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Abstract: In this work, element value calculation algorithms have been proposed for low-pass, high-pass, band-

pass and band-stop LC ladder networks. According to the calculated constant from the given transfer scattering 

matrix, the element type that will be extracted is decided. After calculating the element value, its transfer 

scattering matrix is obtained. Then transfer scattering matrix of the remaining network is calculated and the 

same procedure is applied until the termination resistance is reached. After explaining the algorithms, four 

examples are given to illustrate the utilization of the proposed method. 
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1. Introduction 
 

The filter synthesis, given a prescribed 

insertion-loss between a resistive source and a 

resistive load, is a classical procedure presented in 

many textbooks on network synthesis [1]-[3]. The 

method consists of, given the insertion-loss 

function, determining the squared-magnitude 
2

)(  j  of the reflection coefficient )(p , then 

getting a stable )(p , and, finally, deriving the 

corresponding driving-point impedance )(pZ . 

From this )(pZ , a lossless network terminated by a 

resistance can be found, satisfying the prescribed 

insertion-loss. 

If the problem under consideration is a 

broadband impedance matching problem, in this 

case, driving-point impedance )(pZ  can be 

obtained via any existing method, i.e., line segment 

technique or simplified real frequency technique 

[4]. 

For some special data, the resulting )(pZ  

can be developed in continued-fraction expansion, 

thus yielding a network in ladder form. Some work 

in the past obtained explicit formulas for the 

elements in ladder form for some configurations of 

the poles and zeros of )(p  [5]-[10]. For example, 

in [8], Orchard has given explicit formulas for the 

elements allowing finite frequencies of infinite loss 

but starting with the driving-point impedance of the 

unterminated lossless network. 

In this work, an alternative method to calculate 

the element values of the designed network is given. 

Here it is assumed that the driving-point impedance 

function )(pZ  of the network has been obtained by 

using any existing method. Then corresponding transfer 

scattering matrix of the network has been decomposed 

to calculate the element values. So in the following 

section, transfer scattering matrix decomposition is 

explained briefly. Subsequently, the proposed procedure 

is described for low-pass, high-pass, band-pass and 

band-stop cases. Finally, examples are given to illustrate 

the utilization of the algorithm. 

A similar algorithm has been proposed in [11] 

for cascaded lossless commensurate lines. Characteristic 

impedances of the cascaded lines have been formulated 

in terms of the coefficients of transfer scattering matrix 

elements. 

Proposed procedures for low-pass and high-

pass cases have been presented in [12] and [13], 

respectively. Here the method has been generalized and 

extended for band-pass and band-stop cases. 

 

2. Decomposition of transfer scattering 

matrix 
 

Canonic form of the transfer scattering matrix 

 )(pT  of a lossless, reciprocal, lumped-element two-

port can be defined as [4,14-15], 
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where  jp   is the usual complex frequency 

variable, 1
)(

)(





pf

pf
  is a unimodular 

constant, )(pg  is a strictly Hurwitz real 

polynomial, )(pf  is a monic polynomial that is 

formed by the transmission zeros of the two-port. 

These polynomials must satisfy the Feldtkeller 

equation, )()()()()()( pfpfphphpgpg  . 

 

 

 

 

 

 
Figure 1. Cascade decomposition of a lossless two-port. 

 

The problem is to decompose the lossless 

reciprocal two-port N  into two cascade connected 

lossless two-ports aN  and bN  which are also 

reciprocal (Figure 1). This means to factoring the 

transfer scattering matrix )(pT  into a product of 

two transfer scattering matrices [4,14], 

)()()( pTpTpT ba          (2a) 

where 
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The polynomial sets  )(),(),( pfphpg aaa  

and  )(),(),( pfphpg bbb  have the same properties 

as  )(),(),( pfphpg , and must satisfy the 

Feldtkeller equation. Then from equation (2), the 

following expressions can be obtained, 

)()()()()( phphpgpgpg baaba   ,      (3a) 

)()()()()( phpgpgphph baaba   ,     (3b) 

)()()( pfpfpf ba ,        (3c) 

ba  .        (3d) 

By using these equations and 

)()()( 1 pTpTpT ab
 , the following equations can 

be obtained, 

)()(

)()()()(
)(

pfpf

phpgpgph
ph

aaa

aa
b







,       (4a) 

)()(

)()()()(
)(

pfpf

phphpgpg
pg

aa

aa
b




 .     (4b) 

Now, for a given polynomial set 

 )(),(),( pfphpg , the original decomposition 

problem (2a) is essentially reduced to solving (4) in 

the unknown polynomials  )(),(),(),( phpgphpg bbaa  

subject to the Feldtkeller equation with )( pga  and 

)( pgb  being strictly Hurwitz polynomials. 

The factorization of the transfer scattering 

matrix of a lossless, reciprocal two-port has been treated 

by Fettweis [16]. The problem has been solved by using 

a modified formulation of the factorization problem 

[17]. In [17], instead of solving (4), a different set of 

equations (which can be obtained by manipulating (3a), 

(3b) and (4)) are chosen as the basis for the solution, 

and the factorization problem is reformulated. Detailed 

treatment of the problem stated above and all the 

pertinent proofs with regard to this formulation can be 

found in [17]. 

In the proposed method, from the given 

polynomial set  )(),(),( pfphpg , the polynomials of 

the first components  )(),(),( pfphpg aaa  has been 

obtained. Then the polynomials of the remaining 

network has been calculated via equation (4). 

 

3. Proposed element value calculation 

method 
 

Firstly the component type that will be 

extracted is determined. Then after calculating the 

element value and its polynomials )(),(),( pfphpg aaa , 

it is extracted, and the polynomials of the remaining 

network )(),(),( pfphpg bbb  have been obtained. This 

process is repeated until the termination resistance is 

reached. 

So let us see how to obtain the element type 

and value, and then how to calculate the necessary 

polynomials describing the extracted component. 

Consider the circuit shown in Figure 1. 

Transfer scattering matrix )(pT  of the network can be 

described as follows, 
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where 

01
2

2)( gpgpgpgpg n
n                 (5a) 

01
2

2)( hphphphph n
n                 (5b) 

01
2

2)( fpfpfppf n                 (5c) 

From the Feldtkeller equation, we have for 

jp  , 

)()(  jgjh   and )()(  jgjf               (6a) 

which in turn imply the following degree relations; 

)(deg)(deg pgph   and )(deg)(deg pgpf        (6b) 

where the notation “ deg ” stands for degree of a 

polynomial. The difference ))(deg)((deg pfpg   

defines the number of transmission zeros at infinity and 

aN  
bN  

N  

R
 

)(pT  
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the degree of the polynomial )(pg  is referred to as 

the degree of the lossless two-port. 

 

3.1. Low-pass case 

 

Since the network under consideration is 

low-pass type, it consists of inductive series 

branches and capacitive shunt branches. 

For this case, the polynomial )(pf  is 

1)( pf , since the roots of this polynomial are the 

transmission zeros of the lossless two-port network, 

and in this case all of them are put to infinity. 

Component value of the first element that 

will be extracted can be calculated as 

11  




nn

nn

hg

hg
CV




         (7) 

where 
n

n

g

h
 , and if 1 , the first component 

is a series inductor, if 1 , the first component 

is a shunt capacitor. 

For a series inductor, it can be shown that 

p
CV

pha
2

)(  , 1
2

)(  p
CV

pga and 1)( pfa ,(8) 

and for a shunt capacitor 

p
CV

pha
2

)(  , 1
2

)(  p
CV

pga , 1)( pfa .  (9) 

So the first component has been extracted. 

Then by using (4), the polynomials of the 

remaining network can be calculated. Until 

reaching the termination resistance, the same 

procedure is applied. 

 

3.2. High-pass case 

 

Since the lossless ladder network is high-

pass type, it consists of inductive shunt branches 

and capacitive series branches. 

For this case, the polynomial )(pf  is 

nppf )( , since the roots of this polynomial are 

the transmission zeros of the lossless two-port 

network, and in this case all of them are put to zero. 

Component value of the first element that 

will be extracted can be calculated as 

00

11

hg

hg
CV








         (10) 

where 
0

0

g

h
 , and if 1 , the first component 

is a series capacitor, if 1 , the first component 

is a shunt inductor. 

For a series capacitor, it can be shown that 

CV
pha

2

1
)(  ,

CV
ppga

2

1
)(  , ppfa )( ,   (11) 

and for a shunt inductor 

CV
pha

2

1
)(  ,

CV
ppga

2

1
)(  , ppfa )( .       (12) 

So the first component has been extracted. 

Then by using (4), the polynomials of the remaining 

network can be calculated. Until reaching the 

termination resistance, the same procedure is applied. 

 

3.3. Band-pass case 

 

Since the network is band-pass type, it consists 

of series connected series-LC resonance circuits and 

shunt connected shunt-LC resonance circuits. 

For this case, the polynomial )(pf  is 

2/)( nppf  , since the roots of this polynomial are the 

transmission zeros of the lossless two-port network, and 

in this case half of them are put to infinity and half of 

them are put to zero. 

0

0

g

h
  and if 1 , the first block is a 

series connected series-LC resonance circuit, if 1 , 

the first block is a shunt connected shunt-LC resonance 

circuit. 

If 1 , then inductor and capacitor values 

in the resonance circuit can be calculated as 

11  




npnp

npnp

hg

hg
L




             (13a) 

00

11

hg

hg
C








               (13b) 

If 1 , then inductor and capacitor values 

in the resonance circuit can be calculated as 

00

11

hg

hg
L








               (14a) 

11  




npnp

npnp

hg

hg
C




             (14b) 

Then the polynomials for these components 

can be calculated by using (8), (11), (9) and (12), 

respectively. 

So the first block has been extracted. Then by 

using (4), the polynomials of the remaining network can 

be calculated. Until reaching the termination resistance, 

the same procedure is applied. 

 

3.4. Band-stop case 

 

Since the ladder network is band-stop type, it 

consists of series connected shunt-LC resonance circuits 

and shunt connected series-LC resonance circuits. 

For this case, the polynomial )(pf  is 














 



2/

1

)()(

n

i

ipppf , where ip  are the transmission 
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zeros of the lossless two-port network, and in this 

case, transmission zeros are put to ip  locations. 

For this case, if 02/ nh , 1 , so the 

first block is a shunt connected series-LC resonance 

circuit, and if 02/ nh , 1 , so the first block 

is a series connected shunt-LC resonance circuit. 

If 1 , then inductor and capacitor 

values in the resonance circuit can be calculated as 

11  




npnp

npnp

hg

hg
L




      (15a) 

00

11

hg

hg
C


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


       (15b) 

If 1 , then inductor and capacitor 

values in the resonance circuit can be calculated as 

00

11

hg

hg
L








        (16a) 

11  




npnp

npnp

hg

hg
C




     (16b) 

Polynomials )(),(),( pfphpg aaa  of the 

extracted block can be defined as follows: 

If 1 : 

Cppha )( , 22)( 2  CpLCppga ,

LC
ppfa

1
)( 2        (17a) 

If 1 : 

Lppha )( , 22)( 2  LpLCppga , 

LC
ppfa

1
)( 2       (17b) 

So the first block has been extracted. Then 

by using (4), the polynomials of the remaining 

network can be calculated. Until reaching the 

termination resistance, the same procedure is 

applied. 

 

4. Examples 
 

4.1. Low-pass case 

 

The following transfer scattering matrix is 

given for a low-pass LC ladder network, 















)()(

)()(

)(

1
)(
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phpg
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
 

where 
234 21590)( pppph  , 

18327590)( 234  pppppg , 1)( pf . 

1
90

90

4

4 
g

h
 . Since 1 , the 

first component is a series inductor, and its value is 

2
)15(175

90190

33

44 










hg

hg
CV




. 

The polynomials of the extracted inductor are 

pp
CV

pha 
2

)( , 11
2

)(  pp
CV

pga , 

1)( pfa . 

Then by using (4), the polynomials of the 

remaining network are calculated as 

pppphb  23 645)( , 

172445)( 23  ppppgb  1)( pfb . 

After applying the same procedure, the 

network seen in Figure 2 is obtained. 

 

 

 

 

 

 
Figure 2. Obtained low-pass LC ladder network (Normalized 

element values: 1,3,6,5,2 2211  RCLCL ). 

 

4.2. High-pass case 

 

The following transfer scattering matrix is 

given for a high-pass LC ladder network, 













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where 

136436)( 23  pppph , 

1131448042240)( 234  pppppg , 
4)( ppf  . 

1
1

1

0

0 
g

h
 . Since 1 , the first 

component is a series capacitor, and its value is 

5
111

3113

00

11 



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




hg
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CV




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The polynomials of the extracted capacitor are 

10

1

2

1
)( 

CV
pha ,

10

1

2

1
)(  p

CV
ppga , 

ppfa )( . 

Then by using (4), the polynomials of the 

remaining network are calculated as 

1452)( 2  ppphb , 

112116448)( 23  ppppgb , 3)( ppfb  . 

After applying the same procedure, the 

network seen in Figure 3 is obtained. 
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Figure 3. Obtained high-pass LC ladder network 

(Normalized element values: 

1,8,7,4,5 2211  RLCLC ). 

 

4.3. Band-pass case 

 

The following transfer scattering matrix is 

given for a band-pass LC ladder network, 


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where 

122630120)( 234  ppppph , 

185690120)( 234  pppppg , 
2)( ppf  . 

1
1

1

0

0 
g

h
 . Since 1 , the first 

block is a series connected series-LC resonance 

circuit, and its element values are 

4
30190
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
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C




. 

The polynomials of the extracted series 

inductor are 

pp
CV

pha 2
2

)(  , 121
2

)(  pp
CV

pga , 

1)( pfa . 

Then by using (4), the polynomials of the 

remaining networks are calculated as 

12630)( 23  pppphb , 

183630)( 23  ppppgb  
2)( ppfb  . 

The polynomials of the extracted series 

capacitor are 

10

1

2

1
)( 

CV
pha , 

10

1

2

1
)(  p

CV
ppga  

and ppfa )( . 

Then by using (4), the polynomials of the 

remaining network are calculated as 

16)( 2  pphb , 166)( 2  pppgb  

ppfb )( . 

After applying the same procedure, the 

network seen in Figure 4 is obtained. 

 

 

 

 

 

 

 

 

 
Figure 4. Obtained band-pass LC ladder network (Normalized 

element values: 

1,2,3,5,4 2211  RCLCL ). 

 

4.4. Band-stop case 

 

The following transfer scattering matrix is 

given for a band-stop LC ladder network, 
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where 

pppph 2624)( 23  , 

145460252)( 234  pppppg , 

004.01905.0)( 24  pppf . 

 062h 1 , so the first block is a 

shunt connected series-LC resonance circuit, and its 

element values are 

3
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
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The polynomials of the extracted shunt 

connected series-LC resonance block are 

pCppha 2)(  , 

221222)( 22  ppCpLCppga , 

6

11
)( 22  p

LC
ppfa . 

Then by using (4), the polynomials of the 

remaining network are calculated as 

pphb 3)(  , 1342)( 2  pppgb , 

42

1
)( 2  ppfb . 

After applying the same procedure, the 

network seen in Figure 5 is obtained. 

 

 

 

 

 

 

 

 

 
Figure 5. Obtained band-stop LC ladder network (Normalized 

element values: 

1,7,6,2,3 2211  RCLCL ).
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5. Conclusions 
 

In this paper, an element value calculation 

algorithm has been proposed for LC ladder networks. It 

is based on the decomposition of transfer scattering 

matrix. Firstly the type and value of the element that 

will be extracted is obtained. Then after obtaining 

transfer scattering matrix of this element, transfer 

scattering matrix of the remaining network is 

calculated. The same procedure is applied until getting 

the termination resistance. Since all calculations are 

implemented in terms of the coefficients of the 

polynomials )(),(),( pfphpg , there is no need any 

root-search routines to get degree reduction after an 

element is extracted. As a result, an alternative element 

value calculation method for LC ladder networks is 

presented. 
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