
Parallel-In-Space Implementation of Transient
Stability Analysis on a Linux Cluster With

Infiniband
Gürkan Soykan

Department of Electrical Engineering
École Polytechnique de Montréal

Montreal, Quebec Canada
Email: gurkan.soykan@polymtl.ca

Alexander J. Flueck
Electrical and Computer Engineering

Illinois Institute of Technology
Chicago, Illinois 60616
Email: flueck@iit.edu

Hasan Dağ
Information Technologies Department

Kadir Has University
Istanbul, Turkey

Email: hasan.dag@khas.edu.tr

Abstract— On-line transient stability analysis is an inevitable
way to provide real time power system security and control.
Parallel computing is one of the most viable ways to perform
on-line transient stability analysis. This paper presents the
performance results of a parallel-in-space algorithm based on
a multilevel partitioning scheme on an Infiniband cluster system.
The algorithm decreases the transient stability simulation time
using METIS for partitioning in conjunction with the linearized
update solution process of the Very Dishonest Newton Method
when solving the differential-algebraic systems of equations [1].
Two real power systems, a 3493-bus system with 844 generators
and a 7935-bus system with 2135 generators, are tested on a
Linux-cluster system with 16 nodes. Each node has 2 multi-
core processors and is connected to each other by Infiniband
network. The properties of a test system have a large impact on
the performance of the parallel algorithm used, since it affects
communication duration.

I. INTRODUCTION

Transient stability analysis is used to determine the dynamic
behaviour of an electric power system after a large disturbance.
In terms of power system planning and power system opera-
tions, this analysis is a vital step for the operations performed
on Energy Management centers. In this analysis, a differential
algebraic model is used to describe the electric power system.
The model consists of both differential and algebraic equations
(DAEs). They are shown as

Ẋ = f (X ,V) (1)

0 = g(X ,V). (2)

Equation (1) describes the dynamic devices in the power
system and equation (2) indicates the algebraic equations of
synchronous machines and power system network. So, X is
called as a vector of state variables and V is called as a vector
of algebraic variables.

In the solution of transient stability analysis, the differential
equations are discretized first by one of the numerical integra-
tion methods, such as trapezoidal integration method. Then
the integration equations and algebraic equations together are
solved simultaneously at each time step. Newton’s method
is used to solve non-linear algebraic equations. In many

production grade programs, LU factorization is implemented
to solve the sparse set of linear equations resulted in Newton’s
method. Very Dishonest Newton Method (VDHN) has been
preferred in order to achieve faster solution in those programs
[2].

In power system operation, on-line transient stability analy-
sis is an unavoidable way to perform real-time power system
security and control in energy management system. Parallel
computing and fast numerical methods are used for obtaining
on-line transient stability analysis [3]. Therefore, several par-
titioning strategies have been developed to be able to achieve
parallel processing for transient stability analysis.

In the literature, the parallel algorithms used for tran-
sient stability analysis are classified as parallel-in-space and
parallel-in-time [4]. Parallel-in-space algorithms break the
original system down into subsystems among processors and
each time step computation is performed in parallel. Parallel-
in-time algorithms solve multiple time steps simultaneously.
In order to increase the effect of parallelism, parallel-in-space
and parallel-in-time algorithms can be used together.

Because of widespread usage of distributed computing
systems, several studies dealing with the parallel-in-space im-
plementation of power system transient stability analysis have
focused on a distributed approach. A different partitioning
scheme based on the factorization path tree was applied to
the parallelization of a VDHN version of the simulation on
a distributed memory system, IBM-SP2 parallel computer [4].
The implementation results for a 92-generator, 616-bus system
were presented. A generalization of the subtree-to-subcube
mapping approach was used in the parallel-in space approach
[5]. A 150-generator, 1007-bus and 450-generator, 3021-bus
power systems were tested on IBM-SP2 parallel computer.
The size of power system was increased so as to achieve
better parallel performance in [5]. The distribution of the
machine equations could be a bottleneck depending on the
power system network. A parallel computation algorithm for
network calculation in the transient stability calculation was
proposed in [6]. This algorithm is based on the processing tree
[7]. A multilevel power network partition scheme based on

978-1-4673-2308-6/12/$31.00 ©2012 IEEE

power network regional characteristics was utilized on both
distributed and shared memory systems simultaneously [8].
Some optimization schemes were implemented in order to de-
crease computation and communication time of the proposed
solution method. The largest test system used had 248 gener-
ators and 2115 buses. Different partitioning schemes based on
the graph partition algorithm were implemented for parallel
simulation of power system dynamics. The properties of the
power system were regarded in the partitioning strategy [9],
[10]. Another spatial parallel algorithm based on geographical
location was applied on a PC cluster [11]. 173-generator,
1923-bus system was used to analyze the performance of the
proposed algorithm. A METIS based multi-level partitioning
algorithm was proposed to divide computational loads among
processors [1].

In this paper, the METIS-based partitioning strategy given
in [1] is tested on a Linux cluster. The hardware properties of
cluster are very up-to-date. Large scale power system data is
used to show the performance of the partitioning strategy. The
results indicate the efficiency of the parallel implementation
is increased by the up-to-date computer system. The parallel
performance for the proposed algorithm depends on mainly
two factors: the size of the problem and the communication
performance of the network.

II. TRANSIENT STABILITY ANALYSIS

Transient stability analysis is concerned with the effects on
generator synchronism due to a large disturbance such as loss
of a large load or loss of generators. A differential algebraic
model is used to describe the power system in this simulation
method. Dynamic devices are modeled as a set of differential
equations and the power system network is modeled as a set
of algebraic equations. The differential-algebraic equations are

Ẋ = f (X ,V,u), X(0) = X0 (3)

I1(X ,V) = YNV, V (0) =V0 (4)

where YN is the N×N bus admittance matrix of the network,
N is the number of buses in the system and I1 is the injected
current vector. Equation (3) can be discretized by trapezoidal
integration method. Then, equations (5) and (6) are written.

F(Xn+1,Vn+1), Xn+1 −Xn −
h
2 [f (Xn+1,Vn+1)+ f (Xn,Vn)] = 0 (5)

G(Xn+1,Vn+1), YNVn+1 − I1(Xn+1,Vn+1) = 0 (6)

where h is an integration time step. Using the rectangular
coordinate representation of I1, V and YN as I1

e, V e and Ye
N

in equations (5) and (6), one can obtain

F(Xn+1,V e
n+1), Xn+1 −Xn −

h
2 [f (Xn+1,V e

n+1)+ f (Xn,V e
n)] = 0 (7)

H(Xn+1,V e
n+1), Ye

NV e
n+1

−I1
e(Xn+1,V e

n+1) = 0 (8)

where YN, I1
e, V e, Ye

N and H are defined as

YN = GN + jBN,V e =

[
V r

V i

]
, I1

e =

[
Ir
1

Ii
1

]

Ye
N =

[
GN −BN
BN GN

]
, H(X ,V) =

[
Re(G(X ,V))
Im(G(X ,V))

]
,

The linear equations are

J(k)n+1∆X (k)
n+1 =−Fn+1

(k) (9)

the unknown variables updated are

X (k+1)
n+1 = X (k)

n+1 +∆X (k)
n+1 (10)

where

F =

[
F
H

]
,X =

[
X
V

]
[

F
H

]
=−

[
∂F
∂X

∂F
∂V e

∂H
∂X

∂H
∂V e

][
∆X
∆V e

]
The Jacobian has the following structure:

J =

[
∂F
∂X

∂F
∂V e

∂H
∂X

∂G
∂V e

]
=

[
JA JB
JC JD

]
JD is written

JD =

[
GN −BN
BN GN

]
−

[
∂Ir

1
∂V r

∂Ir
1

∂V i
∂Ii

1
∂V r

∂Ii
1

∂V i

]
. (11)

Equation (11) is composed of two parts denoted by Ye
N and

Ye
D respectively

Ye
N =

[
GN −BN
BN GN

]
and Ye

D =−

[
∂Ir

1
∂V r

∂Ir
1

∂V i
∂Ii

1
∂V r

∂Ii
1

∂V i

]
.

Then, equations (12) and (13) are obtained from (9)

∆Xn+1 =−JA
−1 [Fn+1 +JB∆V e

n+1
]
. (12)

J1V e
n+1

(k+1) = Ie
1
(k)+(Ye

D −JCJ−1
A JB)V e

n+1
(k)

+JCJ−1
A Fn+1

(k). (13)

J1 is defined as:

J1 = JD −JCJ−1
A JB. (14)

State variables and algebraic variables are obtained from (12)
and (13) in each time step. Equation (13) can be solved by
using LU factorization, forward and backward substitution.

P0

P1

S1

0

0

P0 P1

P0

P1

S1

P0 P1

Level 0

Level 1

Fig. 1. Structure of reordered matrix and separator tree for two processors.

III. PARALLEL-IN-SPACE ALGORITHM FOR TRANSIENT
STABILITY ANALYSIS

Solution of the transient stability analysis in a serial envi-
ronment is made up of in three main steps: data preparation,
initialization and simulation. The most time consuming part of
the analysis is the simulation part. METIS-based partitioning
scheme is applied to the serial solution given the former
section.

The partitioning problem is the crucial point of a parallel
algorithm. Multi-level partitioning algorithms are attractive for
obtaining the most suitable partitioning for the problem. The
partitioning of the graph corresponding to the J1 matrix should
reduce the amount of communication in the solution of the
Newton update. The multi-level partitioning algorithms consist
of three phases. Firstly, the algorithm reduces the size of a
given graph by collapsing vertices and edges, then partitions
the coarsened graph and finally uncoarsens the partitioned
graph to construct the given graph which is fully partitioned.
METIS is an open-source software package using multi-level
partitioning algorithms. This tool can be used either to parti-
tion irregular graphs or to compute fill-reducing orderings of
sparse matrices. In the solution of Transient Stability Analysis,
A METIS-based partitioning scheme was chosen to create a
parallel algorithm because of two reasons. Since A matrix
in Ax = b linear system is a large sparse matrix, it should
be reordered to minimize the fill-ins before the factorization.
Secondly, it has been chosen to overcome the difficulty in
load balancing and minimizing communication. The multi-
level nested dissection algorithm from METIS creates an
effective partitioning structure to distribute data to each of the
available processors. Thus, this strategy handles both ordering
and obtaining the partition information. The structure is similar
to a binary tree.

Fig.1 shows the new structure of the matrix and the com-
munication structure of the processors. Assuming that two
processors are available, this structure is obtained. In Fig.1,
S1, P0 and P1 are described as

• S1: Separator (a mutual part of both processors),

Fig. 2. The assignment of vertex weight.

• P0: Partition of the first processor,
• P1: Partition of the second processor.

There are two levels to show the task and communication
pattern. The first level has a S1 sub-matrix, the second level is
constructed from P0 and P1 sub-matrices. P0 and P1 are the
children of S1 in this structure. The submatrices at the same
level can be factorized simultaneously, but their parent can
not be factorized until all its children are done and sent the
update matrix to their parent. This is a bottom-up computation
according to the separator tree for LU factorization. Also,
the above structure can be used in the triangular solver that
is forward and backward substitutions. The triangular solver
moves in the separator tree once bottom-up and once top-
down direction. Additional details about the structures for two
processors and four processors can be found in [1].

In the parallel implementation, when the program is started,
the master processor reads all the data from files. The new
ordering information and the size of the partitions are obtained
by using the multi-level nested dissection method. Then the
master processor distributes the data to the other processors. In
the remaining parts of the program, each processor continues
the calculations by using its own partition information and
some data from its neighbours. When equation (13) is solved,
the communication will be done depending on the separator
tree structure. Also the communication is necessary for the
determination of the convergence of the Newton solution in
each time step. The steps of parallel algorithm can be given
as below:

1) Data preparation part of serial solution is done by master
processor,

2) The partition structure and ordering information is ob-
tained by master processor,

3) The distribution of the data among the processors is
performed,

4) All processors compute the initial value of state variables
based on a complex voltage snapshot,

5) The simulation part of Transient Stability Analysis is
performed by all processors (Inter-processors communi-
cation is essential for this part).

In the proposed partitioning algorithm, a weighted graph in
METIS is used to balance the computational load. The number
of generators and the number of branches assigned to each
processor has a big impact on the computational load. Because
they affect the number of differential equation and the sparsity
of the network matrix on each processor. Determining suitable
vertex weights can help to create a balanced distribution.
The number of state variables plus algebraic variables for
any vertex are used as the vertex weight in the graph. It
is given in Fig. 2. vi shows the i. vertex and wi presents
the weight of vi. Depending upon the structure of transient
stability problem, the defined weight for each vertex as in Fig.
2 constructs the balanced distribution as possible in terms of
computation. State variables are distributed to the processors
with respect to obtained partitioning information. Thus, the
communication among the processors are minimized in the

simulation stage of transient stability solution. If equal number
of generators distributed among processors does not guarantee
the minimum communication requirement. Each generator has
different communication complexity. In order to obtain a good
load balancing and minimum communication, the weighted
graph strategy is used.

IV. TEST RESULTS

All simulations were conducted on a Linux-cluster system
that has 16 nodes. Each node has 2 processors that are Intel
Xeon (E5540) 2.43 GHz. Each processor has 4 cores. So the
number of cores on the system are 128. The amount of RAM
for each core is 3 GB. The nodes are connected by Infiniband.

Two power systems were tested to observe the performance
of the implementation. They are a 3493 bus system (with 844
generators, 6689 branches, 2565 loads) and a 7935 bus system
(with 2135 generators, 13624 branches, 5718 loads). A three
phase fault was used for the transient stability simulation. The
fault occurred at 0.4 seconds and was cleared at 0.6 seconds.
The total simulation time was 2 seconds. The integration time
step was 0.01 seconds.

MPI [12], a standard communication library, was used as
the message passing platform for the parallel computation in
this implementation. No compiler optimization was used while
measuring the processing time.

The performance of the parallel implementation is measured
by speedup and efficiency. Speedup is a measure of how much
speed gained w.r.t to time of the serial solution and is the ratio
of the runtime of a serial solution to the parallel runtime. The
following structure shows speedup (Spd) for p processors

Spd =
Ts

T (p)
(15)

where Ts represents the execution time of a serial program and
T (p) is the execution time of the parallel transient stability
program on p processors with the same test case. The value
of Spd is between 0 to p. If it is equal to p, a program is
said to have linear speedup. However, the value of speedup
is less than p in most parallel solutions because of the
parallel overhead. There are three main sources of parallel
overhead: idle time, communication and extra computation
[12]. The parallel runtime can be measured by using MPI
timing routine, which is called as MPI_Wtime. In addition
to speedup, efficiency (E) is a measure of process utilization.
It is defined as:

E =
Spd

p
(16)

The value of E is between 0 and 1. If it is less than 1, the
program is exhibiting slowdown. If it is equal to 1, the amount
of work done by parallel code is the same as the amount of
work done by the serial code.

Time results of the parallel simulation for two different
power systems are listed in Table I. By using (15) and (16),
speedup and efficiency results are given in Table II, Table
III, Fig. 3 and Fig. 4. According to Table III and Fig. 4, the
larger power system produces higher efficiency, whereas the

TABLE I
TIME FOR PARALLEL TRANSIENT STABILITY ANALYSIS (SECONDS OF

WALLCLOCK TIME).

The number of cores 3493 system 7935 system

1 9.03 13.67

2 5.04 6.97

4 2.80 3.55

8 1.80 2.10

16 1.20 1.43

32 0.84 0.99

64 0.92 0.77

TABLE II
ABSOLUTE SPEEDUP FOR PARALLEL TRANSIENT STABILITY ANALYSIS.

The number of cores 3493 system 7935 system

2 1.79 1.96

4 3.23 3.85

8 5.01 6.51

16 7.53 9.55

32 10.75 13.81

64 9.82 17.75

TABLE III
EFFICIENCY FOR PARALLEL TRANSIENT STABILITY ANALYSIS.

The number of cores 3493 system 7935 system

2 0.90 0.98

4 0.81 0.96

8 0.63 0.81

16 0.47 0.60

32 0.34 0.43

64 0.15 0.28

smaller system saturates earlier. Eventhough the system size is
doubled, we do not get a double speedup as one might expect.
This is due to the fact that the sparsity pattern of power system
matrices do not change significantly with the system size.
The cluster’s properties of the test system is better than the
other system used in [1] with regard to processor and network
technology. Because of this difference, the performance of
partitioning strategy can be seen better from the given results
in here. Moreover, the speedup results for this algorithm are
encouraging for large scale systems.

V. CONCLUSION

In this paper, a new partitioning scheme is used on a Linux
cluster with Infiniband network. The test system properties as
well as the hardware technology affect the performance of the
parallel implementation. The performance of parallel-in-space
implementation in this paper is better than the performance
in [1]. The performance of this implementation is also in-
creased by using larger power systems. The size of the power
system and the technology of the computer system are the
two main factors that impact the performance of the parallel

 22

 20

 18

 16

 14

 12

 10

 8

 6

 4

 2

 0
 0 10 20 30 40 50 60 70

A
b
so

lu
te

 s
p
ee

d
u
p

Number of cores

3493 bus system
7935 bus system

Fig. 3. Parallel speedup of Transient Stability Analysis.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 0 10 20 30 40 50 60 70

E
ff

ic
ie

n
cy

Number of cores

3493 bus system
7935 bus system

Fig. 4. Parallel efficiency of Transient Stability Analysis.

implementation. For the next step, the distributed and shared
memory properties will be taken into account to increase the
performance of the partitioning scheme.

REFERENCES

[1] G. Soykan, A. Flueck, and H. Dag, “Distributed memory parallel
transient stability analysis on a pc cluster with ethernet,” International
Review of Electrical Engineering(IREE), vol. 5, no. 3, pp. 1053–1060.

[2] J. Wu, A. Bose, J. Huang, A. Valette, and F. Lafrance, “Parallel
implementation of power system transient stability analysis,” IEEE
Transactions on Power Systems, vol. 10, no. 3, pp. 1226–1233, August
1995.

[3] D. J. Tylavsky, A. Bose, F. L. Alvarado, R. Betancourt, K. Clements,
G. Heydt, G. Huang, M. Ilic, M. L. Scala, M. Pai, C. Pottle, S. Talukdar,
J. VanNess, and F. Wu, “Parallel processing in power system computa-
tion,” IEEE Transactions on Power Systems, vol. 7, no. 2, pp. 629–637,
May 1992.

[4] C. Hong and C. Shen, “Parallel transient stability analysis on distributed
memory message passing multiprocessors,” in Proceedings of the 4th In-
ternational Conference on Advance in Power System Control, Operation
and Management, Hong Kong, November 1997, pp. 304–309.

[5] ——, “Implementation of parallel algorithms for transient stability anal-
ysis on a message passing multicomputer,” in IEEE Power Engineering
Society Winter Meeting, vol. 2, January 2000, pp. 1410–1415.

[6] M. Nagata and N. Uchida, “Parallel processing of network calculations
in order to speed up transient stability analysis,” Electrical Engineering
in Japan, vol. 135, no. 3, pp. 26–36, March 2001.

[7] W. F. Tinney, V. Brandwajn, and S. M. Chan, “Sparse vector methods,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-104,
no. 2, pp. 295–301, February 1985.

[8] J. Shu, W. Xue, and W. Zheng, “A parallel transient stability simulation
for power systems,” IEEE Transactions on Power Systems, vol. 20, no. 4,
pp. 1709–1717, November 2005.

[9] C. Huang and M. Chen, Distributed Network Computing on Transient
Stability Analysis and Control. Springer Berlin / Heidelberg, 2005, vol.
3758, pp. 737–742.

[10] W. Xue and S. Qi, “Multilevel task partition algorithms for parallel
simulation of power system dynamics,” in Computational Science -
ICCS 2007, ser. Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2007, vol. 4487/2007, pp. 529–537.

[11] J. Ye, Z. Liu, and L. Zhu, “The implementation of a spatial parallel
algorithm for transient stability simulation on pc cluster,” in 2nd IEEE
Conference Industrial Electronics and Applications, Harbin, China, May
2007, pp. 1489–1492.

[12] P. S. Pacheco, Parallel Programming with MPI. Morgan Kaufmann
Publishers, Inc, 1997.

