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Ab�tract-Visible light communications (VLC) is an emerging 
fiel� m technology and research. Estimating the channel taps is a 
major requirement for designing reliable communication systems. 
Due to the nonlinear characteristics of the VLC channel those 
parameters cannot be derived easily. They can be calculated by 

!'leans of software simu!at�on. In this work, a novel methodology 
IS proposed for the predictIon of channel parameters using neural 
networks. Measurements conducted in a controlled experimental 
s�tup are used to �rain neural networks for channel tap pre­
dictIOn. Our experIment results indicate that neural networks 
can be effectively trained to predict channel taps under different 
environmental conditions. 

I. INTRODUCTION 

Op�ical wireless communications (OWC) has attracted great 
attentiOn of researchers and engineers recently. The spectrum 
bottleneck associated with great demand of high data rates 
for mobile data usage pushes researchers to develop new 
technologies for wireless communications such as, millimeter 
wave, free space optical, underwater acoustic communications. 
Visible light communications (VLC) is one of the promising 
technology that is considered for 5G or further commu­
nications standards. VLC has many advantages over radio 
frequency systems (RF) approximately 10.000 times bigger 
and �nregulated ba?dwidth, low cost for deployment, higher 
secunty and lower mterference from other RF devices [1]. 

. 
OWC comprises VL (visible light) and IR (infra-red) re­

giOns of the spectrum as indoor/outdoor wireless communica­
tions medium. Visible light communications (VLC) is a branch 
of OWC

. 
operati?g in the V� (390nm-750nm) band. Intensity 

ModulatiOn 1 DIrect DetectiOn (IM/DD) method is accepted 
as the most applicable modulation technique to transmit data 
over visible light. In IM/DD data are coded on the small 
intensit� fluctuations. At the receiver, photo-detectors capture 
fluctuatiOns and convert them to digital data [2]. A proper 
channel model is one of the most important components to 
have robust, error-free and reliable wireless communications 
s
.
ystems. Despite the ever increasing popularity of the visible 

light communications, there is a lack of a proper VLC channel 
model. Obtaining an analytical expression for the channel is 
almost impossible due to the unpredictable changes in the 
environment. At this point, we propose that artificial neural 
net:vo�ks (ANN) can provide a practical and reliable approach. 
ArtifiCial neural networks are quite powerful tools to model 
the relationship between inputs and outputs of the system and 
th�y are quite useful when that relationship is non-linear. In 
this paper, we used multi-layer perceptron (MLP) network 
to construct a real time VLC channel estimator to obtain 
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channel taps under different environmental conditions with 
high accuracy. We constructed a realistic indoor environment 
in the laboratory and used real materials to investigate effects 
of the surface types having different reflectance values. In the 
se

.
quel, cha�nel taps are estimated by using asymmetrically 

clipped optical orthogonal frequency division multiplexing 
(ACO-OFDM) for real life scenarios. The learning phase based 
on A� has given us a model to estimate the channel taps. 
Then different groups of materials having different reflectance 
values have been used to test the validity of that model. 
Measur�ment results indicate that the model is capable of 
calculatmg the channel taps with an average accuracy higher 
than 97.7% in the training. The major contribution of the paper 
can be stated as follows: the real time channel model in VLC 
can be constructed using artificial neural networks based on a 
set of minimal measurements. Results show that, even with 
limited number of parameters and experiments, convenient 
channel models for VLC can be obtained. 

The rest of the paper is organized as follows: In Section 
II, we describe the visible light communications channel 
properties and its challenges. In Section III, we describe the 
methodology adopted for VLC channel estimation. In Section 
IY, we present MLP channel estimator and its performance. 
Fmally, we conclude the paper in Section V. 

II. CHALLENGES IN VLC CHANNEL MODELING 

Reflection and refraction patterns are already well defined 
for daily life materials however, dynamic parameters are 
affectin? the

. 
VL� channel (e.g. moving objects and people, 

fluctuatiOns m nOIse sources, unknown reflections of mixed 
type materials etc.) which complicate the derivation of an 
analytical expression for the channel model. Obtaining proper 
channel model ensures designing reliable and robust communi­
cation systems. Yet, in the literature most of the researches are 
using infra-red (IR) channel models or simple additive white 
Gaussian noise (AWGN) channel to model VLC environment 
[3], [4]. In [5], IR sources are defined as monochromatic 
where white LED's are considered as wide-band sources 
(380nm-780nm) intrinsically. It could be seen that wavelength 
dependent VL channel models are required. Previous studies 
about frequency selective mUlti-path VLC channel modeling 
are based on numerically computed non-sequential ray-tracing 
appro�ch. For �igher data rates VLC channel has frequency 
selective behaViOr [6]. Frequency selectivity basically means 
t�at chan�el acts as a simple FIR filter described by coeffi­
cients which are called "channel taps" in the communication 
literature. Obtaining channel taps brings great control over 
distortion cancellation in the received signal. These channel 
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taps are used to model channel impulse response (CIR) which 
can be expressed as attenuations and time delays as, 

N 

h(t) = I: Pio(t - Ti) (1) 
i=l 

where Pi is the power and Ti is the propagation time of the 
ith ray, 0 is the Dirac delta function and N is the number of 
rays received in the detector. Based on the obtained CIR, we 
can further define the fundamental channel characteristics. 

Channel DC gain (Ho) is one of the most important features 
of the VLC channel. It determines the achievable signal-to­
noise ratio (SNR) for fixed transmitter power. The delay profile 
is composed of dominant multiple line of sight (LOS) links 
and less number of non-line of sight (NLOS) delay taps. The 
temporal dispersion of a power delay profile can be expressed 
by the mean excess delay (TO) and the channel root-mean­
square (RMS) delay spread (TRMS)' These parameters are 
given by [6], 

iTr 
h(t)dt = O.97lXo h(t)dt 

1000 t x h(t)dt TO = 1000 h(t)dt 

It(t - To)2h(t)dt TRMS = 1000 h(t)dt 

Ho = I: h(t)dt 

(2) 

(3) 

(4) 

(5) 

From (2) it can be seen that 97 percent of the power of the 
CIR is contained in the [O,Tr] interval. In our experiments, 
512kHz bandwidth is selected for data transmission and up to 
2 channel taps are enough to model the channel adequately 
[7]. 

III. METHODOLOGY 

The block diagram of the transmitter and receiver part 
for ACO-OFDM based IM/DD (intensity modulation/direct 
detection) system is shown in Fig. l. In IM/DD method, 
commercial LED's are used as a transmitter by carrying 
information in the intensity of light where photo diodes are 
used as a receiver to detect small fluctuations in the light 
intensity. 

ACO-OFDM 
Transmitter 

LED 
ACO-OFDM 

Receiver 

Fig. l. ACO OFDM block diagram for VLC channel estimation 

In the transmitter part, user generated bit stream is mod­
ulated and carried by LEDs where VLC channel part con­
veys various disturbances such as ambient lights, reflections, 
refractions and obstructions. Lastly, at the receiver, channel 
coefficients are estimated by using already known signals 
(pilot symbols). Then, estimated channel coefficients are used 
in the MLP training to predict the channel taps in different 
environments without using further knowledge. 

A. Selection of Materials 

The channel model (taps) heavily depend on the surface 
types of the environment because receiver captures reflected 
rays. For this reason the neural neural network model should 
include surface materials covering a wide range of reflectivity. 
Materials in the experiments are selected from NASA's spec­
tral database [8] and realistic indoor configuration is created 
in the laboratory setup. Materials used in the experiments and 
their relative reflectances are shown in Fig. 2 and in Table I 
respectively. 

Plaster Pi 

Fig. 2. Photographs of materials used in the experiments. 
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Fig. 3. Relative reflectance values for the materials 

From Fig. 3, it can be deduced that the plaster has the 
highest average reflectance where the pine wood and black 
flat paint have intermediate and lowest average reflectance 
values respectively, over the VL band. Average reflectivity over 
420nm-700nm band can be calculated from % Reflectance p 
and normalized spectral power distribution vectors PN as, 

1 M 
Pavg = P X PN = -- I: PkPk PTotal k=l 

(6) 

where Pavg represents the average reflectance values for VL 
band and total spectral power distribution PTotal can be 
calculated from the areas under the curves in Fig. 4 as L;�1 Pz 
where M and PI are the number of sample points between 
420nm and 700nm and discrete spectral power distribution of 
the LEDs respectively. 

B. Selection of Light Sources and Detectors 

In the experiment, two different types of light sources are 
used to investigate the effects of wavelengths on reflectivity. 
For that purpose, single chip, white and blue power LEDs are 
used. Spectral power distributions of these LEDs are shown 
in Fig. 4. 
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TABLE I 
INPUT FEATURES USED IN MLP 

AUributes Descriptions Values 

Refleclivity 

Low: Black Flat Paint 

Medium: Pine wood 

High: Plaster 

Average Reflectance ror White LED 

Black Flat Paint: 0.0352 

Average Reflectance ror Blue LED 

Black Flat Paint: 0.0350 

Pi ne wood: 0.5059 Pine wood: 0.4541 

Plaster: 0.7489 Plaster: 0.7285 

Transmitter type 
White LED 

Blue LED 
Average Spectral Power for White LED: 63.02 W Average Spectral Power for Blue LED: 41.56 W 

LOS/NLOS 
NLOS 

NLOS+LOS 

NLOS: 45°bctween Rx and surface normal while Tx and Rx are directed to each other. 

NLOS+LOS: QObetween Rx and surface normal while Tx and Rx are directed to each other. 

Noise Level 

Distance between Tx and Rx 

Receiver Gain 

450 500 550 

External light sources are OFF 

Only one external light source is ON 

External light sources arc ON 

20 cm to 200 cm 

10 dB 1030 dB 

-SST-50 White LED 
-SST-gO Blue LED 

600 650 700 
Wavelength (nm) 

Fig. 4. Spectral power distributions of the SST-50 White and SST-90 Blue 
LEOs 

Since these power LEDs are manufactured for illumination 
purposes only, the bandwidth and linearity of the LEDs must 
be taken into consideration. Those problems will be detailed 
in the following part. 

C. Measurement Setup and Channel Estimation 

System hardware design and the ACO - OFDM transmitter 
structure are shown in Fig. 5. 

COMPUTATION 
SOFTWARE DAQBOARD 

LED 
CURRENT 

DRIVER 

Fig. 5. Block diagram of the transmitter part 

LED 

Data processes on the OFDM frame are executed in the 
computer simulation environment. State of the art digital ac­
quisition board (DAQ) connects digital and real world together 
by synthesizing the digital samples using sample and hold 
circuit of 16 bits resolution. DAQ board has IVN transfer 
function which means that discrete samples of IV magnitude 
in software can be synthesized as 1 V in the real world. 
Generated analog signals pass from the laser diode driver with 
300mAN transfer function. For typical LEDs, illumination 
and current has a linear relationship within the LED's linear 
region. To make sure that the LEDs are operating in the linear 
region, the maximum transmitted signal power is limited to 
1.25 Watts [9]. 

External light sources arc OrF: 1 

Only one external light source is ON: 2 

External light sources are ON: 3 

For training data, from 20 cm to 200 cm by increments of 20 cm 

For test data, from 20 em to 200 em by increments of 5 em 

20cm � distance < 40cm : 10 dB 

40cm. � distance < 80cm : 20 dB 

80cm < disi�ance < 200cm : 30 dB 

Photodiode 

DAQ BOARD COMPUTATION 
SOFTWARE 

Fig. 6. Block diagram of the receiver part 

In the receiver part shown in Fig. 6, Silicon Based Switch­
able Gain Detector is used to capture very tiny alterations 
in the light intensity. Synchronization between the transmitter 
and receiver is ensured by DAQ board's built-in trigger mech­
anism. According to the system setup defined above, OFDM 
frame structure is obtained as follows. Random generated 
source bits are transmitted in the blocks of Tsym duration 
and modulated in M-QAM modulator where they are pro­
cessed parallel in further blocks with symbol duration of 
Ts = Tsym/N. The total number of actively used sub-carriers 
are represented as N and for simplicity N is taken to be 
equal to the IFFT block size. Input s�nal in the frequency 
domain X = [XO,X1,X2,'" ,XN-1 ] meets the Hermitian 
symmetry and only the odd indexed sub-carriers contain data 
where the oth (DC) and (N/2)th sub-carriers are set to zero 
to avoid any complex term and fulfill the Hermitian symmetry 
[2], [3]. 

X [k] = { �* 
N-k 

k is even 
k is odd (7) 

where * denotes the complex conjugate. Lowercase letters 
are used for time-domain signal representations and uppercase 
letters are for discrete frequency-domain signals. The resulting 
real, bipolar and anti-symmetric time-domain IFFT signal is 
given by, x = [XO,Xl,'" ,XN-l]Y . 

N-l 
x [n] = _1_ L X [k] ej 2i!ln 

ffi k=O 
(8) 

where N is the number of points in IFFT and X [k] is the kth 
sub-carrier of signal X which contains already known pilot 
symbols for channel estimation procedure. Due to Hermitian 
symmetry and zero insertion process, the number of data 
symbols carried by sub-carriers in ACO-OFDM is only N /4. 
A cyclic prefix (CP) is then added to the discrete time samples, 
where Ncp is denoted by the length of the CPo In our 
experiment, Ncp is taken as greater or equal to Lh where Lh 
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is the length of the impulse response of the optical channel. 
Negative part of the signal is clipped to generate real and 
unipolar signal is given by, 

lx [nlJc = { � [n] if x [n] � 0 
if x [n] < O. (9) 

The clipping noise will fall only on the even sub-carriers and 
will not affect the transmitted symbols carried by odd sub­
carriers. There is no need to add a DC bias to the clipped 
signal in the conventional ACO-OFDM system. 

Parameter 
N 
K 
Ps 

Lcp 
Ctype 

Vtrigger 
Vbias 
HTX 
HRX 

TABLE II 
PARAMETERS OF EXPERIMENT 

Description 
OFDM frame length 

Active sub-carrier number 

Pilot Separation 

Cyclic Prefix length 

Constellation type 

Triggering voltage at the receiver 

Bias level at the transmitter 

Transmitter height from material 

Receiver height from material 

Value 
512 

504 

2 

4 

4-QAM 

0.075V 

150mA 

19cm 

19cm 

At the receiver, photo-diode detects and converts the op­
tical signals into electrical signals. Received signal contains 
amplified/attenuated components as well as inter-symbol in­
terference (lSI) and additive white Gaussian noise (AWGN). 
Received time-domain signal has the form of, 

y(t) = x(t) ® h(t) + w(t) (10) 

where ® denotes the circular convolution operation, h(t) = 

[h(O)h(l) ... h(Lh - l)V is the L-path impulse response of 
the optical channel and w(t) is an AWGN that represents the 
noise in the environment. Ambient noise is in the form of DC 
and AWGN is added in the electrical domain and overall noise 
power is denoted by (J"n. 

Fig. 7. Comb type pilot symbol arrangement for ACO-OFDM 

After detection, AID device converts the analog signal 
into the digital domain. After removing the CP, the Fast 
Fourier Transform (FFT) of the received signal y is taken in 
the computation software. Channel is estimated in frequency 
domain by single tap zero forcing equalizer (ZFE) as, 

TABLE III 
MSE PERFORMANCE IN TRAINING PHASE 

Test Test Channel Tap I Phases Training (Black Flat Paint - Pine wood) (Plaster - Pine wood) 
hI 1.8 e·06 3.2 e·04 8.0 e·05 

h2 6.0 e·07 1.5 e·05 3.0 e·06 

where Hestimated shows N x 1 estimated channel taps vector 
in the frequency domain, X is the N x N diagonal pilot 
symbols matrix and W is N xl AWGN vector in the frequency 
domain. Due to fact that only odd sub-carriers are modulated 
and even sub-carriers left as zero this is comb-type channel 
estimation for ACO-OFDM as shown in Fig. 7. Thus, cubic 
interpolation is applied to Hestimated before taking IFFT and 
the time domain representation of the channel taps are obtained 
[10]. The parameters of the communication system used in the 
experimental setup are given in Table II. 

D. Multi-Layer Perceptron Structure 

Designed structure of the MLP is shown in Fig. 8 which 
contains one hidden layer [11]. 

Fig. 8. MLP Structure 

As explained in Section II, only two channel taps are enough 
to model the effects in optical wireless channel. Thus, the 
MLP structure will have two outputs. Although there are many 
parameters that affect the channel directly, in this experiment 
six major attributes are chosen as MLP inputs which are given 
in Table I in detail. 

The training performance of the MLP is given in Table III in 
terms of MSE (mean squared error) in the column "training" . 
Another measure of performance is displayed in Table IV 
in the "training" column. The channel taps can be estimated 
with a mean percentage absolute error of less than 2.3%. The 
behavior of MSE in training epochs is displayed in Fig. 9 . 

For testing the trained MLP system, we have expanded the 
general model which depends on the following parameters: 
reflectivity, transmitter type, NLOS/LOS and noise levels. Two 
different cases are created for reflectivity values where the 
surface is covered with half black flat paint and half pine­
wood as the first case and for the second case, the surface 
is covered with half plaster and half pine-wood. According 
to white and blue LEDs, new hybrid reflectance values are 
given in Table V. Parameters related to the MLP structure and 
training are given in the next section. 

IV. MEASUREMENTS AND RESULTS 

-1 W Hestimated = X Y = H + 
X 

Measurements are performed for 10 distance values in the 
(11) interval of [20cm : 200cm] by increments of 20cm between 
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TABLE IV 
MEAN % ABSOLUTE ERROR 

Channel Tap I Phases Training Test Test 
(Black Flat Paint • Pine wood) (Plaster· Pine wood) 

hI 2.3 13.3 13.0 

h2 1.2 4.4 2.7 

the receiver and the transmitter units. Three different materials 
are used: plaster, pine-wood and black flat paint for high, 
medium, low reflectance values respectively. In the transmitter, 
white and blue color LEDs are used. NLOS and LOS effects 
are realized by 0 and 45 degrees of angle between material 
surface and photo-diode normal. Three different disturbance 
levels are created by external light sources in the environ­
ment. According to the distances between the transmitter 
and the receiver, power control procedure is applied at the 
receiver to prevent saturation. Thus, receiver gain is chosen 
for 20cm :::; distance < 40cm interval as 10 dB, for 
40cm :::; distance < 80cm interval as 20 dB and for 
80cm :::; distance < 200cm interval as 30 dB. In order 
to increase validity of the measurements, mean of the 10 
consecutive measurements are used as estimated channel taps. 
In total, 3 x 2 x 2 x 3 x 10 = 360 measurements are used 
to estimate 2 channel taps according to the method given in 
the Section II-e. These measurements are used for training 
of the MLP where tangent sigmoid function is used as the 
nonlinearity in the hidden layer and linear activation function 
is used in the output layer. To find the optimum performance 
for the training, different number of hidden layer neurons 
are tested. As seen in Fig.l0, the best validation error in the 
training phase is achieved for 10 neurons in the hidden layer. 
Hence, NN model for estimating two channel taps for VLC 
has been obtained. 

� 

e 10-2 w 
." 
� 
�10-4 
en 
c: '" .. 
:;: 10"" 

5 10 15 
Number of Epochs 

20 

Fig. 9. MSE perfonnance of training phase 

Train 
-Validation 
-Test 

Best 
Goal 

25 

Using two hybrid surfaces and considering other parameters, 
8 measurements are carried out randomly at distances between 
20cm and 200cm. Again, each measurement is repeated 
10 times. The aim of these measurements is to verify the 
prediction capability of the trained neural network. Test results 
are given for the constructed hybrid surfaces in Table III and 
Table IV. Table III displays MSE performance for the two 
test cases. As can be seen, the MSE performance is one to 
two orders of magnitude worse than training. However, as can 
be seen in Table IV, the mean percent absolute errors for the 
test cases are still acceptable. Especially, for h2 (transmission 
with reflections) the mean percentage absolute error is below 
5% for test cases. For a detailed analysis of the percentage 
absolute error, Figs. 11-12 are given. Here the histograms of 

TABLE V 
AVERAGE REFLECTANCES OF HYBRID MATERIALS 

Materials / LED White Blue 
Plaster - Pine Wood 0.2705 0.6274 

Black Flat Paint - Pine Wood 0.2445 0.59l3 

percentage absolute errors are given for the training and for 
one of the test data. 

1 X 10-4 

0.2 

j ..... ,Training Test Error l 
- -Validation Error 
---Training Error 

Number of Neurons in the Hidden Layer 

Fig. 10. System performance for different number of hidden neurons 

80 
>-g 60 Q) " 0-� 40 LL 

20 

2 4 6 8 10 12 14 16 
% Error 

Fig. 11. Percentage absolute error distribution for h I in training data 

20 

10 20 30 40 50 60 
% Error 

Fig. 12. Percentage absolute error distribution for hI in plaster&pine-wood 
data 

V. CONCLUSION 

In this work, we created an experimental setup to estimate 
VLC channel taps by using neural networks. Based on the 
knowledge of transmission bandwidth, 2 channel taps are 
enough to model VLC channel. Six input features (reflectivity 
of different materials, transmitter types, LOSI NLOS, noise 
levels, receiver gain and distance between the transmitter and 
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receiver) are used to predict the two channel taps. Experimen­
tal data are used to train the MLP network. The results showed 
that the system can learn the channel taps with 2.3% mean 
absolute error in the measurement data set. The channel taps 
for different hybrid materials in the test phase are predicted 
with approximately 14% mean absolute error for tap 1 and 
4.3% for tap 2. Those results indicate that such a procedure 
may be used effectively to predict channel parameters for 
VLC. As an alternative to expensive and time consuming 
simulation softwares, these methods can be used effectively for 
channel estimation in the VLC. For the future work, different 
types of surfaces and higher order NLOS channel taps for 
higher bandwidths will be investigated. P erformance of the 
system in terms of training, validation and test data shows 
that VLC channel estimation by using neural networks is a 
promising field for future research. 
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