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Abstract--Power system simulations, most of the time, require 

solution of a large sparse linear system. Traditional methods, such 

as LU decomposition based direct methods, are not suitable for 

parallelization in general. Thus, Krylov subspace based iterative 

methods (i.e. Conjugate Gradient, Generalized Minimal Residuals 

(GMRES)) can be used as very good alternatives compared to 

direct methods. On the other hand, Krylov based iterative solvers 

need a preconditioner to accelerate the convergence process. In 

this work we suggest a new preconditioner for GMRES, which 

can be used in Newton iteration of power flow analysis. The new 

preconditioner employs the basic spectral divide and conquer 

methods and invariant subspaces for clustering the eigenvalues of 

the Jacobean matrix appears in Newton-Raphson steps of power 

flow simulation. 

 
Index Terms—Power Flow Analysis, Matrix Sign Function, 

Preconditioner, Iterative Methods 

I.  INTRODUCTION 

he solution of a power flow problem is mainly based on a 

solution of a linear sets of equations. Linear equation 

system in the Newton-Raphson load flow can be given as 

follows,  
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These equations represent only one step of the power flow 

problem, a solution of a non-linear set of equations. They are 

traditionally solved by the direct methods with sparse 

techniques [1]. The linearized part of this nonlinear equation 

set is in the form of Ax=b and this notation will be used for the 

rest of the paper. 

There are very large amount of literature about the solution 

of Ax=b [2]. The usual and rather frequent way of solving the 

linear equation set is the Gaussian elimination [3]. The other 

alternative solution of Ax=b is the iterative methods. Iterative 

methods are mostly based on Krylov subspace minimizations. 

These types of iterative methods can be classified in two 

different subclasses as symmetric and un-symmetric methods 

according to the type of the coefficient matrices. Especially for 

sparse large matrices in parallel environment, Krylov subspace 

based iterative methods (such as Conjugate Gradient, GMRES, 
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etc) are more effective than the usual direct methods [4]. But 

mostly these families of methods need some acceleration 

techniques to reduce the iteration number. There are many 

ways for acceleration of the Krylov-based iterative methods in 

the literature [5].  

The suggested preconditioner aims to vanish extreme 

eigenvalues of the Jacobean with the help of the orthogonal 

similarity transformations. The method requires only some 

basic information about the eigenvalue spectrum of matrix A. 

It can be easily obtained by the eigenvalue inclusion theorems 

like Gerschgorin. With this information some districts can be 

defined in the complex region to build orthogonal 

transformation matrices for vanishing the extreme eigenvalues. 

It has already been shown that the eigenvalues of the Jacobean 

matrix do not change widely in Newton-Raphson steps of 

power flow problem. The main advantage of the suggested 

preconditioner is based on this fact. The core computational 

effort is needed in first step of the Newton-Raphson iteration 

and in other steps the same preconditioner can be used again 

and again. Basic tool for this purpose is matrix sign function 

(MSF). MSF behaves like its scalar equivalent. Scalar sign 

function, extracts the sign of a real number. Similarly, MSF 

detects the signs of eigenvalues of a matrix and its output is 

two blocks of identity matrix. Size of the first identity matrix 

block gives us the number of positive eigenvalues of the 

matrix and size of the second one gives the number of negative 

eigenvalues. On the other hand, one can perform a rank-

revealing QR decomposition on the sign(A)+I or sign(A)-I to 

compute an orthonormal basis for the invariant subspace of the 

eigenvectors in the right or left half-plane. Besides that one 

can implement the same operations on a shifted matrix to find 

the number of eigenvalues bigger or smaller than a selected 

real number or the invariant subspace of the eigenvectors on a 

desired part of the complex plane. This orthonormal bases can 

be employed to vanish extreme eigenvalues of the Jacobean 

matrix. Actually, the method uses more floating point 

operations than the similar type preconditioners. On the other 

hand, the method is easy to parallelize and the building blocks 

of the algorithm are all well-known block matrix operations 

like matrix multiplication or QR decomposition.  

In this work, we especially focused on developing the 

method. Therefore, only well-known IEEE test cases (30 bus, 

57 bus, 118 bus and 300 bus) are used to show the accuracy 

and the effectiveness of the method.  

The rest of the paper is organized as follows. In the second 

section, mathematical tools of the algorithm are briefly 

introduced and the algorithm itself is described. In the third 

section, some numerical test results and comparisons are 
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given. Finally, in the last section some conclusions and future 

work are explained.  

II.  METHOD AND ALGORITHM 

A.  Matrix Sign Function 

A new preconditioner based on matrix sign function (MSF) 

and spectral decomposition is represented in this work. The 

aim of a preconditioner can be thought as the process of 

grouping of the eigenvalues of the coefficient matrix at hand. 

In the suggested method, MSF is employed to group the 

eigenvalues of the coefficient matrix A. MSF is a very 

powerful and useful tool for the matrix analysis [6]. It is 

possible to employ the MSF to build a spectral projector [7].  

Definition 2.1: Let )(ZΛ show the spectrum of Z and 

21)( Λ∪Λ=Λ Z , ∅=Λ∩Λ 21 . If 1S  is the invariant 

subspace of )(1 ZΛ  any projector onto 1S  is called as spectral 

projector. Basic properties of the spectral projectors can be 

given as: 

• rank(P)=rank( )(1 ZΛ )=k 

• range(P)=range(AP) 

• ker(P)=range(I-P), range(P)=ker(I-P) 

• (I-P) is a spectral projector for )(2 ZΛ  

Spectral projectors, such as algorithm below [8], can be 

used to divide the matrices into diagonal blocks according to 

its eigenvalues. 

 

Algorithm 1 BLOCK DECOMPOSTION 

Input  : Spectral Projector P 

Output : Diagonal Blocks of matrix A 

 

1. Compute rank revealing decomposition of the 

projector, Π= QRP .  

2. Build A-invariant 1S  subspace from the first k 

column of the orthogonal matrix Q. 

3.  Compute the below transformation 
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4. 111 )( Λ=Λ A  and 222 )( Λ=Λ A  

 

B.  Counting Eigenvalues with Sign Function 

To build a spectral projector effectively, some brief 

information is needed about the spectral distribution of matrix 

A. To obtain this kind of information the number of the 

eigenvalues in slices of complex domain can be useful. 

Eigenvalue counting techniques can be employed for this 

purpose. Although there are some methods for counting 

eigenvalues using its characteristic polynomials like Gleyse, 

Wilf, etc. they are not computationally feasible [9]. Instead of 

these types of methods, MSF can be used for counting the 

eigenvalues. To compute the numbers of eigenvalues in a pre-

determined slice of complex plane one can use the basic 

properties of the matrix sign function [7]. 

 Theorem 2.1: Let ηρ , show the numbers of the positive and 

negative eigenvalues of matrix A respectively. Then trace of 

the sign(A) can be computed as trace(sign(A))= ηρ − . On 

the other hand, the size of the matrix A is equal to ηρ +=n . 

From this point, one can obtain below relationships. 

)))(((
2

1
Asigntracen +=ρ  

)))(((
2

1
Asigntracen −=η       (3) 

Theorem gives the eigenvalue numbers with respect to the 

origin. If the origin is shifted with some scalar β , the theorem 

can be arranged to give the number of the eigenvalues bigger 

or smaller than β .  

 Theorem 2.2: Let ℜ∈β and assume that there is no 

eigenvalues of A with real part equal to β . Let ηρ , show the 

number of the eigenvalues with real parts bigger than and 

smaller than the β , respectively. Then,  

)))(((
2

1
IAsigntracen βρ −+=  

ρη −= n              (4) 

 

This approach can be used to determine the number of the 

eigenvalues of matrix A in ],[ βα  slice in complex plane [7]. 

 Theorem 2.3:Let ℜ∈βα , and there is no eigenvalues of the 

matrix A with real parts neither is equal to α  nor to β . In that 

case, one can find ρ that shows the number of the eigenvalues 

of matrix A with real parts in between α  and β  as;  

)))()(((
2

1
IAsignIAsigntrace βαρ −−−=    (5) 

Gerschgorin theorem can be used to specify the largest 

borders for the eigenvalue spectrum of matrix A. Then some 

linear slicing can be used and the distribution of the 

eigenvalues can be determined with the help of MSF. The 

algorithm of this approach is given in Alg. 2. 

 

Algorithm 2 SLICING ALGORITHM 

Input  : Matrix A, number of slices d 

Output : Linear distribution of the spectrum of matrix A. 

 

1. Use Gerschgorin theorem to determine the borders as 

[ ]maxmin ,γγ . 

2. Slice initial spectrum such that min0 γψ = , maxγψ =d  

3. TRACE1=trace(sign(A- 0ψ I))  

4. for  i=1:d 

5.       TRACE2=trace(sign(A- iψ I)) 

6.       Compute the number of the eigenvalues in each        

interval as )21(
2

1
TRACETRACE −=ρ  

7.       TRACE1=TRACE2 

8. end for 
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Fig. 1. The number of the eigenvalues for the Jacobean of the 118-bus test 

system in the first step of the Newton-Raphson algorithm. This graph is 

obtained using Alg. 2 for 5 slices. 

 

C.  Computing the Invariant Subspaces via MSF 

MSF can be employed to compute a matrix whose 

eigenvalues are equal to the eigenvalues of matrix A in a 

specific range [7]. More technically, 

Theorem 2.4: Let ℜ∈β and matrix S is defined as: 

))((
2

1
IAsignIS β−+=      (5) 

By applying the rank revealing QR onto this matrix S,  
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is obtained. Here, S11 is a kxk dimension matrix and k equals to 

the number of the eigenvalues of matrix A, which is bigger 

than β . The orthogonal matrix Q can be used for the 

transformation below. 
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Finally, matrix A11 is a kxk matrix whose eigenvalues are 

equal to the eigenvalues of matrix A with real parts bigger than 

β .  

The same procedures in eigenvalue counting algorithm can 

be used to obtain the invariant subspaces in above theorem and 

we can compute different A11 matrices according to our 

geometry selection in complex plane. 

D.  Building a Preconditioner with MSF 

The preconditioners are used for accelerating the convergence 

of the iterative methods in linear equation system solution. The 

methods mainly aim to reduce the condition number of the 

coefficient matrices with several approaches. Basically the 

process can be summarized as reducing the groups of the 

eigenvalues of the coefficient matrix. According to Theorem 

2.4 one can observe that MSF can also be useful for this 

purpose.  

In suggested method, MSF is used in two different ways. In 

the first one, only the dominant eigenvalues of matrix A in a 

specified region of the complex plane are used to obtain a 

reduced condition numbered system. But in this way, the effect 

of the small eigenvalues on the condition number is neglected. 

Therefore, a second way is suggested to improve the method.  

1)Type-I MSF Preconditioner: In the first type of MSF 

based preconditioner, only the dominant eigenvalues are 

considered. To achieve this information without computing 

eigenvalues Gerschgorin theorem is used. The Alg. 2 is used to 

obtain the brief information about the eigenvalue distributions 

and we take the desired percentage of the eigenvalues. There is 

no exact relationship between the percentage of the taken 

eigenvalues and the condition number in this case. In the 

second step, Theorem 2.4 is used to determine the 

transformation matrices Qb. Finally, the preconditioner matrix 

Mb is created as a combination of an identity matrix and A11 

matrices as given below: 









=

−kn
b

I

A
M

0

011         (8) 

where A11 is a kxk matrix and In-k is an (n-k)x(n-k) identity 

matrix. A11, contains exactly the eigenvalues of matrix A 

bigger than the pre-selected value β . Then these matrices 

applied onto the linear equation set Ax=b as follows; 

      bQMxQAQQM T
bb

T
bb

T
bb

11 )( −− =       (9) 

In (9), the matrix Qb is applied to A to change the order the 

eigenvalues of A as the same as the preconditioner matrix Mb. 

The other multiplication aims to preserve the structure of the 

linear equation system. At last Ax=b equation set is 

transformed into Anxn=bn where, 

          b
T
bbn AQQMA 1−=  

 bQMb
T
bbn

1−=  

 xQx T
bn =           (10) 

 

The new preconditioned equation set can be used to find the 

solution of the linear equation system. The algorithm of the 

Type-I MSF based preconditioner is given in Alg.3. 

 

Algorithm 3 TYPE-I  MSF BASED PRECONDITIONER 

Input  : Matrix A, right hand side vector b, number of 

slices d  

Output : Solution of the preconditioned linear equation set 

1. Use Alg. 2 to compute β . 

2. Use Theorem 2.4 to compute A11 and Qb. 

3. Build Mb matrices according to (8). 

4. Compute An and bn according to (10). 

5. Use An and  bn to obtain xn in GMRES algorithm. 

6. Compute the real x as x=Qbxn. 

 

 

2) Type-II MSF Preconditioner: The approximate condition 

number of a non-symmetric matrix is given as the ratio of the 

maximal singular value of the matrix to the minimal singular 

value. In Type-I MSF preconditioner we only dealt with the 

maximal eigenvalues. But it is not enough to achieve rapid 

solutions. Although there is no direct (only approximate) 

relation between the eigenvalues of a non-symmetric matrix 

and its condition number, we try to vanish the effect of the 

smaller eigenvalues in second type preconditioner. Here, in 

type-II MSF preconditioner design, eigenvalues of the matrix 

A with real part smaller than 1 are also considered.  
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Fig. 2. Eigenvalue distribution of the Jacobean matrix and the preconditioned 

matrix with Type-I MSF in histogram mode. Here, 118 bus system is used as 

an example. Eigenvalues of the Jacobean matrix are located in seven different 

groups in complex plane. On the other hand eigenvalues of the preconditioned 

Jacobean matrix are located in just three different groups. 

 

To obtain the preconditioner, theorem 2.4 can be 

implemented in a different way as; 

Theorem 2.5: Let ℜ∈α and matrix S is defined as: 

))((
2

1
IAsignIS α−−=       (11) 

By applying the rank revealing QR onto this matrix S,  
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is be obtained. Here, S11 is a kxk dimension matrix and k is 

equal to the number of the eigenvalues of the matrix A, which 

are smaller thanα . The orthogonal matrix Q can be used for 

the transformation below. 
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Finally, matrix A11 is a kxk matrix whose eigenvalues are 

equal to the eigenvalues of the matrix A with real parts smaller 

than theα . 

If we select 1=α in theorem 2.5, we can obtain the 

orthonormal matrix Qa and A11 matrix which preserves the 

eigenvalues of the matrix A, which are smaller than 1. After 

applying this theorem we can apply the Alg.3 first, then we 

have two steps algorithm to obtain the new equation set. The 

algorithm of this approach is given in Alg. 4.  

To show the efficiency of the improvement, IEEE 118 bus 

test case is used. The parameter α  for Type-II algorithm is 

selected as a constant value and different values are selected 

for β  value for both types of algorithms. Then, the change of 

the estimated condition number is observed. Here, 1.1=α and 

β is changed from 50 to 500. 

 

 

 

 

 

 

Algorithm 4 TYPE-II MSF BASED PRECONDITIONER 

Input: Matrix A, right hand side vector b  

Output: Solution of the preconditioned linear equation set 

1. Use Theorem 2.5 to compute the new A11 and Qa and 

build the Ma matrix according to (8). 

2. Use Alg. 3 to compute Mb and Qb. 

3. Use Theorem 2.4 to compute A11 and Qb. 

4. Build Mb matrices according to (8). 

5. Compute An and bn as 

 ab
T
bb

T
aan QAQQMQMA 11 −−=  

 bQMQMb T
bb

T
aan

11 −−=         (14) 

6. Use An and  bn to obtain xn in GMRES algorithm 

7. Compute the real x as x=QbQaxn 

 

 

 

 

 
Fig. 3.  Comparison of the condition numbers of preconditioned matrices 

with different β  values for both types of algorithms. It can be easily seen 

from the figures that IEEE 118 bus test system has better condition numbers 

after type-II preconditioner is applied even for bigger β values.  

III.  NUMERICAL RESULTS 

A.  Comparison of MSF-based Methods 

Some popular and well-known IEEE power system test cases 

are used for the tests. In every step of the Newton-Raphson 

algorithm a Jacobean matrix is created. We used the first 

Jacobean in our tests. It is proved that the eigenvalue spectrum 

of the Jacobean in different steps does not vary dramatically. 

The main advantage of the suggested algorithm is based on 

this observation. The preconditioner matrix is created in the 

very beginning of the algorithm and then it is used for different 

Jacobeans. The main mathematical properties of the test cases 

are given in Table 1. 

There are two types of implementations for MSF-based 

preconditioners. In the first case, one can take only the 

dominant eigenvalues of matrix A to obtain the transformation 

matrices. Mainly the approximate condition number of a 

square matrix can be defined as the ratio of the maximum and 

minimum singular values of a matrix. Therefore, the first type 

of MSF-based methods has not much effect on the condition 

number of the preconditioned matrix. To improve the method, 

one can select the eigenvalues whose real part is smaller than 1 
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and the dominant ones. Thereby, both the biggest and the 

smallest parts of the spectrum are vanished. According to 

approximate condition number definition given above, the 

condition number of the preconditioned matrix will be 

decreased if we apply the second type of MSF-based method. 

 
TABLE I 

 NUMERICAL PROPERTIES OF IEEE TEST CASES 

 
 

 

In the first test, IEEE 57 bus test case is used and the 

parameter α is selected as constant and the parameter β is 

varied from 110 to 20. In this case, it is observed that the 

iteration number for GMRES to achieve a desired accuracy is 

getting better for both types of preconditioners. On the other 

hand, type-II preconditioner gives more satisfactory results. In 

all tests we choose a default tolerance as tol=10
-16

. The results 

are given in Fig. 4. 

B.  Comparison between ILU and MSF-based methods 

The same power flow data are used for the comparison of 

the most widely used preconditioning technique, Incomplete 

LU (ILU), and the MSF-based methods. ILU methods produce 

an approximation for the classical LU decomposition and these 

incomplete L and U are used as preconditioner [5]. ILU 

factorization has several types.  

 

 
Fig. 4. Required iteration numbers for convergence for different β . 

Obviously, in both method if the eigenvalue numbers increase the iteration 

number will be decreased. But in Type-II preconditioner, even for larger β  

values (in other words smaller eigenvalue numbers) gives better results. 

 

1. ILU-Threshold: The entries of L and U matrices below 

some threshold value are discarded and the resultant 

factors are used as preconditioners.  

2. ILU('x'): Dropping of fill-ins are decided by the 

sparsity pattern of matrix A. For example in ILU(0) 

means there is no permission for the fill-ins outside 

the sparsity pattern of matrix A. 

The changes of condition number of preconditioned 

matrices for different types of preconditioners are given in 

Table 2. In all cases the first Jacobean of the system is 

considered only. Built-in Matlab function for Incomplete-LU 

factorization is used in all tests. 

 
TABLE II 

COMPARISON OF CONDITION NUMBERS FOR DIFFERENT PRECONDITIONED 

MATRICES 

 
 

In the second test, the convergence graphs of ILU 

preconditioners and type-II preconditioner are compared with 

two different β  values 600 and 300. For 300=β , the number 

of eigenvalues used to form the preconditioner is 90. On the 

other hand, in 600=β  case 50 eigenvalues are used. The 

convergence plots for these cases can be seen from the Fig. 5.  

Finally, the Type-II MSF is used as a preconditioner in the 

Newton-Raphson iteration of power flow simulation. To do 

this, Matpower package is used [10]. In Matpower package, 

the default solver is classical LU method. To test our 

preconditioner, the solver is changed with GMRES obtained 

from the templates of NETLIB [11]. In our test we used 118 

and 300 buses classical IEEE examples, important properties 

of which are given in Table 1. 

 

 
Fig.5. Convergence plots for IEEE-300 test system with various 

preconditioner.  

 

Two different β values for Type-II MSF preconditioner are 

selected for each case. The preconditioner matrix is created 

only once and it used in all other Newton-Raphson steps. For 

IEEE-300 test case, we observed that, GMRES with ILU(0) 

does not converge to the correct value. As a result one can say 

that satisfactory acceleration with type-II preconditioner is 

obtained. To improve the computational efficiency for type-II 

preconditioner, some code optimization techniques and 

parallel implementation has to be considered. 
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TABLE III 

ITERATION NUMBER IN EACH NEWTON-RAPHSON STEP FOR  

THE TEST CASE IEEE - 118 

 

 
 

TABLE IV 

ITERATION NUMBER IN EACH NEWTON-RAPHSON STEP FOR  

THE TEST CASE  IEEE – 300 

 

 
 

 

IV.  CONCLUSION 

In this study, we suggest a new preconditioner design for the 

iterative solution of the linear equation systems arising from 

the power flow simulations. Although direct methods with 

sparse techniques are very common in the area of power 

system simulation, these types of methods are not suitable for 

parallel processing. On the other hand, if the system size is 

getting bigger, parallelism is a must for fast simulations. 

Therefore, iterative methods have to be considered in the area 

of power system simulations. But most of the times, iterative 

methods need preconditioners to accelerate the convergence. A 

new preconditioner based on the Matrix Sign Function (MSF) 

is suggested in this work. The main idea is vanishing the 

extreme eigenvalues to reduce the number of eigenvalue 

groups. To do this, spectral division properties of the MSF is 

employed. The main computational cost of the design of 

suggested preconditioner is computation of the MSF. 

Meanwhile some well-known computational tools like QR 

decomposition also increase the computational cost of the 

design. On the other hand, these computations are done only 

once. The same preconditioner can be used in subsequent 

Newton-Raphson iterations. From this point of view, our 

algorithm has an advantage against the well-known 

preconditioner, Incomplete LU. The suggested preconditioner 

has a block structure. Therefore, it is suitable for parallel 

processing. In our future work, we plan to improve the 

computational efficiency of the method and implement it on 

parallel architectures with more realistic examples. 
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