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This paper is concerned with joint multiuser detection and multichannel estimation (JDE)
for uplink multicarrier code-division multiple-access (MC-CDMA) systems in the presence
of frequency selective channels. The detection and estimation, implemented at the receiver,
are based on a version of the expectation maximization (EM) algorithm and the space-
alternating generalized expectation-maximization (SAGE) which are very suitable for
multicarrier signal formats. The EM-]JDE receiver updates the data bit sequences in parallel,
while the SAGE-]DE receiver reestimates them successively. The channel parameters are
updated in parallel in both schemes. Application of the EM-based algorithm to the problem
of iterative data detection and channel estimation leads to a receiver structure that
also incorporates a partial interference cancelation. Computer simulations show that the
proposed algorithms have excellent BER end estimation performance.

Crown Copyright © 2009 Published by Elsevier B.V. All rights reserved.

1. Introduction

Future communications will be driven by the need
to provide more integrated high-capacity, wide-coverage
services to face new challenges in meeting the ubiquity
and mobility requirements of cellular systems. For the
21st century user, extensive attempts have therefore been
made, and further spectacular enabling technology ad-
vances are expected, in an effort to render ubiquitous
wireless connectivity a reality. One promising approach is
the integration of multiple access and modulation tech-
nologies. In particular, the combination of multicarrier
and code division multiple access (MC-CDMA) has been
preliminarily successful because it incorporates the bene-
fits of orthogonal frequency-division multiplexing (OFDM)
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and spread-spectrum presents good potentialities to make
it the best technology to support broadband applications
[1,2]. Moreover, MC-CDMA systems relieve the limitations
on system capacity that occur in direct-sequence code
division multiple access (DS-CDMA) systems.

The major advantages of MC-CDMA which lie behind
its success are robustness in the case of multipath fading,
a very reduced system complexity due to equalization in
the frequency domain, and the capability of narrow-band
interference rejection. It also has an ability to reduce users
signal power during transmission using a spreading so that
the user can communicate using a low-level transmitted
signal, which is closer to the noise power level.

In conventional MC-CDMA systems, multiple access in-
terference (MAI) mitigation is accomplished at the receiver
using single-user or multi-user detection schemes [3].
However, even though a multiuser detection scheme is
known to increase the bandwidth efficiency of the system
drastically, its detection complexity grows exponentially
with the number of users and the number of multipaths,
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which makes its implementation unfeasible. Several sub-
optimal detection techniques have been proposed in the
literature such as linear multiuser detection [4] and iter-
ative cancelation of MAI, either in a successive or paral-
lel way in the received signal prior to data detection [5].
However, all these detection schemes require explicit
knowledge of the channel parameters of the active users.
A considerable amount of research has therefore been de-
voted to the problem of channel estimation in MC-CDMA
systems. In [6], a subspace-based blind channel identifica-
tion algorithm is proposed. Although blind solutions are
attractive from the point of view of bandwidth efficiency,
they are often computationally complex and require long
data records to achieve good performance. As an alter-
native, data-aided channel estimation technique has been
discussed in [7]. Moreover, channel acquisition and track-
ing in the uplink of MC-CDMA systems have also been
studied in [8]. In this approach, channel tracking is pursued
by means of a least mean square (LMS) algorithm while
channel estimation is performed using different schemes
based on a maximum likelihood (ML) criterion.

In contrast to previous approaches, several alternative
algorithms can be considered to refine channel estimates
through iterations. An attractive iterative technique is
the expectation-maximization (EM) algorithm which has
already been considered in several channel estimation
scenarios [9-12]. In [11], a two-step detection, channel
estimation procedure is adopted which uses the EM
algorithm to estimate the channel in the first step and then
uses the estimated channel to perform coherent detection
in the second step. Moreover, an EM approach has been
proposed for the general estimation of superimposed
signals applied to the channel estimation for transmit
diversity OFDM systems and was then compared with the
space-alternating generalized expectation-maximization
(SAGE) algorithm [13].

When dealing with the multiuser scenario, it is neces-
sary to make excellent joint data and channel estimations
for the initialization of the interference cancelation detec-
tor. The work is an extension of [14], in which joint data
detection and channel estimation of uplink DS-CDMA sys-
tems were considered based on an EM algorithm in the
presence of flat Rayleigh channels. We have extended their
results for the uplink MC-CDMA systems with frequency
selective channels. The channel estimation becomes more
challenging for uplink systems since each channel between
every user and the base station must be estimated rather
than estimating a single channel as is the case in a down-
link transmission. In this paper, we apply the EM and SAGE
algorithms to the problem of joint multiuser data detec-
tion and the channel estimation (JDE) of MC-CDMA signals
transmitted through frequency-selective channels. In this
way, we obtain iterative methods of tractable complexity
which intelligently combine the two processes of data de-
tection and channel estimation.

Note that perfect timing synchronization between the
users and the base station in MC-CDMA systems is an im-
portant issue and has to be solved before the channel esti-
mation and the data detection processes. This is the case for
all synchronous multiuser uplink systems. Timing offsets
in the uplink are mainly due to the propagation delay in-
curred by users’ signals. The timing error of each user with

respect to the BS time reference can be decomposed into
an integer part plus a fractional part with respect to the
sampling period. As explained in [15], the fractional part
can be incorporated into the channel impulse response and
so is not considered in the analysis. Thus, under such cir-
cumstances, the use of a sufficiently long guard interval
(in the form of a cyclic prefix) provides intrinsic protec-
tion against inter frame interference at the expense of extra
overhead. Therefore, even in an imperfect timing synchro-
nization scenario, the proposed technique in this paper for
joint channel estimation and data detection will still work
if timing offsets are incorporated as part of the channel im-
pulse response. Note that quite recently, Kocian and Fleury
[16] extended their earlier work to an asynchronous case
which dealt with EM-based joint data detection and the
channel estimation of DS-CDMA signals in the presence of
quasi-static flat Rayleigh fading channels. A similar exten-
sion can be made for MC-CDMA systems with frequency
selective channels if timing offsets are not incorporated as
part of the channel impulse response.

The organization of this paper is as follows. The sig-
nal model of MC-CDMA systems and the channel model
considered in this work are given in Section 2. The joint
schemes for data detection and channel estimation based
on EM and SAGE algorithms are presented in Sections 3
and 4, respectively. The performance of the algorithms pro-
posed in the paper are assessed in Section 5 by computer
simulations. Finally, the main conclusions of the paper are
presented in Section 6.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters; all vectors are column vectors;
(0% ()T and () denote the conjugate, transpose and con-
jugate transpose, respectively; |.|| denotes the Frobenius
norm; I; denotes the L x L identity matrix; diag{.} denotes
a diagonal matrix; and finally, tr{.} denotes the trace of a
matrix.

2. Signal model

We considered a baseband MC-CDMA uplink system
with P sub-carriers and K mobile users which are simul-
taneously active. For the kth user, each transmit symbol is
modulated in the frequency domain by means ofa P x 1
specific spreading sequence cj. After transformation by
a P-point IDFT and parallel-to-serial (P/S) conversion, a
cyclic prefix (CP) is inserted of a length equal to at least
the channel memory (L). In this work, to simplify the no-
tation, it is assumed that the spreading factor is equivalent
to the number of sub-carriers and all users have the same
spreading factor. Finally, the signal is transmitted through
a multipath channel with impulse response

L
Z(t) =) bt — 1) (1)
=1

where L is the number of paths in the kth user’s channel;
8k, and i are, respectively, the complex fading coefficient
and the delay of Ith path and Py is the transmit power of
the kth user. The fading process is assumed to be white. Its
second-order statistics are known to the receiver. Note that
the L-dimensional discrete channel impulse response vec-
tor g, = [8k.1, 8k.2, - - - ,gk,L]T and the transmission power
Py, can be combined as hy = +/Pg,, since they cannot be
separated from each other.
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In the receiver, the received signal is sampled at
chip-rate and serial-to-parallel (S/P) converted. The CP is
removed, and DFT is then applied to the discrete time
signal to obtain the received vector expressed as

by(m)C,Fhy +w(m), m=1,2,...,.M (2)

K
y(m) =

k=1
where by (m) € {+1, —1} denotes binary data sent by the
user k within the mth symbol time; C, = diag(c,) with

¢k = [Cik, Coks - - -, cpi]T where each chip, ci, takes values

in the set {—ﬁ, \}ﬁ} denoting the kth user’s spreading

code ; F € C"*! denotes the DFT matrix with the (k, I)th
element given by e 727%/?: and w(m) is the P x 1 zero-
mean, i.i.d. Gaussian vector that models the additive noise
in the P tones, with variance o2/2 per dimension.

Suppose M symbols are transmitted. We stack y(m) as

y = [y'(1),...,y"(M)]". Then the received signal model
can be written as
b1(1)CF bg (1)CkF | | hy
y=1| : :
b1 (M)C4F b (M)CkF | | hg
w(1)
+ : 3)
w(M)
and can be rewritten in the more succinct form
y=Ah+w (4)

where hy’s are modeled as complex Gaussian random vari-
ables with hy ~ N(0, Xy, ) and Xy, = E[hkh,t]. It is then
clear that h ~ N(0, Xy,) with Xy = diag[Xy,, ..., Xl
We assume that the covariance matrix Xp, of each user k
is known, or measured by means of pilot symbols. Other-
wise, a least-square estimator can be applied to estimate
the channel and to measure Xy, as well [17]. Note that
due to the orthogonality property of spreading sequences,
GG = 21Ip.

3. Joint data detection and channel estimation with EM
algorithms (EM-JDE)

Let b denote possibly vector-valued parameter to be
estimated from some possibly vector-valued observationy
with probability density p(y|b). The EM algorithm provides
an iterative scheme to approach the ML estimate b =
arg max, p(y|b) in cases where a direct computation of
b is prohibitive. The derivation of the EM algorithm
relies on the concept of a hypothetical, so-called complete
unobservable data x which, if it could be observed, would
ease the estimation of b. The observed random variable y
which is referred to as the incomplete data within the EM
framework, is related to x by a mapping x — y(x).

The suitable approach for applying the EM algorithm to
the problem at hand is to decompose the received vector
in (2) into the sum [18]

K
y(m):Zxk(m), m=12....M (5)
k=1

where
X, (m) = by (m)CyFhy + wy(m). (6)

X, (m) represents the received signal component transmit-
ted by the kth user through the channel with impulse
response hy. The Gaussian noise vector, wy(m) in (6) repre-
sents the portion of w(m) in the decomposition defined by
Zf;l w;(m) = w(m), whose variance is Ny . The coeffi-
cient By determines that part of the noise power of w(im)
assigned to X, (m), satisfying Zf;l Br=10<pB, <1
The problem now is to estimate the transmitted
symbols b = {bk(m)}f’zpfqmzl and the complex channel
responses hy for each user, based on observed data y.
In the EM algorithm, we view the observed data y as
the incomplete data, and define the complete data as
x = {®&xq,hy), X, hy), ..., X¢, he)} where x, =
X (D), ..., x(M)]T for k = 1,2,...,K. Given the
complete data set, the loglikelihood function of the
parameter vector to be estimated (b) can be expressed as

K
logp(x|b) =) log p(Xi, hyby) (7)
=1
where
log p(Xy, hi|by) = log p(x|by, hy) + log p(hy|by) (8)
and, by = [be(1), be(2), ..., bp(M)]'. Because of the

model assumptions, the second conditional pdf on the right
hand side of (8) is independent of b. It may, therefore, be
discarded since in the following Maximization Step of the
EM algorithm involving (7), the maximization is taken over
the parameter b, only. Moreover, neglecting those terms
independent of b, we have obtained from (6)

M
log p(xi[by, ) ~ ) R{bi(m)M{F Cxic(m)). (9)
m=1

Expectation Step (E-Step): The first step to implement
the EM algorithm, called the Expectation Step (E-Step), is to
compute the average log-likelihood function, denoted by
Q(.|.). The conditional expectation is taken over x given
the observation y and that b equals its estimate calculated
at the ith iteration as

Q (bb®) = E {logp(x|b)ly, b} . (10)
Taking into account the special form of logp(x|b) in (7),
Eq. (10) can be decomposed as

K

Q (bb?) = " Qu(by[b?) (11)
k=1

where

Qu(bib?) = E {log p(xe. hi[b)ly, bV} . (12)

Note that after discarding the second term on the right
hand side of (8), due to the reasons mentioned above, (12)
can be expressed as

Qu(b[b?) = E {log p(xc|by)ly, b} . (13)
Inserting (9) in (13), we have for Qi (b|b®)

M
Qu(bi[b?) = " R{b(m) (h[F'Cixi ()} (14)

m=1
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where, adopting the notation used in [14],
(i F'Clx ()@ 2 E [h,tFTc{xk(m)w, b<f>] : (15)

the quantity (h{F'Clx,(m))® can be calculated by apply-
ing the conditional expectation rule as

= E{h{E(F'Cx, (m)ly, b, )]y, b}
= E{h[F'CiE(xc(m)ly, b, h)|y, b®}. (16)

The conditional distribution of x;(m) giveny, hand b =
b® is Gaussian with the mean

E(x(m)ly, b®, h) = b (m)C,Fhy

K
+ By (y(m) DL (m)chhj> (17)
=
where b\’ (m) 2 E(by(m)ly, b, h). Inserting (17) in (16)
and using the properties F'F = Pl and C;C; = I we can
rewrite (15) as

(h[F'Cix,(m))® = (b(m)) VE{h}hyly, b}
+ BE(h]ly, bV )F Cly(m)

— Bi Z b (m)E{h[F'C,C;Fhyly, b"}. (18)
j=1.j#k

On the other hand, sincew ~ N(0, o-?I) and the prior pdf of
his chosen as h ~ N(0, X}), we can write the conditional
pdf's of h given y and b® as

p(hly, b?) ~ p(y/h, b¥)p(h)
1 . .
~ exp [——Z(y —A%n)T(y—APn) — h*zglh] )
o
After some algebra it can be shown that

phly, b)) ~ N(uy, Z0) (19)
where

-1
zy = [z—l +—= (A“))*A(‘)] (20)

and the matrix A is defined in (3). Note that the complexity
of computing the mean vector and covariance matrix in
(20) can be determined as follows. Since A and E}? are
MP x KL and KL x KL dimensional matrices respectively
and y is an MP x 1 dimensional vector, it can be easily
seen that the complex multiplications KLMP + (KL)? and
(KL)2MP + (KL)? are required to compute the mean vector
and the covariance matrix in (19), respectively. Thus, the
total number of multiplications required is (KL)2MP +
KLMP + (KL)?> =~ (KL)2MP for K > 1,L>> 1.

Now let us compute the terms on the right hand side
of Eq. (18). Firstly, we compute E{h,th,<|y, b?} as follows.
From (19) we have

E{hh'ly, b¥} = 5,® + pPp". (21)

For the kth element we get

Efhehlly, b} = 01k, k1 + ke [k’ (22)
where Xy[i, j] denotes the (i, j)th element of the matrix
X'h. We can then calculate E{h,thk|y, b?} from (22) as

(e [H® 2 E{hjhyly, b}

—tr [z;” k. k] + ki [k]T] . (23)
The second expectation in (18) can be computed as
() 2 E{hyly, bV} = p, [K]. (24)

Finally, to calculate the last expectatlon E {h,tFTC C;Fh;ly,

b?} in (18), we define ¥; £ CiF and s; £ W;h;. It then
follows that

S1 v, 0 0 h]
Sk 0 0 ‘I’K h[(
=0 2 E[ss'ly, b?]
E[whh!w'ly, bV = vt (26)
Therefore,
E{h/F'C[CiFh;ly, b?} = E[s's]y, b”]
=t [ZO1k, j1 + n kI [j1T] (27)

where, p” 2 wp
) Ms KLy -

Maximization-Step (M-Step): The second step in
implementing the EM algorithm is the M-Step where the
parameter b is updated at the (i 4+ 1)th iteration according
to

K
bV = arg max Q(blb) = Z Qu(by[b?). (28)

k=1
The M-Step can be performed by maximizing Q(by|b®)
individually in (28), as follows

btV = arg maka(bklb) (29)

where from (14)

M

Qb b®) = bi(m)R{ (h[F' Cxi(m) V). (30)
m=1

Moreover, when no coding is used, it follows from (30)

that each component of b,(fﬂ) can be separately obtained

by maximizing the corresponding summation in the right-
hand expression, as follows

b+ (m) = sgn [m{(h,ﬁﬁc{xk(m))“)}] (31)
where we have previously obtained that
(W[F Cix, (m)® = b (m)([[hy[|*)®

+ Br [(hb@ﬁc}y(m) (32)

K
- Zb}”(m)(thfc{chhj)“)} . (33)

j=1
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The quantities ([[h]|)®, (h))® and (hF'C[CFh)® in
(32) are given by (23), (24) and (27), respectively. It was
shown in [14] thatif the length M of the observations frame
is large enough, the first term on the right hand side of (27)
is negligible compared to the second one. That is,

lim (' GGy ~ tr [ [k []']

= w1 P17 = ey T 11, (34)
Note that the identity on the right hand side of (34) follows
from the facts that " 2 'I’[L,(:) and ¥'W¥ = I;. Discarding
the first term in (27), through a slight rewrite, (32) and (33)
can be simplified to

bit'(m) = sgn [m{b,ﬁ” m) [ K21 — Bo)

K
+ By LD ] {y(m)— > b mwpy ]}”
j=1j#k
(35)

As a result, Eq. (35) can be interpreted as a joint channel
estimation and a data detection with partial interference
cancelation. At each iteration step during data detection,
the interference-reduced signal is fed into a single user
receiver consisting of a conventional coherent detector.
As a result, a K-user optimization problem has been
decomposed into K independent optimization problems
whose resolution is computationally feasible. Finally, it
should be concluded that this paper is an extension of
the work [14] on the problem of joint channel estimation
and data detection for uplink multicarrier CDMA systems
operating in the presence of frequency-selective channels.
In [14] the same problem is investigated for DC-CDMA
systems in the presence of flat fading channels.

3.1. Optimal selection of ;s

In usual parameter estimation problems in the pres-
ence of superimposed signals it has been shown that the
optimal values of the coefficients §;’s are chosen as equal
weights; that is 8y = 1/K [18]. However, the equally se-
lected weights will not be optimal when the received SNR’s
of each of K users are not equal to each other and if there
is some correlation between the super imposed signals, as
is the case under consideration here. The optimal gy val-
ues can be determined in this case so as to minimize the
bit-error probability as the number of iterations i goes to
infinity. Since this is a mathematically intractable nonlin-
ear optimization problem we will adopt a more manage-
able yet a suboptimal approach presented by Kocian and
Fleury [ 14] and extend their method for the case when each
user is affected by a different frequency-selective channel.
As pointed out in [14], a tractable way to determine the
optimal coefficients of all the users 8 = [B1, B2, . .., B 1"
is to minimize the total linear mean-squared error be-
tween the true signal components & (m) = by(m)C,Fhy

and their estimated values at the ith iteration g,i” (m) &
E {x,(m)ly,b®} for k = 1,2,....K, after projected on
v, =) CkF. Thus

By 2 arg mﬁin’:Z]E ot (s 0m - sm) |}

under the constraints that Z;f;l Brx = 1and By > 0.The
solution for an optimal B is given in the following lemma.

Lemma 1. Suppose that foreachk = 1,2, ...,K,
PP — /2 > 0.
The optimal B's are given by

o _ P =22

U]
ﬁk,opt - 0 0= k,opt <1 and
K
Biopt > 0 (36)
where

P £ 4tr(Zy, )Py

K
(i) P
Q! §4§ tr(Y:thkaj)bej
j=1

K ; .
1— P(') Qr(l)
) r:Z] o/
AM2E ———
> 1/Q7
r=1
and P 2 Prob [b;i) (m) % bO (m)], 1y £ FICIGE,

Proof. Using the Lagrange optimization method this can
be converted into an unconstraint minimization problem
as follows

B = arg minJ(8)

where

I £ ng {1l (&0 om — geom ) 12}

K
+A<Zﬁk—1>. (37)
k=1

and X is a Lagrange coefficient. Taking the expectation with
respect to h in (17) we have

¢ (m) = b (m)C,Fh

K
+ B (y(m) -> b (m)Qth”) : (38)
=
Substituting (2) in (38), with C;C; = #lp, assuming

w(m) =~ 0and taking into account the fact that the channel
is asymptotically known, that is h,(j) — hpasi — 400, the
terms on the left hand side of (37) can be expressed as

wigd (m) = by (mhy

K
+ B Y Yghy (B b)) (39)
j=1

wig,(m) = b(m)hy. (40)



92 E. Panayirci et al. / Physical Communication 3 (2010) 87-96

Note that Y}, Yy = I;. Substituting (39) and (40) in (37)
and after some algebra yields

JB) = (=28 + BIE { ] | bicm) — b (m)

+B ZE {h}LYZkaihj | bj(m) — b;i)(m) |2}
J#k

K
—A(Zﬂk—l). (41)
k=1

The expectations above can be evaluated as follows.
E {iml? | beam) — b om)

= 2tr(Zn,) [1 — E{be(m)b” (m)}]

= 4tr(Zn )Py,
E {h}Y,th,q»hj | by(m) — b (m) |2} = 20( Yy B X}

x [1 - E{bj(m)bj(i)(m)}]
= 4tr(Tkahj TL)P;];

Differentiating (41) with respect to ¢,k = 1,2,...,K,
equating the resulting equations to zero and solving for
Bi’s and A, the optimal solutions are obtained as in (36). By
hypothesis, the right hand side of (36) is strictly positive
for each k. Note that if the assumption in Lemma 1 is
not satisfied, then the Lagrange maximization will yield
negative or zero values for at least one of the fB’s,
indicating that the maximization distribution is located on
the boundary. It then becomes necessary to set some of the
Bs equal to zero and to try to maximize J(f8) as a function
of the remaining variables. In this case the Lemma 1 does
not apply and the problem can be solved by a convex
programming program.

The bit-error probability Plflj) can be evaluated by
assuming the performance of the multiuser detector is
close to a single user detector performance. In this case

Py} ~ Q(y/2[hj[|2/o?) where Q(.) is the error function
defined by Q (x) = 1/+/27 [* e?2de. O

4. Joint data detection and channel estimation with
SAGE algorithm (SAGE-]JDE)

The SAGE algorithm proposed by Fessler et al. [19] is
a twofold generalization of the EM algorithm. First, rather
than updating all parameters simultaneously at iteration i,
only a subset by of b indexed by k = k(i) is updated while
keeping the parameters in the complement set b; £ b\ by
fixed; and second, the concept of the complete data x is
extended to that of the so-called hidden data xj to which
the incomplete data y is related by means of a possibly
nondeterministic mapping x, +— y(x;) exhibiting some
particular property. A hidden data space would be a
complete data space for by in the EM framework, if by
were known [19]. The particular property of the mapping
Xr — Y(x,) guarantees that the SAGE algorithm exhibits
the monotonicity property as well.

The convergence rate of the SAGE algorithm is usually
higher than that of the EM algorithm, because the condi-
tional Fisher information matrix of x, giveny for each set
of parameters by is likely smaller than that of the com-
plete data x, giveny for the entire space b. The SAGE algo-
rithm, a generalized form of the EM algorithm [13], allows
a more flexible optimization scheme and sometimes con-
verges faster than the EM algorithm. Our main objective is
to estimate the transmitted symbols b = {bk(m)}f’:"f me1
for each user k, based on observed data y. The complex
channel responses h = [hy, hy, ..., hg]" are treated as
nuisance parameters. In the SAGE algorithm, we view the
observed datay as the incomplete data. At each iteration i,
only the data sequence b, = [bi(1), bx(2), ..., by(M)] of
b indexed k = k(i) = i mod K is updated while keeping
the data sequences in the complement set by fixed. by is
the vector obtained by canceling the components of by in
b. Then a natural choice for the so-called “hidden-data” set
would be x = (y, h).

The SAGE algorithm is defined by the Expectation (E)
and Maximization (M) steps as follows: At the ith iteration
the E-step computes

@ (bb”) = £ J1og p(xbi. b1y, b | (42)
In the M-step, only by is updated as
b ™" = arg max Qu(bb")

(i+1) _ @

B = b0, (43)
Given the complete data set x, the loglikelihood function of
the parameter vector b to be estimated can be expressed as
log p(x|b) = logp(y, hib)

= logp(ylh, b) + log p(h|b). (44)
As in the previous section, due to the model assumptions,
the second term on the right hand side above may be

discarded since it does not depend on b. From (2), the term
log p(y|b, h) in (44) can be expressed as

M K f
logp(ylb, h) ~ ) " 2% { (Z b;(m)c,-Fh,-) y(m)}

m=1 j=1
K 2
— | > bjam)C;Fhy (45)
j=1
Inserting (45) in (42), we have for Qi (b [bD)
M
Qb)) =) "% {bk<m><h,i'>>*ﬁczy<m>
m=1
K )
— ) bj(m)(h[FC;C;Fh)® } (46)
J=1.j#k

where the quantities h{’ and (h]F'C{C;Fh;)® are defined
as

b’ 2 E(hy | y. b?)
(hiFTCIC;Fh)® 2 E {thfc{chhj v, b‘”] .
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Table 1 Table 2

Users transmission power. Taps power.

User Linear Logarithmic (dB) Delay (ps) Linear Logarithmic (dB)
1 1 0 0 0.6564 —1.8286
2 0.9560 —0.1954 0.81 0.2086 —6.8072
3 0.9139 —0.3909 1.62 0.0790 —11.0210
4 0.8737 —0.5863 2.44 0.0560 —12.5171
5 0.8353 —0.7817
6 0.7985 —0.9772
7 0.7634 —1.1726
8 0.7298 —1.3680 100
9 0.6977 —1.5635 I

10 0.6670 —1.7589

11 0.6376 —1.9543

12 0.6096 —2.1498 101

13 0.5827 —2.3452

14 0.5571 —2.5406 CUTIIITN RS

15 0.5326 —27361 e R TR T

16 0.5092 —2.9315 W 10-2

These quantities can be computed by (24) and (27), [~~~ o Coo

respectively. 109 e

The M-Step can be performed by maximizing each :—E—:gi%,‘l%gé&””“’"m
summand of the right-hand 51.de expression individually in \ - ¢ -csthuse-pio o Co
(46). After some algebra the final result is as follows. 1075 2 5 8 10 12 14
SNR(dB)

bl(<i+1) (m) = sgn I}R [((hz)(l)FTCZy(m)

K
— > b (m)(nFCGFR)D) ” . (47)

=Tk

If the observation frame length M is large enough, we
can again neglect the first term in (27) and (47) can be
approximately expressed as

bit'(m) = sgn |:9%=u,(f) nz

K
x [y(m)— > b}”(quu;”mm. (48)

=Tk

According to (48), the tentative decisions of the bits are
used to calculate an estimate of the MAI which is likely to
be increasingly reliable with iteration i.

5. Simulations

In this section, the performance of an uplink MC-
CDMA system based on a proposed receiver operating
over frequency-selective channels is investigated by com-
puter simulations. In the simulations, it is assumed that
all users receive different average signal powers, chosen
according to the values in the Table 1. The orthogonal
Walsh sequences are selected as a spreading code and
the processing gain is equal to the number of subcarriers
(P = 16). The number of users selected is K = 16 and
each user sends a frame over the fading channel which is
composed of T preamble bits, and D data bits. The BER per-
formances of several receiver types are investigated below
as a function of SNR per information bit. Wireless channels
between mobiles’ antennas and the receiver antenna are
modeled based on a realistic channel model determined
by the COST-207 project in which the Typical Urban (TU)

Fig. 1. BER performances of SDE receivers (T = 8, D = 40).

channel model is considered to have the channel length
L = 4 and the covariance Xy. The channel tap gains are
given in Table 2. BPSK signal modulation format has been
adopted with a bandwidth of 1.228 MHz (Qual Comm-
CDMA).

Traditional receivers for MC-CDMA systems are based
on separate estimation and detection (SDE) methods
whose performances are limited by the number of used
preamble bits. Therefore we first investigate BER perfor-
mances of SDE receivers for different lengths of pream-
ble bits. In the receiver, the initial MMSE channel
estimate is obtained by using T preamble bits while the
channel covariance matrix Cj is assumed to be known. An
initial MMSE estimate of D data bits is computed from the
observation vector y while assuming the channel coeffi-
cients have already been estimated. We will refer to this
method as the MMSE separate detection and estimation
(MMSE-SDE) scheme. If the output of the (MMSE-SDE) is
applied to a parallel interference cancelation (PIC) receiver
or the SAGE receiver, the resulting receiver structures are
referred to the Combined MMSE-PIC and the SAGE-SDE, re-
spectively. There are two existing strategies on how to rank
the users for SAGE receivers. The first one is that the users
are sorted according to their estimated strength, so that the
user with the weakest received signal is ranked first. The
other one is that the users are ranked in order of decreas-
ing strength.

In these simulations, the first sorting method is used
for all SAGE simulations. Note that in [14], the first
sorting method yields better performance results. More-
over, we also determined the performances of MMSE-SDE,
Combined MMSE-PIC and SAGE-SDE receivers for the per-
fect channel state information (CSI) case are referred to
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Fig. 2. BER performances of SDE receivers (T = 16, D = 40).

CSI-MMSE, CSI-Combined MMSE-PIC and CSI-SAGE-SDE,
respectively.

Fig. 1 compares the BER performances of the MMSE-
SDE, Combined-MMSE-PIC, SAGE-SDE, CSI-MMSE, CSI-
Combined MMSE-PIC and the CSI-SAGE-SDE schemes as
a function of SNR. For fair comparison, we simulated
Combined-MMSE-PIC, SAGE-SDE, CSI-Combined MMSE-
PIC and CSI-SAGE-SDE receivers employing only four
stages. For fair comparison, we simulated all receivers em-
ploying only three stages. One stage corresponds to the
number of iterations required to update every user’s bit
sequence once, i.e., one iteration in the Combined-MMSE-
PIC scheme and K iterations in the SAGE-SDE scheme. It
is observed that the SAGE-SDE and the Combined MMSE-
PIC receivers, based on the interference cancelation, out-
perform the MMSE-SDE receiver. On the other hand, it is
well known that the successive interference cancelation
(SIC) scheme outperforms the PIC scheme when the re-
ceived signals have distinctly different strengths. There-
fore, the SAGE-SDE receiver performance is better than
the Combined-MMSE-PIC. Note that the SAGE-SDE receiver
needs more time to update the user’s data since the inter-
ference is canceled successively. It is also clear that the pro-
cessing time increases with the number of active users in
the system.

From the simulation results in Fig. 2, we can see that
as length of preamble sequence increases to 16, the SAGE-
SDE and Combined MMSE-PIC receiver performances ap-
proach the CSI cases slightly. Moreover, it was shown that
Combined-MMSE-PIC-CSI and SAGE-SDE-CSI gain by about
3 dB over the MMSE-SDE at BER = 1073. In practice, this is
unfeasible because of the effective usage of bandwidth re-
quirements. Moreover, increasing the preamble sequence
will increase the SNR per information bit due to low rate.
Thus, in the following, we simulated the proposed two
joint-channel estimation and data detection (JDE) methods
to improve the performance at shorter preamble sequence
lengths.

Fig. 3 presents the simulation results where BER per-
formances of the JDE methods are compared with that of
the SDE methods. The MMSE-SDE technique has been used
to initialize the EM-JDE and SAGE-]DE receivers. For a fair

10~

O 402F::::iitrrin N DI N
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1073 || —e— Combined-MMSE-PIC[: : : : @ it f il INONLNN
—»— SAGE-SDE s R

—0— SAGE-JDE B
—k— EM-JDE e e
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Fig. 3. BER performances of SDE and JDE receivers (T = 8, D = 40).
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Fig. 4. BER performances of SDE and JDE receivers in the case of channel
is time varying (T = 8, D = 40).

comparison, we simulated SDE and JDE methods employ-
ing only four stages. In Fig. 3, it is observed that the pro-
posed ]JDE techniques outperform all the SDE approaches
when the channel is unknown. As mentioned earlier, the
SIC scheme outperforms the PIC scheme if the estimation
and detection steps are implemented separately. The va-
lidity of this assertion has also been shown in [ 14] for joint
channel estimation and data detection in the DS-CDMA
systems over flat Rayleigh fading channels. Therefore, it is
expected that SAGE-]JDE will outperform EM-]DE, in which
the channel coefficients are updated only once at every
stage, rather than K times as performed in the SAGE-]DE
receiver. This is due to the following reason: In the SAGE-
JDE receiver, at each iteration, the bit sequence of only one
of the users is updated and the other user’s bit sequences
are updated successively, while the channel coefficients
are reestimated in parallel after completing the updating
of each sequence. Therefore, at the first iteration, only the
first column of the A matrix in Eq. (3) is updated and the
channel coefficients are reestimated according to the up-
dated A matrix in Eq. (20).

Consequently, the channel updating process is not as
efficient as the one employed in the EM-]DE scheme. This
is due to the fact that the EM-]DE receiver updates the
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channel after having completed the update all columns of
in the A matrix as contrast to the SAGE-]DE technique. As
aresult, the performance of the SAGE-]DE scheme appears
to be worse than the EM-]DE for the parameters chosen for
the simulations.

In computer simulations, so far, the channel was as-
sumed to be constant (static) regardless of any changes in
the impulse response of the mobile channel (as a function
of the Doppler frequency (Hz)). In Fig. 4, BER performances
of the JDE and SDE receivers employing three stages are
presented in the presence of different Doppler frequencies
for SNR = 14 dB. Based on results presented in Fig. 4, we
have concluded that JDE receivers are more robust against
channel variations than SDE receivers. Therefore, we con-
clude that the JDE methods are very good candidates for
operating over static as well as quasi-static channels.

Finally to make a fair comparison between the dif-
ferent estimation techniques in terms of computational
complexity, we have the following observation. The joint
estimation of the channel coefficients basically dominates
the computational complexity of both EM-]DE and SAGE-
JDE algorithms. For a fair comparison, the algorithms are
simulated employing only four stages. One stage corre-
sponds to one iteration in EM-based algorithms while K
iteration in SAGE based algorithms are required to update
every user’s bit sequence. Based on the complexity anal-
ysis presented in Section 3, we have concluded that the
complexity per iteration of the EM-]JDE and SAGE-]DE al-
gorithm is bounded by O(K?L>MP) and O(K>L*>MP).

6. Conclusions

We presented two efficient iterative receiver structures
of tractable complexity for the joint multiuser detection
and multichannel estimation (JDE) of direct-sequence
code-division multiple-access signals. The schemes result
from an application of EM and SAGE algorithms, respec-
tively. The EM-]DE receiver updates the data bit sequences
in parallel, while the SAGE-]JDE receiver reestimates them
successively. The channel parameters are updated in
parallel in both schemes. A closed form expression was
derived for the data detection which incorporates the
channel estimation as well as the partial interference
cancelation steps in the algorithm. It was concluded that
few pilot symbols were sufficient to initiate the EM-JDE
and SAGE-]JDE algorithms very effectively. A comparison
with other previously known receiver structures was
also made. These computer simulations demonstrated the
effectiveness of the proposed algorithms in terms of BER
performances when the channel needs to be estimated.
We conclude that the EM-]JDE and SAGE-]DE which smartly
combine the data detection and channel estimation in
multiuser systems, are robust unlike architectures where
both process are implemented separately and we observed
that the EM-]JDE performed better than the SAGE-]JDE.
Finally, we have demonstrated that JDE receivers are more
robust against the channel variations than SDE receivers.

Acknowledgement

This research has been conducted within the NEW-
COM++ Network of Excellence in Wireless Communica-
tions funded through the EC 7th Framework Programme.

References

[1] N. Yee, J.-P. Linnarz, G. Fettweis, Multi-carrier CDMA in indoor
wireless radio networks, in: Proc. IEEE Int. Symp. on Personal,
Indoor and Mobile Radio Commun., PIMRC 93, September 1993,
pp. 109-113.

[2] K. Fazel, L. Papke, On the performance of convolutionally-coded
CDMA/OFDM for mobile communication system, in: Proc. IEEE Int.
Symp. on Personal, Indoor and Mobile Radio Commun., PIMRC 93
September 1993, pp. 468-472.

[3] S. Hara, R. Prasad, Overview of Multicarrier CDMA, IEEE Commun.
Magazine (1997) 126-133.

[4] Z.Xie, R.T. Short, C.K. Rushfortli, Family of suboptimum detectors for
coherent multiuser communications, IEEE ]. Select. Areas Commun.
8(4)(1990) 683-690.

[5] V. Kuhn, Combined MMSE-PIC in coded OFDM-CDMA systems, IEEE
GLOBECOM 01 (2001) 231-235.

[6] X. Wu, Q. Yin, A. Feng, K. Deng, Equivalently blind time-domain
channel estimation for MC-CDMA systems over frequency selective
fading channels in multiuser scenario, IEEE Trans. Veh. Technol.
(2001) 2687-2691.

[7] P. Marques, A. Pereira, A. Gameiro, Pilot and data aided channel
estimation for uplink MC-CDMA mobile systems, in: EUSIPCO,
September 04-08 2005, Antalya, Turkey.

[8] L. Sanguinetti, M. Morelli, Channel acquisition and tracking for MC-
CDMA uplink transmissions, IEEE Trans. Veh. Technol. 55 (3) (2006).

[9] X. Ma, H. Koyabashi, S. Schwartz, EM-Based channel estimation
algorithms for OFDM, EURASIP J. Appl. Signal Process. (10) (2004)
1460-1477.

[10] H.Dogan, H.A. Cirpan, E. Panayirci, Iterative channel estimation and
decoding of turbo coded SFBC-OFDM systems, IEEE Trans. Wireless
Commun. 6 (7) (2007).

[11] H.A Cirpan, E. Panayirci, H. Dogan, Nondata-aided channel estima-
tion for OFDM systems with space-frequency transmit diversity,
IEEE Trans. Veh. Technol. 55 (2) (2006) 449-457.

[12] E. Panayirci, H. Dogan, H.A. Cirpan, B.H. Fleury, Joint data detec-
tion and channel estimation for uplink MC-CDMA systems over
frequency selective channels, in: 6th Int. Workshop on Multi-Carrier
Spread Spectrum, MC-SS 2007, 2007, Herrsching, Germany.

[13] X. Yongzhe, C.N. Georghiades, Two EM-type channel estimation
algorithms for OFDM with transmitter diversity, IEEE Trans.
Commun. 51 (1) (2003) 106-115.

[14] A. Kocian, B.H. Fleury, EM-based joint data detection and channel
estimation of DS-CDMA signals, I[EEE Trans. Commun. 51 (10) (2003)
1709-1720.

[15] M. Morelli, Timing and frequency synchronization for the uplink of
an OFDMA system, IEEE Trans. Commun. 52 (2) (2004) 296-306.

[16] A. Kocian, I. Land, B.H. Fleury, Joint channel estimation, partial
successive interference cancelation, and data decoding for DS-CDMA
based on the SAGE algorithm, IEEE Trans. Commun. 55 (6) (2007).

[17] B.Lu, X. Wang, Y.G. Li, Iterative receivers for space-time block-coded
OFDM systems in dispersive fading chanels, IEEE Trans. Wireless
Commun. 1(2)(2002) 213-225.

[18] M. Feder, E. Weinstein, Parameter Estimation of superimposed
signals using the EM algorithm, IEEE Tran. Acoust. Speech, Signal
Process. 36 (1988) 477-489.

[19] J.A. Fessler, A.O. Hero, Space-alternating generalized expectation-
maximization algorithm, IEEE Trans. Signal Process. 42 (1994)
2664-2677.

Erdal Panayirci received the Diploma Engineer-
ing degree in electrical engineering from the
Istanbul Technical University, Istanbul, Turkey,
in 1964 and the Ph.D. degree in electrical engi-
neering and system science from Michigan State
University, East Lansing, in 1970. From 1970
to 2000, he was with the Faculty of Electrical
and Electronics Engineering, Istanbul Technical
University, where he was a Professor and the
Head of the Telecommunications Chair. He has
also been a part-time Consultant to several
leading companies in telecommunications in Turkey. From 1979 to
1981, he was with the Department of Computer Science, Michigan State
University, as a Fulbright-Hays Fellow and a NATO Senior Scientist.
Between 1983 and 1986, he served as a NATO Advisory Committee
Member for the Special Panel on Sensory Systems for Robotic Control.
From August 1990 to December 1991, he was a Visiting Professor at the
Center for Communications and Signal Processing, New Jersey Institute of
Technology, Newark, and took part in the research project on interference
cancelation by array processing. Between 1998 and 2000, he was a
Visiting Professor at the Department of Electrical Engineering, Texas
AM University, College Station, and took part in research on developing
efficient synchronization algorithms for orthogonal frequency-division
multiplexing (OFDM) systems. In 2005 he was a Visiting Professor at the



96 E. Panayirci et al. / Physical Communication 3 (2010) 87-96

Department of Electrical and Electronics Engineering, Bilkent University,
Ankara, Turkey. He is currently a Professor and Department Head at
the Electronics Engineering Department, Kadir Has University, Istanbul,
Turkey. He is engaged in research and teaching in digital communications
and wireless systems, equalization and channel estimation in multicarrier
(OFDM) communication systems, and efficient modulation and coding
techniques (TCM and turbo coding). Prof. Panayirciis a member of Sigma
Xi. He was the Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS
in the fields of synchronization and equalizations from 1995 to 1999.
He is currently the Head of the Turkish Scientific Commission on
Signals, Systems, and Communications of the International Union of Radio
Science.

Hakan Dogan Hakan Dogan was born in Is-
tanbul, Turkey, on 1979. He received the B.S.,
M.S. and and the Ph.D. degrees in electronics
engineering from Istanbul University, Istanbul,
) & Turkey, in 2001, 2003, 2007 respectively. From
' 2001 to 2007, he was a Research Assistant at
/ the faculty of the Department of Electrical and
Electronics Engineering, University of Istanbul,

working on signal processing algorithms for
wireless communication systems. In 2007, he
joined the same faculty as an Assistant Professor.

His general research interests cover communication theory, estimation
theory, statistical signal processing, and information theory. His current
research areas are focused on wireless communication concepts with
specific attention to equalization and channel estimation for spread-
spectrum and multicarrier (orthogonal frequency-division multiplexing)
systems.

Hakan A. Cirpan (M97) received the B.S. degree
from Uludag University, Bursa, Turkey, in 1989,
the M.S. degree from the University of Istanbul,
Istanbul, Turkey, in 1992, and the Ph.D. degree
from Stevens Institute of Technology, Hoboken,
NJ, in 1997, all in electrical engineering. From
1995 to 1997, he was a Research Assistant at
Stevens Institute of Technology, working on sig-
nal processing algorithms for wireless commu-
nication systems. In 1997, he joined the faculty
of the Department of Electrical and Electronics
Engineering, University of Istanbul. His general research interests cover
wireless communications, statistical signal and array processing, system
identification, and estimation theory. His current research activities
are focused on signal processing and communication concepts with
specific attention to channel estimation and equalization algorithms
for space-time coding and multicarrier (orthogonal frequency-division
multiplexing) systems. Dr. Cirpan is a member of Sigma Xi. He received

the Peskin Award from Stevens Institute of Technology as well as the
Prof. Nazim Terzioglu Award from the Research Fund of the University
of Istanbul.

Alexander Kocian was born in Vienna, Austria,
on January 22, 1971. He received the Dipl.
Ing. degree (with distinction) in electrical engi-
neering from Vienna University of Technology,
Vienna, Austria, in 1997. He is currently working
toward the Ph.D. degree at the Department of
Communication Technology, Aalborg University,
Aalborg, Denmark. From 1997-1999, he was
with the Spread Spectrum Team at the Com-
' munication Technology Laboratory at the Swiss
Federal Institute of Technology (ETH), Zurich,
Sw1tzerland In 1999, he joined the faculty of Aalborg University. He
was a Visiting Research Scholar at the Wireless Systems Laboratory,
Georgia Institute of Technology, Atlanta, in 2001. His research interests
include joint data detection and channel estimation in multiple- access
communication systems and characterization of multiple-input multiple-
output (MIMO) channels.

Bernard H. Fleury received the diploma in
electrical engineering and mathematics in 1978
and 1990 respectively, and the doctoral degree
in electrical engineering in 1990 from the Swiss
Federal Institute of Technology Zurich (ETHZ),
Switzerland. Since 1997 Bernard H. Fleury has
been with the Department of Communica-
tion Technology, Aalborg University, Denmark,
where he is Professor in Digital Communi-
cations. He has also been affiliated with the
Telecommunication Research Center, Vienna
(ftw.) since April 2006. Bernard H. Fleury is presently Chairman of
Department 2 Radio Channel Modeling for Design Optimization and
Performance Assessment of Next Generation Communication Systems of
the on-going FP6 network of excellence NEWCOM (Network of Excellence
in Communications). During 1978-85 and 1988-92 he was Teaching
Assistant and Research Assistant, respectively, at the Communication
Technology Laboratory and at the Statistical Seminar at ETHZ. In 1992
he joined again the former laboratory as Senior Research Associate.
In 1999 he was elected IEEE Senior Member. Bernard H. Fleurys
general fields of interest cover numerous aspects within Communication
Theory and Signal Processing mainly for Wireless Communications. His
current areas of research include stochastic modeling and estimation
of the radio channel, characterization of multiple-input multiple-output
(MIMO) channels, and iterative (turbo) techniques for joint channel
estimation and data detection/decoding in multi-user communication
systems.



	Iterative joint data detection and channel estimation for uplink MC-CDMA systems in the presence of frequency selective channels
	Introduction
	Signal model
	Joint data detection and channel estimation with EM algorithms (EM-JDE)
	Optimal selection of  βk' s 

	Joint data detection and channel estimation with SAGE algorithm (SAGE-JDE)
	Simulations
	Conclusions
	Acknowledgement
	References


