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Abstract—We consider connected navigation of autonomous
mobile robots with transitions in the group formation. The
robots navigate using simple local steering rules without requiring
explicit communication among themselves. The formations are
achieved by designing proper cost functions and formation
transitions are succeeded by switching among these cost functions.
The resulting system is proven to be deadlock-free under certain
conditions.

Keywords—Autonomous motion, formation, connectivity

I. INTRODUCTION

In this paper, we propose a methodology for the navigation
of autonomous robot groups with switchable formations, while
maintaining group connectivity. We assume that the robots
have position sensors of limited range and with bounded
measurement errors, but no communication capabilities. In
studies related to connected navigation and the group behavior
of mobile robots, many authors assume group connectivity or
communication within the group during the period of motion
as a prerequisite for the success of their methods. For example,
graph theory or potential field techniques are employed in this
way in [1]–[6].

Graph theoretic approaches to maintain the connectivity of
mobile agents are mainly based on the maximization of the
second smallest eigenvalue (Fiedler value) of the Laplacian
matrix of the graph [3][4], [7]. Even if this maximization
can be accomplished in a distributed manner as suggested in
[3], this does not eliminate the necessity of communication
between the robots. Only a few studies, however, have focused
on maintaining connectivity without relying on information
exchange or communication between robots [8][9]. The algo-
rithmic methodologies in these studies assume that the robots
are points, and are designed to work only in R

2 with perfect
measurements via sensors.

The approach proposed in a recent work by the authors
[10] and [11] results in the navigation of a robot group having
dynamic topology using only limited-range position sensors
with guaranteed connectivity. In these works the sensors are
subject to measurement errors and the robots may occult other
robots in the group. It was also proven in [11] that the resulting
navigation is deadlock-free as long as there is no restriction
in the navigation space. However, as the group connectivity is
the main concern, the connectivity level of the group is always
non-decreasing in these works, unless occultation occurs. This

gives rise to a ball-shaped formation of the group and creates
difficulty in some tasks, such as passing through a narrow
corridor. Hence, dynamically changing the group formation is
inevitable in a multi-robot navigation system.

Group formation is a widely studied area in mobile
robotics. While it can be achieved by a central mechanism and
communication channels, decentralized formation is obviously
much more challenging, where each agent decide on its own
movements autonomously [12], [14]. The available approaches
for the decentralized control of formation can be analyzed
in three categories: Behavior-based approach [13], leader-
follower models [12], and virtual structure techniques [14].
In this work we use cost functions which are basically virtual
potential fields. Although a leader is present in the group of
robots studied in this paper, its sole function is only to progress
through the trajectory and cause the rest of the group to follow
him. The leader has not a specific role in formation.

The agents in the group are described in the following
section. In Section III, Local Steering Strategy and motion con-
straints are stated. Formations using cost functions, switching
mechanism and a deadlock theorem are given in Section IV.
The proposed methodology is tested by computer simulations
in Section V. Finally, Section VI presents concluding remarks
on the study.

II. PROBLEM FORMULATION

The group consists of identical robots that are omni-
directional and equipped with limited-range relative position
sensors. The sensors provide continuous measurements of
distances and relative angles within their range. The mea-
surements can bear both angular and radial errors, which are
bounded by the positive scalars ∆θ and ∆r, respectively.

Sensing other robots means obtaining information about the
position of the robots in the neighborhood via relative position
sensors. We refer to such a mutual visibility between robots
as a link. However, such a link does not require any explicit
communication or information exchange between the robots.
Note that sensing the other robots does not imply recognizing
a specific robot. In other words, the robots have no ID’s or
labels.

We denote a group of autonomous mobile robots with links
based on their sensing neighborhood as G and the individual
robots as Ri (i = 1, . . . , N ). Note that the subscripts are
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arbitrary and for the sake of analysis only. Considering the
robots R1, . . . , RN as the vertices and the links between them
as the edges of an undirected graph, this graph is connected
if there is a path from any robot to any other robot in the
group through links [7]. Hence, without loss of any rigor, we
can say that the group G is connected, whenever the graph
corresponding to G is connected. Conversely, a group which
has at least one pair of robots having no path between is
disconnected.

Since we assume that the position sensing ranges of the
robots are limited and the total number of robots in the group
can be large, a robot may not sense all other robots in the
group. We call the set of robots sensed by Ri as the subgroup
Si. So, there are N such subgroups of G and, if G is connected,
Si (i = 1, . . . , N ) are nonempty sets.

We denote the radius of the spherical region with Ri at its
center and containing the robots in Si as dmax. In other words,
dmax is the maximum sensing distance for each robot. If dmax

is large enough so that the robots can sense even the farthest
member of the group, then G will be connected. However, one
faces nontrivial and more interesting cases for robot groups of
a large number of individuals having short sensing ranges and
are spread over a relatively large area.

We assume that sensing is always mutual, that is, if a
robot Ri senses any other robot Rj , then Rj has the position
information of Ri too. In implementing position measurement,
which might be performed using any kind of ultrasonic, laser
or vision-based sensors, it is inevitable that some robots might
occlude others. In such a case, occluded robots are not sensed
by a robot, say R1, (hence, they are not in S1) although their
distances to R1 are less than dmax. Consequently, whenever
occlusion occurs, the positions of the occluded robots cannot
be taken into account in the computation of the local movement
at that time instant. Note that the mutuality of position sensing
is also valid under occlusions.

Having these sensing limitations and assuming that a set
of robots initially form a connected group, our objective in
this work is to develop a decentralized steering methodology
that allows navigation of the non-communicating group while
preserving and adjusting its connectivity so that the group can
change its formation for passing some static barriers.

Once connectivity is assured, the target or navigation trajec-
tory of the mission need not be known by all group members.
In fact, it suffices if only one robot has this information [9].
We call this robot the leader of the group and denote it as
RN . Nevertheless, the leader has the same physical properties
and capabilities as the other robots. The only difference is that
the trajectory to be followed by the group is given to RN . In
fact, the leadership of the group is hidden. None of the robots
recognize the leader as a distinguished group member. In other
words, if RN is sensed by robot Rj , i.e. RN ∈ Sj , Rj can only
see it as one of its neighbors and the leadership of RN does
not affect the local steering strategy of Rj . In the following
part of the paper, we consider the group of N robots consisting
of one leader, RN , and N − 1 followers, R1, . . . , RN−1.

III. LOCAL STEERING STRATEGY

The goal is to develop a methodology for simple au-
tonomous robots, such that a large group of them can move

as a connected group. We assume that the robots update the
position information about their neighbors at every∆t seconds.
Also, to take measurement errors on the distance into account,
we define a positive scalar dm as

dm
def
= dmax −∆r

where ∆r is the bound on the distance measurement error with
dmax > ∆r > 0. We denote the position of a robot Ri at time
t, as Xi(t), i = 1, . . . , N . Since all robots in the group steer
autonomously, we will set up local moving rules for each robot.
While the leader RN moves along a predefined trajectory, each
follower robot Rj , j = 1, . . . , N −1, determines a local target
location for itself. This motion is most conveniently described
in terms of a coordinate system attached to Rj . Obviously, Rj

is at the origin of this local coordinate system. Let x(t) denote
the position vector in local coordinates. We will use a notation
such that the superscripts in x relate the coordinate frame to a
robot, and the subscripts in x indicate which robot’s position it

is. For example, xj
k represents the position vector of Rk in the

coordinate frame of Rj . For the robots in Si, i = 1, . . . , N ,
we have

‖xi
k(t)‖ = ‖Xk(t)−Xi(t)‖ ≤ dm, k = 1, . . . ,M

where M is the number of robots in Si. Next, we propose the
a steering strategy to be employed by each robot using the
positions of other robots in its subgroup.

According to the notation given above, xi
i(t + ∆t) is the

location, which Ri is aiming at (for the time instant t+∆t),
in Ri’s own coordinate system at time t. For any xi

i(t+∆t),
we define two complementary subsets of Si as

Sip =
{

Rp ∈ Si | [x
i
i(t+∆t)]Txi

p(t) ≤ 0
}

Siq =
{

Rq ∈ Si | [x
i
i(t+∆t)]Txi

q(t) > 0
}

.

If a displacement of Ri to xi
i(t+∆t) will take Ri closer to a

robot, then this robot will appear in Siq . Otherwise, it will be a
member of Sip. Using Sip and Siq , we can state the following
theorem on the group connectivity.

Theorem 1: Consider a group G of N autonomous mobile
robots which are connected at t = 0. If the motion of the
robots are subject to the constraints

‖xi
i(t+∆t)‖ ≤

1

2

(

dm − max
xi
p(t)∈Sip

‖xi
p(t)‖

)

(1)

and
‖xi

i(t+∆t)‖2 ≤ min
xi
q(t)∈Siq

{

[xi
i(t+∆t)]Txi

q(t)
}

(2)

for i = 1, . . . , N , the group preserves its connectivity for t >
0.

Note that if a robot is occluded by another robot in Si,
the number of robots in Si might decrease. Nevertheless,
this situation does not disturb the overall connectivity, as the
existence of the occluding robot itself is the evidence of the
connection between Ri and the occluded robot. Also, the fact
that (1) and (2) restrict the maximum steering distances of the
robots for each sampling period ∆t brings the advantage of
avoiding inappropriately large velocities.



As long as the constraints in (1) and (2) are satisfied,
following a given navigation trajectory, formation control and
other mission-oriented tasks can be accomplished by using
potential function approaches or minimizing cost functions.
Therefore, in view of Theorem 1, the following Local Steering
Strategy assures the connectivity of the robot group, which is
composed of follower robots and a leader in navigation.

Local Steering Strategy Subject to the constraints (1) and
(2),

• The follower robots Ri (i = 1, . . . , N − 1) move
towards a target location xi

i(t+∆t), which minimizes
a cost function, J(xi

i(t+∆t)), related to the positions
of the robots in Si.

• The leader RN follows the navigation trajectory.

At this point, one may raise the question whether these
constraints can lead to a situation where none of the robots can
move. Such a situation is called a deadlock and its avoidance
is of crucial importance for the applicability of the proposed
method in real-life implementations. In view of constraints (1)
and (2), a deadlock occurs whenever ‖xi

i(t + ∆t)‖ = 0, i =
1, . . . , N [11].

Defining zij(t) as

zij(t) = xi
i(t+∆t)− xi

j(t), (3)

the following theorem characterizes the cost functions which
assure that the group moves along its trajectory without any
risk of deadlock.

Theorem 2: Let G be an initially connected group navi-
gating freely in R

n and consisting of finite number of robots
that move according to the Local Steering Strategy. Assume

that J(xi
i(t+∆t)) = J̃(‖zij(t)‖) is an increasing function of

‖zij(t)‖, at ‖z
i
j(t)‖ = dm for all j such that Rj ∈ Si, where

zij(t) = xi
i(t + ∆t) − xi

j(t) Then, for any robot Ra ∈ G, we
have

max
k

‖xa
k(t)‖ < dm as t → ∞ (4)

where xa
k’s are the position vectors of the robots in Sa.

Theorem 2 presents an important basis for the guaranteed
navigation of the group. That is, if one of the robots in the
group is the leader and is given a trajectory to be followed, the
leader will have the freedom to progress through its trajectory
without breaking connectivity no matter how the trajectory is
shaped. This is clear from the fact that

dm − lim
t→∞

max
k

‖xN
k (t)‖ > 0

and the strict inequality assures a nonzero distance that the
leader can move at each sampling time. The rest of the group
will then follow the leader accordingly.

It should also be noted that Theorem 2 assumes that the
group is navigating freely. In other words the motion of the
robots are constrained only as in (1) and (2), and not by any
obstacles around. Examples of deadlock where the navigation
space is a proper subset of Rn are given in [11].

Several types of cost functions can be used in implementing
the local steering strategy. Examples of cost functions that
satisfy the requirement in Theorem 2 can be

J(xi
i(t+∆t)) = max

k
‖zik(t)‖ (5)

or

J(xi
i(t+∆t)) =

M
∑

k=1

(

‖zik(t)‖ − d0
)2

. (6)

The cost function in (5) makes the ith robot try to decrease the
distance to the farthest robot that it senses. On the other hand,
(6) can be used to force the robots to keep their distances with
the robots in their subgroups as close to a desired distance d0
(d0 < dm) as possible.

Note that both (5) and (6) are defined in terms of local
coordinates to ensure a distributed algorithm. Although they
happen to be convex functions of zik(t), this is not a re-
quirement from the point of view of connectivity. The choice
of cost function depends on mission requirements. One can
consider fixed as well as time-varying cost functions. They
can incorporate the position information of all or only some
of the neighbors. Further, the members of the group may
minimize different cost functions to achieve a required group
formation. In other words, choosing the cost function suitably
can facilitate not only connected navigation but also a desired
group formation. In the following section we employ such
ideas to make the group switch between alternative formations
during the navigation.

IV. SWITCHING GROUP FORMATION

When applied with the cost function as given in (5) or
(6), the Local Steering Strategy tries to strenghten and hence
preserve the group connectivity during navigation. The group
gains an amorphous shape, whose compactness is dependent
on the value of d0. Obviously, this is not suitable if the group is
required to navigate around some obstacles or to pass through
a relatively narrow corridor. In such cases, changing the for-
mation to a specified one resolves the difficulty. Transitions in
the formation can be managed by incorporating alternative cost
functions in the system and switching among them whenever
necessary.

A line formation may be most suitable when the group
navigates in an environment narrowed by walls or obstacles.
Although the group cannot be assumed as navigating freely
whenever obstacles are around, nonetheless it is not difficult
to see that a deadlock is not possible for a group moving in a
line formation along the trajectory.

Let el be the unit vector in the direction of the desired line
formation. A suitable cost function can be written as

Jf (x
i
i(t+∆t)) =

1

2

[

xi
i(t+∆t)−

(

(xi
a(t)− d1el)

)]T

×
[

xi
i(t+∆t)−

(

(xi
a(t)− d1el)

)]

(7)

where

a = arg min
k|Rk∈Si,[xi

k
(t)]T el≥0

‖xi
k(t)‖

and d1 is the desired inter-robot distance of the line formation.
Note that the cost function in (7) is a quadratic form of the



difference between the local target of Ri and the point Ri

should reach to fit in the formation. For the line formation,
this point is at a distance of d1 to Ra and located so that the
direction from Ri to Ra is aligned with el.

Using (3), (7) can be rewritten as

Jf (x
i
i(t+∆t)) =

1

2

[

zia(t) + d1el
]T [

zia(t) + d1el
]

=
1

2

∥

∥zia(t) + d1el
∥

∥

2
. (8)

Obviously, the term zia(t) is the distance between the local
target of Ri and the closest robot whose position vector
has a positive projection on el (Figure 1). As long as the
robots minimize Jf , they will converge to and maintain a
line formation. Different choices for el can be employed by
individual robots to obtain more elaborate formations. For
example, a 90◦ V-formation is achieved by applying Jf to
half of the robots with el1 and to the other half with el2, such
that [el1]

T [el2] = 0.

Denoting J̃f (‖z
i
a(t)‖) = Jf (x

i
i(t+∆t)), we get

∂J̃f
∂‖zia‖

∣

∣

∣

∣

∣

‖zi
a(t)‖=dm

=
1

2

[

∂

∂‖zia‖

∥

∥‖zia(t)‖ez(t) + d1el
∥

∥

2
]

‖zi
a(t)‖=dm

=
[

‖zia(t)‖+ d1e
T
l ez(t)

]

‖zi
a(t)‖=dm

= dm + d1e
T
l ez(t), (9)

where ez(t) = zia/‖z
i
a‖, that is, the unit vector in the direction

of ‖zia(t)‖. Since dm > d1 > 0 and |eTl ez(t)| ≤ 1, we have

∂J̃f
∂‖zia‖

∣

∣

∣

∣

∣

‖zi
a(t)‖=dm

> 0.

This means that Jf satisfies the condition in Theorem 2 with
respect to the robot Ra. In order to fulfill the condition with
respect to all robots in Si, one can augment the cost function
in (8) as

J1(x
i
i(t+∆t))

= Jf (x
i
i(t+∆t)) + β

M
∑

k=1
k 6=a

(

‖zik(t)‖ − d1
)2

=
1

2

∥

∥zia(t) + d1el
∥

∥

2
+ β

M
∑

k=1
k 6=a

(

‖zik(t)‖ − d1
)2

(10)

where β > 0 is a weighting factor.

When the group converges to a line formation, each sub-
group Si consists of at most two robots, due to occlusions. This
will greatly simplify the minimization of the cost function in
(10).

Fig. 1. Local target for the robot Ri in its subgroup. Ra is the closest robot
to Ri, whose position vector has a positive projection on el.

V. SIMULATIONS

In the general case, for the ease computation, a gradient-
based sub-optimal solution is invoked as described in [10] and
[11]. That is,

xi
i(t+∆t) = xi

i(t)− γ
∂J(xi

i(t+∆t))

∂xi
i(t+∆t)

∣

∣

∣

∣

xi
i
(t+∆t)=xi

i
(t)

(11)

where γ > 0 is a positive gain, and xi
i is the position vector

of Ri in its local coordinates.

The application of (11) is much simpler than solving
the system in (6) or (10). It gives the direction of the next
movement and the movement in this direction is realized only
if it satisfies the inequalities in (1) and (2). Hence, after
simplifying the calculations, we illustrate the theoretical results
of the previous sections with computer simulations.

A robot group, composed of disk-shaped robots having
omni-directional motion capability, is assumed to navigate
in R

2. The sensor range (dmax) was 30 units. The bounds
on the measurement errors were ∆θ = 12◦ for angle and
∆r = 0.03dmax for distance measurement. Diameter of the
robots was 1.5 units. For each robot in the group, this value
and its position information in local coordinates were used to
determine the occlusion cone caused by that robot with respect
to the robot at the origin of that local coordinates. Any partially
occluded robot was taken as if fully occluded. The following
scenario was applied: The leader is given a trajectory and as
the leader starts navigation, the rest of the group follows the
leader under the Local Steering Strategy, which is implemented
by the pseudo-code given in Figure 2. The group is pre-loaded
with the locations where the cost function will be switched.

In the first simulation, a group consisting of 10 robots
was initialized to the locations given in top of Figure 3. The
snapshots of the simulation can be seen in Figure 3, where
the trajectory of the leader is shown by the solid lines. As
soon as the simulation started with the cost function given in
(6), the Local Steering Strategy forced the robots to form an
amorphous shape. There is no formation until the switching
in the cost function. The first switching takes place where
the trajectory of the leader points into a narrow corridor. The



Fig. 2. Pseudo-code for the algorithm used in simulations.

group, then switches to the cost function given in (10) for a
horizontal line formation. After successfully passing through
the corridor, the group switches back into the initial cost
function to increase the connectivity. In the return path, the
group faces another corridor and thus another switching in the
cost function takes place. The last part of Figure 3 is a snapshot
taken prior to completion of the line formation.

Figure 4 displays the connectivity of the group during the
whole navigation. It can be easily distinguished that the con-
nectivity dramatically drops after switching to line formation.
But even in this case, the connectivity never goes below 9,
which is the minimum number for a group of 10 robots. This
means the group stays connected even in the worst scenario
from connectivity point of view.

The second simulation was realized with 11 robots to show
a V-formation. Initial positions of the robots are seen in top of
Figure 5. Shortly after the start of navigation, a switching in
the cost function occurs in order to go into a 120◦V-formation.
This is achieved by applying two different line-up vectors.

VI. CONCLUSIONS

This work is an extension to our previous works about
the navigation of non-communicating robots without breaking
the group connectivity. As the group navigates with the objec-
tive of preserving the connectivity in [10][11], the resulting
amorphous shape of the group causes difficulty when the
navigation space includes obstacles. In this work we showed a
methodology to provide group formations by switching among
several cost functions. The group connectivity is controlled and
hence it can be decreased whenever necessary, but the group
still stays connected after any such decrease in the number of
links. Although we assume obstacles in the navigation space,
the group navigates without any risk of deadlock with the
assumption that the obstacles are far enough so that they never
constrain the local targets.

Currently the switching mechanism depends on a priori in-
formation, since the robots have no communication capability
at all. This can be done in a dynamic manner if each robot
analyzes its environment and decides to switch its cost function
autonomously, in future works.
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Fig. 3. Navigation of 10 robots switching to line formation before entering
corridors.

0 2500 5000
0

10

20

30

40

50

iterations

n
u
m

b
e
r 

o
f 
lin

k
s

Fig. 4. Connectivity of the 10 robots during the whole navigation. The large
drops in the number of links correspond to line formation which is active
during corridor passing.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

x

y

 

 

leader robot

follower robots

−100 −80 −60 −40 −20 0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

x

y

 

 

leader robot

follower robots

−100 −80 −60 −40 −20 0 20 40 60 80 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

x

y

 

 

leader robot

follower robots

Fig. 5. V-formation by 11 robots.


