriers, is

destroyed resulting in a significant degradation in the per-

formance of OFDM systems [5]. Random PN causes two

effects on OFDM systems, rotating each symbol by a ran-

dom phase that is referred to as the common phase error

(CPE) and producing intercarrier interference (ICI) term

that adds to the channel noise due to the loss of orthogon-

ality between subcarriers [6]. Several methods have been
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proposed in the literature for the estimation and compen-

sation of the PN in OFDM systems [7, 8]. Most of the

approaches however only addresses the estimation of

the CPE by assuming ICI terms are approximated by a

Gaussian distribution and these techniques are implemen-

ted after the DFT process at the receiver [8]. The main

drawback of these approaches is the data-dependent ICI

which introduces an additional random noise on top of

the additive Gaussian channel noise causes a significant

degradation in the CPE estimator performance. In contrast

to these approaches, we try to solve PN estimation pro-

blem in the time domain before the DFT process at the

OFDM receiver. As it will be seen shortly this approach

will not be faced with ICI effect during the estimation

procedure resulting in more accurate random phase

estimation.

A considerable amount of research has been carried out

for online estimation of the timevarying as well as the fixed

phase offset at digital receivers in the presence of data [6].

Estimating the phase offset by maximum likelihood (ML)

technique does not seem to be analytically tractable. Even

if the likelihood function can be evaluated offline; how-

ever, it is invariably a nonlinear function of the parameter

to be estimated, which makes the maximisation step com-

putationally infeasible. Phase synchronisation is typically

implemented by a decision directed (or data-aided) or non-

decision directed (or nondata aided). Decision-directed

schemes depend on availability of reliably detected sym-

bol for obtaining the phase estimate, and therefore, they

usually require transmission of pilot or training data. How-

ever, in applications where bandwidth is the most precious

resource, training data can significantly reduce the overall

system capacity. Thus blind or nondata-aided techniques

become an attractive alternative [9, 10]. Unlike data-aided

techniques, nondata-aided methods do not require knowl-

edge of the transmitted data, and instead, they exploit sta-

tistics of digital-transmitted signal. ML estimation

techniques can also be used in nondecision-directed meth-

ods if the symbols transmitted are treated as random vari-

ables with known statistics so that the likelihood function

can be averaged over the data sequence received. Unfortu-

nately, except for few simple cases, this averaging process

is mathematically impracticable and it can be obtained

only by some approximations which are valid only either

at high- or low-SNR values [11].

On the other hand, in order to provide an implementable

solution, recently there have been a substantial amount of

work on iterative formulation of the parameter estimation

problem based on the expectation-maximization (EM)

technique [12]. It is known that the EM algorithm derives

iteratively and converges to the true ML estimation of

these unknown parameters. The main drawbacks of this

approach are that the algorithm is sensitive to the initial

starting values chosen for the parameters, it does not

necessarily converge to the global extremum and the

convergence can be slow. Furthermore, in situation where

the posterior distribution must be constantly updated with

arrival of the new data with missing parts, EM algorithm

can be highly inefficient, because the whole iteration pro-

cess must be redone with additional data. The sequential

Monte Carlo (SMC) methodology, also called particle

filtering, [14] that has emerged in the field of statistics

and engineering has shown great promise to solve such

problems. This technique can approximate the optimal

solution directly without compromising the system model.

Additionally, the decision made at time t does not depend

on any decisions made previously, and thus, no error is

propagated in their implementation. More importantly,

the SMC yields a fully blind algorithm and allows for both

Gaussian and non-Gaussian ambient noise as well as high-

speed parallel implementations.

The main objective of this paper is to solve the PN esti-

mation problem by means of the SMC technique. The

basic idea is to treat the transmitted data as ‘missing data’

and to sequentially draw samples of them based on the cur-

rent observation and computing appropriate importance

sampling weights. Based on sequentially drawn samples,

the Kalman filter is used to estimate the unknown phase

from an extended Kalman state-space model of the under-

lying system. Furthermore, the tracking of the timevarying

PN and the data detection are naturally integrated. The

algorithm is self-adaptive and no training/pilot symbols

or decision feedback are needed [13].

In the following, the system and the main model for the

PN are described in Section 2, the solution of the blind-

phase noise estimation problem by means of the SMC

method is presented in Section 3. Resampling method is

detailed in Section 4. Finally, the simulation results and

the main conclusions of the paper are given in Sections 5

and 6 respectively.

2. SYSTEM DESCRIPTION

We consider an OFDM system with N subcarriers operat-

ing over a frequency-selective Rayleigh fading channel. In

this paper, we assume that the multipath intensity profile

has exponential distribution and the delay spread Td is less

than or equal to the guard interval L. With the aid of the
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discrete time channel model [3], the output of the fre-

quency-selective channel can be written as

yt ¼
XL
k¼0

hkst�k ð1Þ

where the hk; k ¼ 0; 1; . . . ; L denotes the kth tap gain and

we assume to have ideal knowledge of these channel tap

gains. Moreover, st ¼
PN�1

n¼0 dne
�j2ptn

N where fdng denotes

the independent data symbols transmitted on the nth sub-

carrier of an OFDM symbol. Hence, st is a linear combina-

tion of independent, identically distributed random

variables. If the number of subcarriers is sufficiently large,

st can be modelled as a complex Gaussian process whose

real and imaginary parts are independent. It has zero mean

and variance �2
s ¼ Efjstj2g ¼ Es, where Es is the symbol

energy per subcarrier.

Also, assuming perfect frequency and timing synchroni-

sation, the received signal, rt, corrupted by the additive

Gaussian noise nt and distorted by the timevarying phase

noise �t can be expressed as

rt ¼ yte
j�t þ nt; t ¼ 1; . . . ; T0 ð2Þ

where nt is the complex envelope of the additive white

Gaussian noise with variance �2
n ¼ EfjntðkÞj2g. �t is the

sample of the PN process at the output of the free-running

local oscillator representing the phase noise. It is shown

in Reference [16] that in the case of free-running

oscillators, PN can be modelled as a Wiener process

defined as

�t ¼ �t�1 þ ut

�0 � uniformð�p; pÞ ð3Þ
where ut is zero-mean Gaussian random variable with

variance �2
u ¼ 2pBTs where Ts is the sampling period

of the OFDM receiver A/D converter and BT refers

to the PN rate, where T ¼ TsðN þ LÞ. It is assumed

that ut and nt are independent of each other. Defining

the vectors Rt ¼ ½r0; r1; . . . ; rt�T, St ¼ ½s0; s1; . . . ; st�T,
st ¼ ½st; st�1; . . . ; st�L�T, and ht ¼ ½h0; h1; . . . ; hL�T com-

bining Equations (2) and (3), and taking into account the

structure of st, we obtain the following dynamic state-

space representation of the communication system,

�t ¼ �t�1 þ ut

st ¼ Fst�1 þ vt

rt ¼ hTt ste
j�t þ nt ð4Þ

where

F ¼

0 0 0 . . . 0

1 0 0 . . . 0

0 1 0 . . . :
..
. ..

. ..
.

. . . ..
.

0 0 . . . 1 0

2
66664

3
77775 ð5Þ

is a (Lþ 1)� (Lþ 1) shifting matrix, and vt ¼ ½st; 0; . . . ; 0�
is a (Lþ 1)� 1 perturbation vector that contains the new

symbol st.

3. SMC FOR BLIND-PHASE NOISE ESTIMATION

Since we are interested in estimating the phase noise �t
blindly at time t based on the observation Rt, the Bayes

solution requires the posterior distribution

pð�tjRtÞ ¼
Z

pð�tjRt; StÞpðStjRtÞdSt ð6Þ

Note that with a given St, the nonlinear (Kalman filter)

model (4) can be converted into a linear model by linear-

ising the observation Equation (2) as follows [15]:

�t ¼ �t�1 þ ut

rt ¼ hTt stðVt�t þ QtÞ þ nt ð7Þ
where

Vt ¼ je j�̂tjt�1

Qt ¼ ð1� j�̂tjt�1Þej�̂tjt�1 ð8Þ
�̂tjt�1 denotes the estimator of �t based on the obser-

vations Rt�1 ¼ ðr0; r1; . . . ; rt�1Þ. Then the state-space

model (4) becomes a linear Gaussian system. Hence,

pð�tjSt;RtÞ � Nðm�tðStÞ; �2
�t
ðStÞÞ, where the mean m�tðStÞ

and the variance �2
�t
ðStÞ can be obtained as follows. Denot-

ing m�tðStÞ¼� tjt�t , and �2
�t
ðStÞ¼�Mtjt.

�̂tjt and Mtjt can be calculated recursively by using the

Extended Kalman Technique [[15], pages 449–452] with

the given St as:

�̂tjt ¼ �̂tjt�1 þ Ktðrt � hTste
j�̂tjt�1Þ ð9Þ

Mtjt ¼ ð1� Kth
T
t stVtÞMtjt�1

where

Kt ¼
Mtjt�1ðhTt stVtÞ�
jhTt stj2Mtjt�1 þ �2

n
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�̂tjt�1 ¼ �̂t�1jt�1

Mtjt�1 ¼ Mt�1jt�1 þ �2
u ð10Þ

We can now make timely estimates of �t based on the

currently available observation Rt, up to time t, blindly,

as follows. With the Bayes theorem, we realise that the

optimal solution to this problem is

�̂t ¼ Ef�tjRtg

¼
Z
St

Z
�t

�tpð�tjSt;RtÞd�t
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m�tðStÞ

pðStjRtÞ; dSt ð11Þ

In most cases, an exact evaluation of the expectation (11)

is analytically intractable. Sequential Monte Carlo techni-

que can provide us an alternative way for the required

computation. Specifically, following the notation adopted

in Reference [4], if we can draw m independent random

samples fSð jÞt gmj¼1 from the distribution pðStjRtÞ, then we

can approximate the quantity of interest Ef�tjRtg in Equa-
tion (11) by

Ef�tjRtg ffi 1

m

Xm
j¼1

m�tðSð jÞt Þ ð12Þ

But, usually drawing samples from pðStjRtÞ directly is

difficult. Instead, sample generation from some trial distri-

bution may be easier. In this case, the idea of importance

sampling can be used [4]. By associating the weight

w
ð jÞ
t ¼ pðSð jÞt jRtÞ

qðSð jÞt jRtÞ
to the samples, the quantity of interest,

Ef�tjStg can be approximated as follows:

Ef�tjRtg ffi 1

Wt

Xm
j¼1

m�tðSð jÞt Þwð jÞ
t ð13Þ

with Wt ¼
P

w
ð jÞ
t . The pair ðSð jÞt ;w

ð jÞ
t Þ; j ¼ 1; 2; . . . ;m is

called a properly weighted sample with respect to distribu-

tion pðStjRtÞ.
Specifically, it was shown in Reference [4] that a

suitable choice for the trial distribution is of the form

qðstjRt; S
ð jÞ
t�1Þ ¼ pðstjRt; S

ð jÞ
t�1Þ. For this trial sampling dis-

tribution, it is shown in Reference [4] that the importance

weight is updated according to

w
ð jÞ
t ¼ w

ð jÞ
t�1pðrtjRt�1; S

ð jÞ
t�1Þ; t ¼ 1; 2; . . . ð14Þ

The optimal trial distribution in pðstjRt; S
ð jÞ
t�1Þ can be

computed as follows:

pðstjRt; S
ð jÞ
t�1Þ ¼ pðrtjRt�1; S

ð jÞ
t�1; stÞPðstjRt�1; S

ð jÞ
t�1Þ ð15Þ

Furthermore, it can be shown from the state and

observation equations in (4) that pðrtjRt�1; S
ð jÞ
t�1; stÞ �

N ðmð jÞrt ; �
2ðjÞ
rt Þ with mean and variance given by

mð jÞrt
¼ EfrtjRt�1; S

ð jÞ
t�1; stg

¼ hTt stðVt�̂
ð jÞ
tjt�1

þ QtÞ
ð16Þ

�2ðjÞ
rt

¼ VarfrtjRt�1; S
ð jÞ
t�1; stg

¼ jhTt stj2Mð jÞ
tjt�1

þ �2
n

ð17Þ

where the quantities �̂
ð jÞ
tjt�1

andM
ð jÞ
tjt�1

in Equations (16) and

(17) respectively can be computed recursively for the

Extended Kalman equations given in Equations (9) and

(10). Also since st is independent of St�1 and Rt�1, the sec-

ond term in Equation (15), it can be written as

pðstjRt�1; S
ð jÞ
t�1Þ ¼ pðstÞ where it was pointed out earlier

that pðstÞ � N ð0; �2
s Þ.

Note that dependency of the �
2ðjÞ
rt in (16) to st pre-

cludes combining the product of Gaussian densities in

Equation (15) into a single Gaussian, hence obtaining a

tractable sampling distribution. This problem can be cir-

cumvented by approximating the �
2ðjÞ
rt as follows. From

Equation (4), we can use the approximation st � Fst�1

in Equation (16) to obtain

�2ðjÞ
rt

ffi jhTt Fsð jÞt�1j2Mð jÞ
tjt�1

þ �2
n ð18Þ

Similarly using Equations (11) in (16), the mean mð jÞrt can

be expressed as

mð jÞrt
¼ ðhTt Fsð jÞt�1 þ h0stÞGð jÞ

t where G
ð jÞ
t ¼�Vt�̂

ð jÞ
tjt�1

þ Qt

ð19Þ

Then, the true trial sampling distribution pðstjRt; S
ð jÞ
t�1Þ in

Equation (15) can be expressed as follows:

pðstjRt; S
ð jÞ
t�1Þ � N ðmð jÞst

; �2ðjÞ
st

Þ ð20Þ
where

mð jÞst
¼ ðrt � hTt Fs

ð jÞ
t�1G

ð jÞ
t Þ

h0G
ð jÞ
t

�
2ðjÞ
rt

jh0Gð jÞ
t j2�2

s

þ 1

 !�1

�2ðjÞ
st

¼ �
2ðjÞ
rt �2

s

�
2ðjÞ
rt þ jh0Gð jÞ

t j2�2
s

and �
2ðjÞ
rt is defined as Equation (16).
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In order to obtain the recursion for the weighting factor

w
ð jÞ
t , the predictive distribution pðrtjRt�1; S

ð jÞ
t�1Þ in Equa-

tion (15) should be evaluated. It is given by

pðrtjRt�1; S
ð jÞ
t�1Þ ¼

Z
st

pðrtjRt�1; S
ð jÞ
t�1; stÞPðstjRt�1; S

ð jÞ
t�1Þdst

¼
Z
st

pðrtjRt�1; S
ð jÞ
t�1; stÞpðstÞdst

ð21Þ
where Equation (21) holds because st is independent of

St�1 and Rt�1. Since the both terms in the integrand of

Equation (21), are Gaussian densities, the product of the

Gaussian densities are integrated with respect to st is also

Gaussian. Therefore the predictive distribution is found

to be

pðrtjRt�1; S
ð jÞ
t�1Þ � N ðMð jÞ

rt
;�2ðjÞ

rt
Þ ð22Þ

where

Mð jÞ
rt

¼ hTFs
ð jÞ
t�1G

ð jÞ
t

�2ðjÞ
rt

¼ jh0Gð jÞ
t j2�2

s þ jhTFsð jÞt�1j2Mð jÞ
tjt�1

þ �2
n ð23Þ

We now summarise the SMC blind data phase noise

estimation algorithm in Table 1:

The proposed SMC approach perform three basic opera-

tions: generation of new particles (sampling from the

space of unobserved states), computation of particle

weights (probability masses associated with the particles)

and resampling (a process of removing particles with small

weights and replacing them with particles with large

weights). Particle generation and weight computation

steps are computationally the most intensive ones. The

particle filtering speed can be increased through both algo-

rithmic modifications and architecture development [4].

On the algorithmic level, the main challenges for speed

increase include reducing the number of operations and

exploiting operational concurrency between the particle

Table1. SMC algorithm for blind-phase noise estimation.
Given fh0; h1; . . . ; hLg

� Initialisation:
— Initialise the extended Kalman filter: Choose the initial mean and the variance of the estimated �t as

mð jÞ�0
¼ �̂

ð jÞ
0j0 ¼ 0; �

2ðjÞ
�0

¼ M
ð jÞ
0j0 ¼ p2=12; j ¼ 1; 2; . . . ;m: ð24Þ

— Initialise the importance weights: All importance weights are initialised as w
ð jÞ
0 ¼ 1; j ¼ 1; 2; . . . ;m.

For j ¼ 1;m
For t ¼ 1; T0

� Compute �̂tjt�1;M
ð jÞ
tjt�1

from Equation (8).
� Compute mð jÞrt

; �2ðjÞ
rt

from Equations (16).
� Compute sampling distribution mean/variance mð jÞst

; �2ðjÞ
st

from the Equation (20).
� Sample s

ð jÞ
t � Nðmð jÞst

; �ð jÞ
st
Þ and Append s

ð jÞ
t to S

ð jÞ
t�1 to obtain S

ð jÞ
t ¼ ðsð jÞt ; S

ð jÞ
t�1Þ.� Compute the importance weights:

w
ð jÞ
t ¼ w

ð jÞ
t�1pðrtjRt�1; S

ð jÞ
t�1Þ;

where pðrtjRt�1; S
ð jÞ
t�1Þ is computed from Equation (22).

� Update the a posteriori mean and variance of the phase noise according to Kalman equations (7– 8)
If the samples drawn up to time t is St , set

m�t ðSð jÞt Þ¼� mð jÞ�t
¼ �̂

ð jÞ
tjt

�
2ðjÞ
�t

ðSð jÞt Þ¼��
2ðjÞ
�t

¼ M
ð jÞ
tjt j ¼ 1; 2; . . . ;m:

� Do the re-sampling as described in Equation [4].
next j

� Estimate phase noise �̂t ¼ 1
m

Pm
j¼1 m�t ðSð jÞt Þ

next t
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generation and weight computation steps. Moreover, a par-

allel implementation with multiple processing elements

can be employed to increase speed further [4].

4. RESAMPLING METHOD

A major problem in the practical implementation of the

SMC method described so far is that after a few iteration

most of the importance weights have negligible values that

is w
ð jÞ
t � 0. A relatively small weight implies that the sam-

ple is drawn far from the main body of the posterior distri-

bution and has a small contribution in the final estimation.

Such sample is said to be ineffective. The SMC algorithm

becomes ineffective if there are too many ineffective sam-

ples. The common solution to this problem is resampling.

Resampling is an algorithmic step that stochastically elim-

inates those samples with small weights. Basically, the

resampling method takes the samples, to be generated

sequentially �t ¼ fSð jÞt ; mð jÞ�t
; �

2ðjÞ
�t

gmj¼1 with corresponding

weights fwð jÞ
t gmj¼1 as an input and generates a new set of

samples ~�t ¼ f~Sð jÞt ; ~mð jÞ�t
; ~�

2ðjÞ
�t

gmj¼1 with equal weights, that

is fwð jÞ
t ¼ 1=mgmj¼1, assuming they are normalised toPm

j¼1 w
ð jÞ
t ¼ 1. A simple procedure to achieve this

goal is, for each j ¼ 1; 2; . . . ;m, to choose ð~Sð jÞt ;
~mð jÞ�t

; ~�
2ðjÞ
�t

Þ ¼ ðSð jÞt ; mðiÞ�t ; �
2ðiÞ
�t

Þ with probability w
ðiÞ
t .

In this paper, a resampling technique suggested by

Reference [13] is employed. This technique forms a new

set of weighted samples ~�t ¼ f~Sð jÞt ; ~mð jÞ�t
; ~�

2ðjÞ
�t

gmj¼1 accord-

ing to the following algorithm. (assume that
Pm

j¼1 w
j
t ¼ m)

(1) For j ¼ 1; 2; . . . ;m, retain ‘j ¼ w
j
t copies of the sam-

ples ðSð jÞt ; mðiÞ�t ; �
2ðiÞ
�t

Þ. Denote Lr ¼ m�Pm
j¼1 ‘j.

(2) Obtain Lr i.i.d. draws from the original sample set

fðSð jÞt ; mðiÞ�t ; �
2ðiÞ
�t

Þgmj¼1, with probabilities proportional

to ðwj
t � ‘jÞ; j ¼ 1; 2; . . . ;m.

(3) Assign equal weights, that is set w
j
t ¼ 1, for each new

sample.

It is shown in Reference [13] that the samples drawn by

the above procedure are properly weighted with respect to

pðStjYtÞ, provided that m is sufficiently large. Note that

resampling at every time step is not needed in general.

In one way the resampling can be done every k0 recursions

where k0 is a prefixed resampling interval. On the other

hand, the resampling can be carried out whenever the

effective sample size, approximated as

N̂eff ¼ 1Pm
j¼1ðwj

tÞ2
	 m ð25Þ

goes below a certain threshold, typically a fraction of m.

Intuitively, N̂eff reflects the equivalent size of i.i.d samples

from the true posterior densities of interest for the set of m

weighted ones. It is suggested in Reference [4] that resam-

pling should be performedwhen N̂eff < m=10. Alternatively,
one can conduct the first approach to conduct resampling at

every fixed-length time interval say every five steps.

Figure 1. Tracking performance.
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5. SIMULATION RESULTS

In this section, we provide some computer simulation

examples to demonstrate the performance of the proposed

SMC approach for blind-phase noise estimation and data

detection in OFDM systems. The phase process is mod-

elled by AR process driven by a white Gaussian noise with

�2
u ¼ 0:1. st is modelled as a complex Gaussian process

which has zero mean and variance �2
s ¼ 1. The impulse

response of the channel has five uniformly distributed taps

with spacing equal to the sampling period and with expo-

nentially decaying profile.

In order to demonstrate the performance of the adaptive

SMC approach, we first present the tracking performance

for both phase and symbols at SNR ¼ 20 dB in Figure 1. It

is shown through simulations that the performance of the

proposed SMC algorithm can track the phase as well as

transmitted symbols close to the true values.

We then consider the performance (in terms of the phase

error �ðkÞ ¼ ð�t � �̂tÞ for 1000 Monte Carlo trials for dif-

ferent initial phase errors �ðkÞ ¼ 0; p=4; p=2; 3p=4; p. The
phase error for several values of �ð0Þ for a wide range of

SNR values. The results are shown in Figure 2.

The performance of the proposed algorithm is further

exploited by the evaluation of average MSE over observed

subcarriers for different SNRs and different initial phase

errors. The average MSE performance of this adaptive

approach for both phase and symbols are plotted in

Figures 3 and 4.

Our simulations indicate that as the initial phase error

�ð0Þ approaches p, the probability that the phase error

converges to the dual equilibrium point becomes very

high.

Moreover, the relevant simulation results show that the

proposed scheme enables to perform blind reliable phase

tracking with relatively good initialisation.
Figure 3. Average MSE performance of phase noise for different
initialisations.

Figure 2. Tracking performance for different initialisations at
SNR¼ 10 dB. Figure 4. Average MSE performance of st for different

initialization.
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6. CONCLUSIONS

We have developed a new adaptive Bayesian approach for

blind-phase noise estimation and data detection for OFDM

systems based on sequential Monte Carlo methodology.

The optimal solutions to joint symbol detection and phase

noise estimation problem is computationally prohibitive to

implement by conventional methods. Thus the proposed

sequential approach offers an novel and powerful approach

to tackling this problem at a reasonable computational cost.

The performance merits of our blind-phase noise estima-

tion algorithm is confirmed by corroborating simulations.

Sensitivity to initialisation of the proposed algorithm are

investigated for OFDM systems. It is observed from simu-

lations that as the initial phase error �ð0Þ approaches p, the
probability that the phase error converges to the dual equi-

librium point becomes very high.
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