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EM Based Stochastic Maximum
Likelihood Approach for Localization
of Near-field Sources in 3-D
Abstract
The goal of this paper is to estimate the locations of unknown sources in 3-D space from the data collected by
a 2-D rectangular array. Various studies employing different estimation methods under near-field and far-field
assumptions were presented in the past. In most of the previous studies, location estimations of sources at the
same plane with the antenna array were carried out by using algorithms having constraints for various situa-
tions indeed. In this study, location estimations of sources that are placed at a different plane from the antenna
array is given. In other words, locations of sources in 3-D space is estimated by using a 2-D rectangular array.
Maximum likelihood (ML) method is chosen as the estimator since it has a better resolution performance than
the conventional methods in the presence of less number and highly correlated source signal samples and low
signal to noise ratio. Besides these superiorities, stability, asymptotic unbiasedness, asymptotic minimum vari-
ance properties as well as no restrictions on the antenna array are motivated the application of ML approach.
Despite these advantages, ML estimator has computational complexity. However, this problem is tackled by the
application of Expectation/Maximization (EM) iterative algorithm which converts the multidimensional search
problem to one dimensional parallel search problems in order to prevent computational complexity. EM itera-
tive algorithm is therefore adapted to the localization problem by the data (complete data) assumed to arrive to
the sensors separately instead of observed data (incomplete data). Furthermore, performance of the proposed
algorithm is tested by deriving Cramer-Rao bounds based on the concentrated likelihood approach. Finally, the
applicability and effectiveness of the proposed algorithm is illustrated by some numerical simulations

Index Terms
Maximum Likelihood estimation, Expectation, Maximization algorithm, Antenna arrays, Localization of near-field
sources in 3-D space

1. Introduction

In the last decades, the basic interest in the array processing re-
search turned towards the developing algorithms for localization
of sources by using passive sensor array. These algorithms were
applied to radar, sonar, radio astronomy, geophysics, seismolo-
gy, robotic and biomedicine [1-4]. In the last, many studies were
presented for solution to the problem of direction of arrival esti-
mations of narrow-band far-field sources [5-21]. In far-field sce-
narios, each source location could be characterized by only the
azimuth and/or elevation since waves impinging to antenna ar-
ray were considered as plane waves. When the sources are locat-
ed close to the array (i.e., near-field), the inherent curvature of
the waveforms can no longer be neglected. Therefore, the spheri-
cal wavefronts in the near-field scenario must be considered and
the location of each source has to be parametrized in terms of
the direction of arrival (azimuth and/or elevation; DOA) together
with range [22-24]. However, in [22-24], it was assumed that all
sources were at the same plane with antenna array which intro-
duces some restrictions to some applications in the real world.

Localization of sources at the different plane with antenna ar-
ray is more applicable to the real world array processing prob-
lems. Primary research results presented under this assumption
were for localization of narrow-band far-field source signals [25-
27]. Moreover, recent research results on localization of near-
field narrow-band sources in 3-D space were also presented [28,
29]. Faced with inability to completely evaluate performances of
optimal 3-D near-field localization approaches from [28,29], it is
reasonable to resort to a asymptotically optimal estimators.

The localization of the near-field sources in 3-D space is in gen-
eral nontrivial, since localization of near-field sources requires
estimation of the azimuth and elevation together with the range
parameters. Recently, an algorithm using 3-D Music with polyno-
mial rooting has been developed [28]. High-order subspace based
algorithms were introduced in [29]. In contrast to suboptimal ap-
proaches proposed in [28,29], we now investigate an alternative
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estimator that is asymptotically efficient. Due to many attrac-
tive properties of maximum likelihood (ML) estimation meth-
ods such as consistency, asymptotic unbiasednes and asymptotic
minimum variance, we concentrate on ML method for localiza-
tion of near-field sources in 3-D space. Furthermore it has a bet-
ter resolution performance than the other methods in the pres-
ence of less number and highly correlated source signal samples
and low signal to noise ratios. Besides these superiorities, it also
brings no restrictions on the antenna array structure. Regarding
the assumption on the narrow-band source signals, there are two
different types of models. These two models lead corresponding
ML solutions. The models are
i. Deterministic Model (DM) which assumes the signals to be

unknown but deterministic (i. e., the same in all realizations)
ii. Stochastic Model (SM) which assumes the signals to be ran-

dom.

ML methods corresponding to the signal models (i) and (ii) are
termed deterministic ML and stochastic ML respectively. Ex-
pectation/Maximization (EM) based deterministic ML (signal
model (i)) near-field location estimator have been studied in [30].
The goal of the present paper is to provide a stochastic ML ap-
proach for the estimation of the DOA and range parameters of
near-field sources. However, calculation of ML estimation from
corresponding likelihood function for the stochastic case results
in difficult nonlinear constrained optimization problem, which
must be solved iteratively. We therefore employed the EM itera-
tive method for obtaining ML estimator. The most important fea-
ture of the algorithm is that it decomposes the observed data into
its signal components and then estimates the parameters of each
signal component separately.

The asymptotical performance of an stochastic ML 3-D near-
field localization technique is analyzed via the derivation of Cra-
mer Rao Bounds (CRB) which provides benchmarks for evaluat-
ing the performance of actual estimators. The technique for the
derivation of CRBs used here in relies as modulators of the log-
likelihood function by replacing the nuisance parameters with
their ML estimates. It therefore avoids the process of explicitly
calculating and inverting the entire Fisher Information Matrix
(FIM). We substitute the ML estimates of the array observation
covariance matrix to obtain concentrated covariance matrix. We
then calculated the CRBs for location parameters of near-field
sources in 3-D space by modifying the bounds presented in [31].
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Rg. 1: Near-field scenario with a 2-D linear array

The remainder of the paper is organized as follows. The sig-
nal model for 3-D near-field scenario is presented in section 2. In
section 3, the stochastic ML estimator and the corresponding as-
sumptions on the signal model are outlined. Moreover, the itera-
tive EM algorithm for obtaining ML estimates from correspond-
ing stochastic cost function is introduced. While in section 4, the
performance of the stochastic ML method is evaluated based on
the concentrated ML approach to obtain CRBs. In section 5, sim-
ulation results are presented. Finally, some conclusions of the
work are reported.

2. Signal Model

Consider a near-field scenario in which narrowband signals from
d sources received by an Κ χ L element antenna array. Let the ar-
ray center be the phase reference point with index '(0,0)' as de-
picted in Figure 1.

Assuming 2-D rectangular uniform linear array consisting of
omnidirectional sensors with interelement spacing Δ along each
axes, we write the output of the (k,l)& sensor with narrowband,
co-channel signal at time I, as,

(D
(=1

where s/(/„) denotes the complex envelope of the /* source signal,
"«('») is an additive complex Gaussian sensor noise and τ*Χ/) is
the phase difference of the i* signal collected at sensor (k,[) with
respect to the ith signal collected at reference sensor '(0,0)'. Due
to our narrowband assumption, the phase difference is given by

(2)

where λ· c/2ji./o is the wavelength corresponding to the center
frequency fa of the signals travelling at a velocity c. The distance
between ι * source and the (λ,/)* sensor equals

(3)

The plane wave approximation of far-field sources is obtained
by retaining only term up to the first power of Δ/Λ and its multi-
plier in the binomial expansion of (3). Since the near field sourc-
es are of interest in this paper, we should include an extra term to
approximate the effect of spherical waves. By retaining terms up
to the second power of Δ/r, and its multiplier in the binomial ex-

pansion of (3), such an approximation can therefore be obtained.
We then arrive at the Fresnel approximation of the distance:

2ιί

',+^-(ΐ-™'βΧθ,)2r

sin 0,sin2f>,j. (4)

If we substitute (4) in (2). we obtain the phase difference
<V + */ + AW] as

('')=(— sin^cos^U-i— (ΐ-Λι^,οο·2^)]*1

(5)

where

2πΔ . „,=——stnfl,cosfl),,

2χΔ .
·* λ

>>=£*^ί

,=^-*Se,
**!

,^Ι-^Ο^φ,),
**!

(6)

Then, the noise corrupted array measurements at the
sensor can be approximately expressed as:

1=1

(7)

For a collection of observed outputs of Κ χ L sensors in 2-D ar-
ray x(/J - [x^C.) Xi^ft,)]7". the model (7) is written more
compactly in matrix notation as

(8)

where the super vector x(/») consists of χ/(4,)
x*MI./tti)]r whicn is output of only one column sub-array of the
2-D rectangular array, s(/„) - [$/(/„) ... .v(f„)]r is the collection
of d source signals impinging to 2-D array, n(f„) - [n/^^i/J ...
n^nu(rjl)]r is super Gaussian complex vector with zero-mean
and known spatial covariance σ2!, which consists of sub-array
noise vectors one forming as n<(f„) - [nj^X/O ... nj^XOl^
Α(θ,φ,Γ) ·= [Α\(θ,φ,τ)...Α^,θ,φ,τ)] is the arrays steering matrix in
the near-field scenario which is known as a function of unknown
set of parameters 0 - [ft ... 0,]Γ, φ - [φι ... φλτ, r -[r, ... rrf]r, con-
sisting of sub-array steering vectors one forming as Λι(θ,φ,ή -
1* (̂̂ 9 )̂ - «inuiftV·1)^*1«1 «/(ftflW) is ̂  sub-array steer-
ing vector for /* source, in the »,,Ι(θ,φ,ι) - [e'̂ - ni*0, ..., 1,

We are interested in stochastic ML approach in this paper
for the estimation of 3-D near-field source location parameters
[θ,φ*] - [(ή,φ,Γι) ..... (ξ,,φ,,Γ^)) from η observations je - [xr(l),
..., xr(N)]rmade from (8). The data for this problem consists of a
set of discrete samples (x(Ar); l S * S N] of the process x(r„). Our
approach is to derive an iterative stochastic ML estimator based
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on the EM algorithm, that performs joint sample covariance and
location parameters estimation in alternating steps.

3. Stochastic ML Estimator

In this section we derive the stochastic ML estimator for the prob-
lem defined above. To describe stochastic ML estimator's deri-
vation, we made the following assumptions on the signal model
(7):

AS1: The source signal &(k) is temporally and spatially uncorre-
lated circular complex Gaussian random process with zero-mean
and nonsingular unknown covariance matrix K,,

for all Λ, an (9)

where &,,*, is the Kronecker delta (&,,*2 ·= 1 if fci = Jtj and 0 oth-
erwise), (·) is the conjugate transpose and (·)Γ is the transpose
of a matrix.

AS2: The additive noise vector n(Jfc) is temporally and spatially
uncorrelated circular complex Gaussian process with zero-mean
and standard! derivative o2 as

where Kx is the sample covariance matrix. Then the negative log-
likelihood function becomes

(17)

Then, the ML estimates of [θ,φ,τ] and s are those which local-
ly minimize the negative log-likelihood function (IS). However,
minimizing (IS) is a nonlinear multiparameter optimization
problem and does not yield to a closed-form solution. Solutions
of such problems usually requires numerical methods, such as
the methods of Scoring, Newton-Raphson or some other gradient
search algorithm. However, for the problem at hand, these numer-
ical methods tend to be computationally complex. Thus, a com-
putationally efficient iterative algorithm is required for solving
resulting optimization problem. To solve this problem, we pro-
pose a stochastic ML estimation technique based on the EM al-
gorithm which decomposes the observed data into its signal com-
ponents and then estimates the parameters of each signal compo-
nents separately. Thus, multidimensional maximization has been
reduced to separate one dimensional maximizations yielding an
easier problem in general. Moreover, the EM algorithm iterates
as the parameter updates in a manner which guarantees an in-
crease in the likelihood function.

forall *, an

(10)

D

AS3: The source signal s(kj) and the noise η(Λ2) are uncorre-
lated for all *, and fc2.

Based on the assumptions AS2 and AS3, the array observa-
tions χ are Gaussian distributed with zero-mean and covariance
Κχ(θ,φ,ι·,Κ,),ϊ.β.,

(12)=A(0,9.r)K,Ali(e,?,r)+<T2L

Then joint probability density function of the observation
χ = \(k), k = 1, ...,N] given [θ,φ,Γ,Κ,] can be written as follows:

expl —ι (13)

The joint probability function (13) can also be written as

(14)

where tr is the trace. The negative log-likelihood function (after
neglecting unnecessary terms) is

mdetK,--iJ K^xUVU) ί
N I *=i J

(15)

AS2 implies that, by the law of large numbers x(A) is second-
order ergodic, i. e.,

3.1 EM Algorithm

The formulation of the estimation problem at hand in terms of
the actual data sample (incomplete-data) and a hypothetical data
set (complete-data) allows us to apply the EM algorithm. To be
able to easily apply the EM algorithm the complete data must be
chosen in such a way that:
- the complete data log-likelihood function is easily maximized

and
- the complete data log-likelihood function can be easily estimat-

ed from the incomplete data. The choice for the complete data
vector is obtained from hypothetical independent observations
of each incident wave as

\<i<d (18)

where n,()fc) is the Gaussian noise vector belongs to /* signal.
The complete-data vector y/(/t) is the set of Ν samples of d inde-
pendent Gaussian vectors with the /* vector y,(k) having mean
Ai(0,q>,T)s,(k) and with identical covariance (fl/d. Thus, the com-
plete-data y,(Jfc) and the incomplete data x(Jfc) is can be related by

Under AS1, the covariance matrix K, is a diagonal matrix
K, = diag[ct/, .... aj[, then the complete data y/(/„) is the Gaussian
process with mean zero and covariance

(19)

Then the log-likelihood function of the complete datay/Ot) is

I H τ
K;1Ey,(*)y*(*)L

'*=! J
(20)

At the (ρ + ΐ)Λ iteration, two step EM algorithm for our prob-
lem has the following steps:

Expectation Step: Compute conditional expectation of the suf-
ficient statistics for the complete data log-likelihood. The suffi-
cient statistics is the sample covariance of the complete-data,

180 K = lim K = Km —
X

(21)
*=ι

Brought to you by | Kadir Has University
Authenticated

Download Date | 12/12/19 12:07 PM



At the 0» + 1)Λ iteration, expected value of K/f1 given K£ and
K?,is

(22)

In (22), K?( and Kf can be obtained from the estimates of near-
field parameters [θ',φ",^} at iteration p,

J = \(θ',φ',Γ')κζ\Η(θ',φ'.Γ')+σ21

(23)

Maximization Step: The conditional expectation of the suf-
ficient statistics obtained in Expectation Step is substituted in
(20). Then the complete-data likelihood function is maximized
with respect to the parameters to be estimated {ή,φ,Γ/,Κ,]:

(24)

The determinant of KJ( can be obtained by using the spectral
decomposition. One eigenvector of Ky/ is Ai(e,<p,i)l\A,(e,<p,r)\,
ATx L - I other mutually orthogonal eigenvector can be chosen
from orthogonal complement of Λ^θ,φ,τ) and are equal to cfld.
Then the eigenvalue corresponding to the distinct eigenvector is

(25)

Since the inverse of K;/ is required in (24), it could be deter-
mined by employing matrix inverse lemma as

-Obtain*^1 from (22),
- Substitute K/*1 in (27), and then solve (27) for {6Γ1, <fT\

ΓΓ1].
- Substitute the estimates [ΘΓ\ φΓι, τΓι] in (28), then com-

pute oTl,
3. Continue this process until [Q,(#,r(J and a, converges.

For a sufficiently good initialization, this algorithm converges
rapidly to the ML estimate of the near-field parameters [θ,φ,?]
and the source signals K,.

4. Cramer Rao Bounds

The CRB provides a lower bound on the error variance of any
unbiased estimators. In particular, it provides an asymptotic
near-field source location estimator. The parameter of interest is
τ = [θΓφΙίτΓ]Γ. To focus on the parameters of interest, we shall use
a concentrated likelihood approach to obtain the CRB [31]. Then
the ij/h element of the Fisher Information Matrix is given by

(29)

Then the determinant of KJ( can be written as

where [·]» is defined as the almost sure (a.s.) limit of [·], and
K, is the concentrated covariance after substituting the ML esti-
mates Kx for Kx.

The ML estimate of K, can be obtained as

κ.=[A^A!' Α*ΚΧΑ[Α"ΑΤ' -σ1 [A^A]"' (30)

where we have suppressed the dependence of A on (θ,φ,Γ). It is
well known that K, -» K, almost surely under mild conditions.
Concentrating the covariance K, with respect to K, yields

d_
σ2 (26)

K, = AK.A" +σ2/ = PKxP+o2F

where

Ρ ̂  A[ A^A]"' A* and F ̂  I - P.

(31)

(32)

If we substitute the eigenvalues and the inverse of KT/ into (24),
and maximizing (24) for 04 > 0, the estimates of near-field param-
eters become

We are now ready to evaluate CRB. Taking the first derivative
<5Κ,/Λί, the following can be obtained

s- =Ρ,ΚχΡ+ΡΚχΡ,+σ2Ρ/. (33)

Μ ,φ4

(27)

whereP/=<?P/<?ii.
We will make use of the properties of projection matrix to ob-

tain,

PT =0

- (28)

Based on this results, the steps of the proposed unconditional
ML algorithm are summarized as follows:

Repeat steps 1-3 for / - 1 d
1. Given {ftV.r,0 a?}, p - 0,

(34)

(35)

(36)

Thus, taking the limit JV-» <» of (33)

(37)
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Ιί(τ)=ΛΓΐτ[κ-1(ρ/Κ]ΙΡ+ΡΚχΡ/+σ2Ρ/)

Next, we note that

where (·)* is the pseudo inverse of (-)-
To evaluate (38) explicitly, we consider its nine terms:

[2.]
tr[K-'PK]lP(K-'P,K],p]=tr[pP/K;'P,K]l]

[3.]

[4.]
tr[K-1P/K,PKi1PKxP,]=-CT2tr[K;1P/KJ1Py]

[5.]

tr[K;'PKIP/K-'PK,P,]=tr[PP/PP,]=0
[6.]

[7.]

18.]

[9.]

Plugging these results in (38), we have

Here,

(38)

(39) =-ί-Α» ΑΚ.Α*-ΑΚ.[-
σ2 ^ \t

(40)

Υ1

-^-Α^ΑΚ,+Ι A*
σ /

(50)

Using (SO) in (49), produces

(51)

(41)

(42)

Finally, using (51), we have CRB upon inversion

(52)

where Θ denotes the element-wise matrix products

(43)

(44)

=-ft[AfFcAl(A*A)"1] (45)

(46)

5. Simulations

To illustrate the the effectiveness and applicability of the pro-
posed method, we consider the following scenarios.

Case 1: A Uniform rectangular linear array of AT- L - 3 totally
9 sensors with inter-element spacing Δ = λ/2 was used to estimate
the locations of two sources located at [θ,,φ,,τ,] = [24°, 80°, 2λ]
and [&i,(pi,ti] = [34°, 5°, 1.6Λ]. The number of the snapshots (N)
set to 80 and the SNR was varied from 0 to 30 dB. The proposed
method was tested for Λ/= 100 independent trials. The resulting
RMSE of the estimated DOAs (azimuths and elevations in de-
grees) and ranges in wavelength are shown in Fig. 2, Fig. 3 and
Fig. 4. The results were compared with the Cramer-Rao Bounds.

Case 2: To illustrate bias and convergence rate of the estima-
tor, we consider a new scenerio. A Uniform rectangular linear
array of AT- L - 5 totally 25 sensors with inter-element spacing
Δ = λ/2 was used to estimate the locations of two sources locat-
ed at [6Mft,r,J = [70°, 24°, 4.5AJ and {fc,<fc,r2] = [70°, -24°, 7AJ.

(47)

(48)

SNRhdB

Rg. 2: RMSE of the estimated azimuths
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Source 1 Bias of Estimated Azimuth

Fig. 3: RMSE of the estimated elevations

10 15 20
Bias of Estimated Elevation

10 15 20
Bias of Estimated Range

10 15 20
SNR in dB

Ο· Source 1
·»- Source 2

Rg. 5: Bias of the estimated azimuths.elevations and ranges versus
SNR
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Source! Bias of Estimated Azimuth

SNR in dB

Rg. 4: RMSE of the estimated ranges

The number of the snapshots (N) set to 1000 and the SNR was
varied from 0 to 30 dB and The proposed method was tested for
M= 500 independent trials. Bias of the estimated azimuth, eleva-
tion and range versus SNR and iterations number are shown in
Fig. 5 and Fig. 6 respectively. Also, the convergence rates of the
estimated source parameters are shown in Fig. 7.

Based on the simulation results we made the following obser-
vations:
- For a sufficiently good initialization, proposed algorithm con-

verges rapidly to the ML estimate of [θ,φ,Γ J and K,. Since the
spatial structure of the array matrix is known, then the good
initial estimates of the steering matrix can be obtained from
MUSIC and ESPRIT algorithms.

- For high SNRs the RMSEs obtained from simulations becomes
almost identical to the CRB results derived by modifying the
results in [31].

- As expected, for a high enough SNR, the estimator is essential-
ly unbiased. Moreover, for larger iterations, it is verified that
the mean equals to true value.

- In the near-field scenario, it is observed that the proposed al-
gorithm converges in around 10 to 20 steps.

40 60 80
Bias of Estimated Elevation

-10

(

^S. ·+· Source 1
>f_ ·Ο· SourceZ
p

ί

) 20 40 60 80 100 1S
Bias of Estimated Azimuth

40 60
Iteration Number

Rg. 6: Bias of the estimated azimuths.elevations and ranges versus
iteration number

Convergence Rate of Estimated Azimuth

1\Λ\
\
1

J
\
Λ

l'^- Source 1 I
| · O· Soutce2 [

-

20 ° 40 ° 60 80 ° 100 ° 12
Convergence Rate of Estimated Elevation

I -·- Source?]
| · O· Source 2 |

20 40 60 80 100 12
Convergence Rate of Estimated Range

I -·- Source?]
| ' O' Source 2 \-

-
-

60
Iteration Number

Rg. 7: Convergence of the proposed algorithm of estimated
azimuths.elevations and ranges

6. Conclusions

In this paper, we have described a stochastic approach to esti-
mate the parameters of near-field sources in 3-D space. We de-
rived an EM based iterative method for obtaining ML estimator.

Furthermore the performance of the proposed method is stud-
ied based on the derivation of Cramer-Rao bounds from concen-
trated likelihood function. We also presented Monte Carlo sim-
ulations to verify the theoretically predicted estimator's perfor-
mance. The examples demonstrated that the proposed stochastic
ML achieve the concentrated CRB for moderate and high SNR 183
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