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Abstract—The application of compressive sensing (CS) theory
has found great interest in wideband spectrum sensing. Although
most studies have considered perfect reconstruction of the pri-
mary user signal, it is actually more important to assess the
presence or absence of the signal. Among CS based methods,
Bayesian CS (BCS) takes into consideration the prior information
of signal coefficients to be estimated, which improves signal
reconstruction performance. On the other hand, the sparsity
level of the signal to be estimated has a direct impact on signal
reconstruction and detection performances. Considering all of
the above, the effect of sparsity level on BCS based spectrum
sensing is studied in this paper. More specifically, a BCS based
spectrum sensing scheme is considered and its mean-square error
(MSE) performance is compared with the Bayesian Cramer-
Rao bound for various user bandwidths. BCS MSE is also
compared with the deterministic lower MSE (DL-MSE), which is
a tight lower bound of the conventional basis pursuit approach.
Furthermore, complementary receiver operating characteristic
(ROC) curves are obtained to examine the trade-off between
probabilities of false alarm and detection, depending on the user
signal bandwidth.

Index Terms—Cognitive radios, energy efficiency, Bayesian
compressive sensing, spectrum sensing, probability of detection,
probability of false alarm

I. INTRODUCTION

In the last decade, limited frequency resources and energy
efficiency have become two leading major issues in wireless
communications. One way of efficiently utilizing the frequency
resources is through cognitive radios [1], which sense the spec-
trum and opportunistically use the unused frequency bands. In
order to assess the presence or absence of primary systems in
a wider frequency range, wideband spectrum sensing studies
have been conducted [2], [3]. In these studies, the increase in
bandwidth corresponds to higher sampling rates at the receiver
side, hence, spectrum sensing becomes less energy efficient in
terms of sampling operation.

In the case a signal exhibits a sparse structure, the signal can
be estimated by using compressive sensing (CS) theory pro-
posed in [4] and [5]. According to the CS theory, an M -sample
long sparse signal, which contains K nonzero coefficients,
can be recovered with high probability by projecting it on an
N ×M random measurement matrix, where K << N < M .
In wideband spectrum sensing, the received signal may be
viewed as sparse in frequency domain , if there are only few
orthogonal users active in a wide frequency range. In that case,
CS based approaches can be applied for spectrum sensing [6].

In CS based spectrum sensing studies, there are different
implementations to assess the primary users. In [7], spectrum
identification, which is robust to interference, is evaluated by
determining user locations and providing transmission powers
of involved signal without reconstruction. In [8], the total
iteration number in Bayesian CS (BCS) is reduced by setting
a threshold for significant spikes when the wideband signal is
block sparse. The probability of detection is calculated only
with changing signal-to-noise-ratio (SNR). However, recon-
struction performance is not particularly studied. In [9], wide-
band cooperative CS based spectrum sensing has been evalu-
ated by using distributed sensing matrix. In [10], block sparse
signal has been estimated based on sparse Bayesian learning.
In [11], basis pursuit, Bayesian CS and multi-resolution BCS
performances are compared in terms of computation time and
reconstruction error. Considering [6] – [11], these studies (i)
do not consider a lower bound on the estimation/reconstruction
performance, and (ii) do not assess the received signal in the
absence of a primary user signal. However, in conventional
spectrum sensing studies [12], [13], receiver operating char-
acteristic (ROC) curves, which show the trade-off between
probabilities of false alarm and detection, are necessary to
assess the actual spectrum sensing performance.

In this paper, we consider the implementation of Bayesian
CS [14] for spectrum sensing and investigate the effect of
primary user bandwidth on signal reconstruction and detection
performances. Accordingly, we provide a lower bound on
the estimation performance and present complementary ROC
curves unlike [6] – [11]. Different from our earlier work in
[15], the effect of sparsity (i.e., user bandwidth) on the signal
reconstruction performance is studied and compared to the
achievable lower bounds; deterministic lower mean square
error (DL-MSE) and Bayesian Cramer-Rao bound (BCRB).
Furthermore, probabilities of false alarm and misdetection are
obtained for various scenarios, where [15] did not consider the
possible absence of a primary user signal. This consideration
is important as probability of detection alone is not a sufficient
measure to understand the signal detection performance.

The rest of paper is organized as follows. Bayesian CS for
parameter estimation is explained in Section II. In Section
III, primary user signal model is presented. System perfor-
mance is evaluated in terms of reconstruction and detection
performances in Section IV. In Section V, simulation results
are interpreted. Concluding remarks are given in Section VI.
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II. BAYESIAN CS FOR PARAMETER ESTIMATION

Primary user signal is transmitted through an additive white
Gaussian noise (AWGN) channel in time domain. The received
signal, which is corrupted by noise, sampled below Nyquist
rate can be modeled as

r = A
(
wt + nt

)
(1)

where A ∈ <N×M , wt ∈ <M×1, and nt ∈ <M×1 represent
random projection matrix, primary user signal in time domain,
and AWGN, respectively. The above equation can be rewritten
via inverse discrete Fourier transform (IDFT) matrix, F−1, as

r = AF−1wf + Ant = Φwf + nf (2)

where wf corresponds to frequency spectrum occupied by
primary users, Φ = AF−1 can be viewed as a transition
matrix representing a conversion from frequency domain to
time domain, and nf denotes Gaussian distributed noise
samples with mean zero and variance σ2.

In Bayesian learning technique [14], a prior information
is introduced on signal coefficients, where the coefficients
are assumed to be Gaussian distributed. The main objective
of BCS is to estimate the sparse parameter vector wf by
exploiting a sparsity-promoting prior through the estimation of
hyperparameters α and β that represent, respectively, inverse
noise variance and inverse variance of signal coefficients. The
full posterior probability of unknowns can be defined as

p(wf ,β, α|r) =
p(r|wf ,β, α)p(wf ,β, α)

p(r)
. (3)

However, it is theoretically not possible to calculate the
received signal probability, which is defined by following
equation, as it requires triple integration over unknowns:

p(r) =

∫ ∫ ∫
p(r|wf,β, α)p(wf,β, α)dwfdβdα. (4)

Therefore, the full posterior probability can be rearranged as

p(wf ,β, α|r) = p(wf |r,β, α)p(β, α|r). (5)

Before presenting received signal’s probability density func-
tion, independent identically distributed zero-mean Gaussian
noise process can be defined as

p(nf ) =

N∏
i=1

N (nfi |0, σ2). (6)

Accordingly, received compressed signal distribution will be

p(r|wf , α) = (2πσ2)−N/2 exp

(
− 1

2σ2
||r−Φwf ||22

)
(7)

where || · ||2 represents `2-norm. In Bayesian approach, prior
information on spectrum coefficients is included unlike basis
pursuit approach. The distribution of prior information can be
expressed as [14]

p(wf |β) =

M∏
i=1

(2πβ−1i )−1/2 exp

(
−
βiw

2
f,i

2

)
(8)

where wf = [wf,1, wf,2, . . . , wf,M ]T .
The first multiplier of posterior probability given in (5) can

be expanded via Bayes’ rule as

p(wf |r,β, α) =
p(r|wf, α)p(wf|β)

p(r|β, α)
. (9)

The posterior probability given in (9) results with the
distribution N (µ,Σ), where [14]

µ = αΣΦT r

Σ =
(
diag(β) + αΦTΦ

)−1
. (10)

The distribution of unknown parameters, p(β, α|r), which is
the second multiplier of (5), is obtained via type-II maximum
likelihood technique by operating relevance vector machines
(RVM) [16]. The maximization process can also be applied
to p(r|β, α), which is proportional to p(β, α|r) [14]. The
marginal likelihood function can be described as

p(r|β, α) =

∫ +∞

−∞
p(r|wf , α)p(wf |β)dwf . (11)

It is more appropriate to use log-marginal likelihood function
in maximization process and it can be given as [17]

log p(r|β, α) = log

∫ +∞

−∞
p(r|wf , α)p(wf |β)dwf (12)

=
N

2
log α− 1

2
(αrT r− µTΣ−1µ)

− 1

2
log |Σ| − N

2
log (2π) +

1

2

M∑
i=1

log βi.

In order to find the hyperparameter values that maximize
marginal likelihood function, the derivative of this function
over α and β should be equal to zero. The estimated hy-
perparameter values which are updated every iteration during
iteration process are obtained as

βnew
m =

1− βmΣmm

µ2
m

(13)

αnew =
N −

∑M
m=1(1− βmΣmm)

||r−Φµ||22
where Σmm is the m-th diagonal element of the covariance
matrix and µm is the m-th posterior mean value. After
calculating hyperparameter values at each iteration, a stopping
criterion can be applied to finish the iterative algorithm.
Therefore, a difference value, δ, can be defined as [17]

δ =

M∑
i=1

∣∣βn+1
i − βn

i

∣∣ (14)

where βn+1
i and βn

i denote inverse variance of the prior
belonging to ith hyperparameter at the (n + 1)th and nth

iterations, respectively. When the difference value is smaller
than a threshold value, δthold, (i.e., δ < δthold), the estimation
process will be terminated. At the end of the iterations, the
unknown primary user signal can be reconstructed as

ŵf = µ. (15)
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Fig. 1. Frequency domain primary user localization

III. PRIMARY USER SIGNAL MODEL

Primary user signal model can be summarized as in (2) as

r = Φwf + nf (16)

where wf ∈ <M×1 is the primary user signal to be estimated.
Frequency spectrum consists of L orthogonal bands where
each frequency band has (M/L)-sample long representation.
Primary user occupies the spectrum with bandwidth, B, which
is defined as B = (M/L)∆f where ∆f is the frequency
resolution. While SNR per primary user signal is given as

γ =
wT

f wf

σ2
, (17)

SNR per subcarrier can be defined as

γSC =
w2

fi

σ2
= γ

L

M
(18)

where wfi represents the ith subcarrier coefficient. A primary
user signal has a bandwidth of BW = kB, where k ∈
{1, 2, ..., L}. This is illustrated in Fig. 1 for M = 512, L =
32,∆f = 1 MHz and k ∈ {1, 2, 3}. As seen in the figure, there
are three different spectrum utilization scenarios for primary
users with different bandwidths of 16 MHz, 32 MHz, and
48 MHz, respectively. Also, note that SNR per subcarrier is
fixed for all cases. While the above assumption of SNR is
fair, reconstruction error performance degradation is expected
due to bandwidth increasing (i.e., sparsity level degrading) and
SNR per subcarrier decreasing when SNR per user is fixed for
each scenario.

IV. SYSTEM PERFORMANCE

The system performance will be evaluated from both recon-
struction and detection performance aspects.

A. Reconstruction Performance Evaluation

Reconstruction performance is measured by calculating
MSE, and comparing it to DL-MSE which is a tight bound on
basis pursuit [18] as shown in [19], and to BCRB which is a
lower bound for BCS based techniques.

The signal reconstruction error is measured with MSE as

MSE = E
{
||wf − ŵf ||22

}
. (19)

A lower bound on MSE, DL-MSE, can be calculated when
the locations of nonzero coefficients are known. It defines the
best performance that basis pursuit can obtain. Thus, DL-MSE
is defined as [20]

DL-MSE =
K

NγSC
(20)

where N is the number of observations used for compression
under the condition N < M .

On the other hand, in Bayesian approach, a lower bound
named BCRB contains extra information compared to DL-
MSE, as the estimator has prior knowledge about the distribu-
tion of signal coefficients. BCRB can be obtained following
[20] as:

BCRB = K

(
NγSC +

1

σ2
i

)−1
(21)

where σ2
i represents the variance of the ith prior. The deriva-

tion is not provided due to space constraints but can be inferred
from [20].

B. Detection Performance Evaluation

In addition to reconstruction, the detection of the signal is
also important because generally the knowledge of frequency
band usage, whether it is in use or not, is required. Therefore,
the detection performance should be used to assess the primary
users in addition to reconstruction.

The detection probability of the bandwidth of interest can
be expressed as

PdBW
= Pr

[
ŵT

fBW
ŵfBW

≥ λ | lth user active
]

(22)

where ŵfBW
denotes the spectrum coefficients estimated in

the specified bandwidth, BW , which is equal to kB for dif-
ferent bandwidth occupation scenarios when k ∈ {1, 2, ..., L}
and λ is the energy threshold value of the detector. Since BCS
may provide high detection probability, it is more appropriate
to define probability of misdetection, which is

PmdBW
= 1− PdBW

. (23)

Similarly, the probability of false alarm that belongs to
bandwidth of interest can be defined as

PfBW
= Pr

[
ŵT

fBW
ŵfBW

≥ λ | lth user not active
]
. (24)

In order to evaluate detection performances, complementary
ROC curves (PmdBW

vs PfBW
) will be presented via simula-

tions in the next section to monitor the performance trade-off.
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Fig. 2. Reconstruction error vs. SNR when CR=0.75

V. SIMULATION RESULTS

In this section, spectrum sensing performance will be
assessed by providing reconstruction and detection perfor-
mances. Reconstruction MSE results of BCS will be compared
with the lower bounds of DL-MSE and BCRB. For the
detection performance on allocated frequency bands, prob-
abilities of misdetection and false alarm will be presented.
While evaluating reconstruction and detection performances,
the effect of primary user bandwidth will be examined. To do
so, three different spectrum usage scenarios presented in Fig.
1 are considered. Accordingly, it is assumed that frequency
spectrum can support up to L = 32 orthogonal users at the
same time when each user’s bandwidth is B = 16 MHz (i.e.,
B = (M/L)∆f ), where ∆f = 1 MHz and M = 512. On
the other hand, it is also assumed that a user may have a
wider bandwidth BW = kB, where k ∈ {1, 2, 3}. Sparsity
level is defined as the ratio of the nonzero components to
the length of the discrete spectrum. Sparsity levels (K/M )
are therefore {16/512, 32/512, 48/512} for various bandwidth
considerations with corresponding signal energies being 1, 2,
and 3 Joules, respectively. Compression ratios (N/M ) are
selected as CR={0.25, 0.375, 0.5, 0.625, 0.75, 0.875}.

In Fig. 2, reconstruction error performances are plotted for
a compression ratio fixed at 0.75. Reconstruction performance
with corresponding lower bounds that belong to the minimum
bandwidth scenario is the best since it has the minimum
number of nonzero spectrum coefficients, as expected. In
addition to that, BCRB is a tight bound for BCS MSE and
lower than the DL-MSE bound since it has prior information
of the probability distribution of spectrum coefficients. BCRB
bounds are attained by BCS MSE at {15, 18, 21}dB SNR for
{16, 32, 48}MHz BW, respectively. Note that DL-MSE serves
as the best possible performance of basis pursuit, which is
inferior to BCS MSE for medium to high SNR range.

In Fig. 3, SNR is fixed at 20dB and reconstruction error
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Fig. 3. Reconstruction error vs. compression ratio when SNR=20dB
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Fig. 4. Probability of misdetection vs. probability of false alarm when
CR=0.375, SNR=-10dB

performances over various compression ratios are shown.
Estimation performance is improved as compression ratio
increases, as expected. Furthermore, BCS MSE attains the
BCRB at {0.375, 0.5, 0.75} compression ratios for {16, 32,
48} MHz BW, respectively. On the other hand, BCS MSE
outperforms DL-MSE for all compression ratios when the BW
is 16 MHz (the most sparse case), and for compression ratios
greater than 0.375 when the BW is doubled or tripled. It should
also be noted that the MSE performance does not improve
much when the compression ratio is further increased. For
example, when the BW is 16 MHz, it is better to select the
compression ratio as 0.5 as opposed to 0.875, since the MSE
performances are almost the same.

In Figs. 4 and 5, complementary ROC curves are plotted
when compression ratios are 0.375 and 0.75, respectively, at
SNR=-10dB. The SNR level selected is low so that proba-
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bility of false alarm and probability of misdetection can be
observed. For a fixed false alarm rate, it can be observed that
a sparser structure (i.e., narrower bandwidth) always has better
misdetection performance. When the false alarm rate is set to
0.1, by increasing the number of observations from 0.375M
to 0.75M , probability of misdetection reduces from 0.55 to
0.37 for 16 MHz BW, from 0.64 to 0.47 for 32 MHz BW, and
from 0.71 to 0.52 for 48 MHz BW.

While this study focused on the effect of the user bandwidth
on the reconstruction and detection performances in an AWGN
channel, future work will include the effect of fading.

VI. CONCLUSION

In this study, the effect of primary user bandwidth on the
reconstruction and detection performances was investigated for
BCS based spectrum sensing. It was observed that the BCS
MSE can attain the BCRB at medium to high compression
ratios and SNR values. Furthermore, the MSE performance
is better for narrower bandwidths (i.e., sparser structure).
More importantly, the detection performance was determined
in terms of probabilities of misdetection and false alarm for
the low SNR region and their trade-off is presented. It should
be noted that the absence of a primary user is not considered
in most of the CS based spectrum sensing studies. The results
of this work are important as the BCS based spectrum sensing
provides sampling reduction at the receiver and yet achieves
superior performance compared to DL-MSE for a wide range
of compression ratio and SNR values.

ACKNOWLEDGMENT

This study is supported by The Scientific and Technological
Research Council of Turkey (TÜBİTAK) under project no.
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