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Optimal input design for the detection of changes
towards unknown hypotheses

F. KERESTECIOGLUT* and 1. CETING

The effects of auxiliary input signals on detecting changes in ARMAX processes via
statistical tests are discussed. Two extensions to the Cumulative Sum Test are consid-
ered. The first is applicable when the direction of the change in the parameter space is
known but its magnitude is unknown. The second is applicable when neither is known.
The performance criteria for the design of stationary stochastic inputs are based on
the asymptotic properties of the tests. It is shown that power-constrained optimal
inputs have discrete spectra and a suitably chosen input can greatly improve the

detection performance.

1. Introduction

Detection of abrupt changes is of crucial importance
in the context of fault detection, industrial maintenance,
quality control and safety of complex engineering sys-
tems as well as analysis of natural catastrophic events
(earthquakes, etc.). As a result of this motivation, it has
become one of the important research areas during the
last two decades (e.g. Basseville and Nikiforov 1993,
Kerestecioglu 1993, Patton et al. 1989, 2000, and refer-
ences therein).

In many practical situations, detection of the change
should be performed on-line. A direct result of this is
the sequential nature of the decision-making in change
detection. The main objective is to detect the change
as soon as possible after it has occurred. The other
important point is to avoid false alarms as long as
there is no change in the system or signal under
change monitoring. Since one should seek a tradeoff
between these two objectives, most detection mecha-
nisms try to optimize one of these criteria while
guaranteeing an acceptable specified level on the other.
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In most cases, the decision-making part of a change
monitoring system involves statistical tests since the
data obtained from the monitored system are usually
corrupted by noise and other disturbances that can be
modelled statistically. A well-known statistical decision
method used in change detection is the Cumulative
Sum (CUSUM) Test (Basseville and Nikiforov 1993,
Kerestecioglu 1993). Although it was originally designed
to detect a change from a known operating mode
to another known one, it is possible to modify it for
cases where possible operating modes after the change
are unknown or partially known (Nikiforov 1980, 1986,
Nikiforov and Tikhonov 1986).

The main objectives in deriving auxiliary signals
for change detection purposes are inherited from the
basic goals of the statistical change detection problem:
namely, one is looking to improve the detection delay
while keeping an acceptable level of false alarms. One
of the main restrictions on such input signals can be
on their magnitudes or their average power in order to
ensure that they do not disturb the operating conditions
of the system, which are usually maintained by other
control signals. Also, they may be required to be of
zero mean so that no biases are introduced to the
system. Further, their spectral densities need to be con-
strained. Note that such inputs or perturbations are
going to determine the statistical properties of the data
gathered for detecting the relevant changes. From this
point of view, the input design problem can be seen as
a hypothesis-generation problem. That is, subject to the
dynamics of the system at hand, the statistical hypothe-
ses should be manipulated so that a desired tradeoff
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between the detection delay and false alarm rate is
obtained.

Although the design of optimal inputs has been exten-
sively investigated in the system identification context
(e.g. Goodwin and Payne 1977, Zarrop 1979, Kalaba
and Springarn 1982), there has been only a small
number of works on the input design for change
detection purposes (Zhang 1989, Kerestecioglu 1993,
Kerestecioglu and Zarrop 1994). Zhang has discussed
both offline designs and online algorithms to generate
input signals for accelerating the detection. The design
techniques introduced by Kerestecioglu, on the other
hand, were aimed not only to facilitate fast detection,
but also to assure tolerable false alarm rates. In
all these works, the spectrum of an optimal input
signal has been shown to be discrete. Also, extensions
have been presented for multi-hypothesis detection.
Nevertheless, the hypotheses after the change, as well
as before it, were assumed to be known. In most practi-
cal cases, the no change hypothesis describes a normal
(or nominal) mode of operation. Hence, it is either
known a priori or can be obtained by system identifica-
tion techniques. But in many applications, it may not be
possible to characterize precisely the change mode. The
exact magnitude of the change may be unknown even if
the changing parameters or the direction of the change
in the parameter space is known. In some other cases,
the hypothesis describing the after-change mode may
be completely unknown. The paper aims to derive
optimal off-line input signals to improve performances
of modified CUSUM algorithms for detecting changes
towards unknown or partially known hypotheses.

In Section 2, a brief description of CUSUM test is
given and two extensions to it are presented. The first is
for the case where the direction of the change in the
parameter space is known, but the magnitude of the
change is unknown. The other is for the case when
information on the change direction is also absent. In
Section 3, asymptotically optimal inputs for improving
the detection performance of these modified CUSUM
tests are derived. Section 4 is devoted to simulation exam-
ples that show that substantial improvements in detec-
tion performance can be obtained by a proper choice of
the input signal. Some conclusions are drawn in Section 5.

2. Extensions to the CUSUM test using a
local approach

2.1. CUSUM test

The CUSUM test, which was originally proposed by
Page (1954), is an efficient sequential method to detect
changes from a known operating mode (or hypothesis,
say, Hj) to another one (H;). It is conducted by comput-
ing the statistics:

g(k) = max[0, g(k — 1) + z(k)]

and a change is declared as soon as g(k) exceeds a
predetermined positive threshold B. That means the
alarm time is given as

n = inf{k:g(k) > B}, (1)

where z(k) is the conditional log likelihood ratio of
the current data y(k) obtained from the process
(Kerestecioglu 1993).

We are interested in detecting a change in the
dynamics of an autoregressive moving average process
with exogenous input (ARMAX) given as:

A(g (k) = ¢ Blg (k) + C(g He(k),  (2)

where u(k) is an auxiliary input and ¢~' is the backwards
shift operator. It is assumed that A(z"!) and C(z7!)
polynomials are monic and have all their zeros inside
the unit circle, and d > 0. Further, e(k) is Gaussian
white noise with zero mean and variance o2. Note that
y(f) can be the output of the system under change
monitoring. Nonetheless, it can also be a residual
sequence generated for monitoring purposes by filtering
or processing the actual outputs of the system.

In this case, the hypotheses concern the coefficients of
the polynomials A(g~"), B(¢g~") and C(¢™"), namely,

0=[a1,.. ]T'

'aan‘,abOs "'sbn/,ycly"'ecn

We shall denote the parameter vectors before and
after the change as 6y and 0, respectively. Using (2)
and the Gaussianity of the e(k), it can be shown
(Kerestecioglu 1993) that the increments of the cumula-
tive sum are computed as:

1
20k) = 55 [eo(k) — 1 (k)]

where e,(k) (i=0,1) is the prediction error of the one-
step-ahead output predictor based on the hypothesis H,;.

It is possible to extend the cumulative sum method
to the cases where the hypothesis after the change is
unknown or partially known. Two such extensions
have been introduced by Nikiforov (1980, 1986), which
we shall briefly describe below. For detailed analyses
of them, see Nikiforov (1986) and Basseville and
Nikiforov (1993).

2.2. Detecting changes of unknown magnitude

First, we assume that the direction of the change
in the parameter space is known and the magnitude
is unknown. Namely, the parameters are described as
0 = 6y + Ad, where A is the magnitude of change and



Optimal input design for the detection of changes towards unknown hypotheses 437

l91
Figure 1. Change with known direction and
unknown magnitude.
d=[d, d& ... d]' (3)

is the direction of change with ||d|| =1 and r = n,+
ny + n. + 1. This case is depicted in figure 1 for a two-
parameter case. The hypotheses are then given as:

Ho: 2 <0, Hi: A >0. 4)

This extension of the Cumulative Sum algorithm
is based on the theory of Le Cam about asymptotic
expansion of the log-likelihood ratio between the
hypotheses 6 =6, and 0 =60, + rd/~/k (Ibragimov
and Khasminsky 1981, Le Cam 1986). For the case
of small A, the CUSUM statistic has the form of
(Nikiforov 1986):

g(k) = max[0, d"2(6y)], )

where

z(0) = 8_?9 In fo(y(k), ..., y(k — n(k) + D) y(k — n(k))

is the vector of asymptotically sufficient statistics for
the observations obtained since the last resetting applied
in (5) and y(k) =[»(1),...,y(k)]" is the observations
vector. The counter n(k) indicates the number of sam-
ples taken since this last resetting and is computed by
formula:

1 if glk—1)<0
n(k) = .
nk—1H+1 ifgk—1)>0
The alarm time # is given as in (1). Note that also in
this case, g(k) can be written in a recursive way as:

g(k) = max[0, g(k — 1) + d"z(6y)].

2.3. Detecting changes of unknown
magnitude and direction

As a second extension of CUSUM test we consider
the case where both the magnitude and the direction
of the change in the parameter space is unknown. The
hypotheses in such a case are described as:

Ho: 0= 00

6
Hi: (0 —00)"F1(00)(0 — 6) > A2, ©

where F;(6y) is the Fisher Information Matrix for one
sample and is given as:

F1(0) = Ef{z(k,0)z' (k,0) | 6} (7
with

dIn fo(y(k) [y(k — 1))
20 '

z(k,0) = 8)

Namely, a change needs to be declared as soon as

the parameters drift outside an ellipsoid defined by the

Fisher Information Matrix and the nominal parameters.
It has been shown by Nikiforov (1986) that:

k T k
x(k, 0) = 1 Yo wk o)) Fi@) D z(k.0)
(k) i=k—n(k)+1 i=k—n(k)+1

turns out to be a sufficient statistic for this case and the
decision function is obtained as:

g(k) = max[0, S(0)]. )

where

S0) = —lkzn(k)—i—l G(’ Ain(k)x(k. 0) 0)),

2’ 4

with r = dim(#) = n, + np + n. + 1 and

x i

Gla,x) = Za(a+ ---(a+i— 1

1=

being the generalized hypergeometric function. Note
that in the detection of changes in ARMAX parameters,
unlike the other version of the CUSUM test mentioned
above, the test statistics in (9) cannot be obtained recur-
sively. Some methods to make the computation of g(k)
feasible have been introduced by Nikiforov (1986) and
Nikiforov and Tikhonov (1986).
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3. Input design

This section aims to investigate the effects of auxiliary
inputs in detecting changes in the dynamics of ARMAX
processes with the modified CUSUM  algorithms
mentioned above. In selecting input signals to improve
the detection performance one should consider improv-
ing the average detection delay (ADD) as well as keep-
ing the mean time between false alarms (MTBFA) at a
tolerable level. These quantities and, hence, the perfor-
mance of a statistical test for change detection are deter-
mined by the average run length (ARL) function of it;
namely, E{n | 0}, with n as defined in (1). Note that,
assuming that the test statistic is close to zero when
the change occurs, for values of 6 belonging to the set
describing H;, E{n| 0} gives the ADD. On the other
hand, E{n | 6y} is the mean time between false alarms.

An asymptotic relation between these two criteria of
performance for independently and identically distribu-
ted observations is given by Lorden (1971) as:

E{n| 0} ~%#(?} when E{n | 0} — oo,
9 0
(10)
where
Jo(y)
K(@0,0) = |1 d
( ’ 0) Jnft%(y) ’

and denotes the Kullback information between the
parameter vectors € and 6. This result is, in fact, also
shown to hold for the modified CUSUM tests, where
the hypothesis after the change is partially or completely
unknown, by Basseville and Nikiforov (1993). It is also
extended to the correlated observations case by Lai
(1998).

This suggests that to improve the test performance,
the inputs should be chosen so as to maximize the
Kullback information. Inputs with such a property are
going to be denoted as asymptotically optimal in the
sequel. Also, note that we restrict ourselves to stochastic
stationary inputs, which are generated off-line, i.e.
are independent of the past data gathered from the
system. To have a well-posed input design problem, it
is natural to assume that the input power is constrained
in the sense that

1j”ds<w) < K., (1)
T Jo

where &(w) (w € [0, 7]) is the one-sided power spectral
distribution of the input and K, is the maximum allow-
able input power. Further, the input spectrum might be
required to be limited to a predefined frequency region,

say Q. For example, constant or very low frequency
inputs might not be desirable since they can introduce
biases in the output.

3.1. Detecting changes of unknown magnitude

The Kullback information between the hypotheses in
(4) can be shown to be (Basseville and Nikiforov 1993):

K(01, 0o) ~ %(01 — 00)"F1(00)(0; — 05) (12)

for the cases where the difference between the parameter
vectors describing the hypotheses before and after the
change is small. Further, since 6; = 6y + Ad, it follows
that:

)\2
K(0y, 00) = ?dTFl(OO)d- (13)

This suggests that asymptotically optimal auxiliary
input signals should be chosen so as to maximize
d'F;(6))d. As shown by Nikiforov (1986), d"F,;(6)d
also determines the slope of the ARL function at
A=0. To gain more insight on the choice of (13) as
the cost function for input optimization, let us consider
the ideal values of ARL for this modified CUSUM test
which are depicted in figure 2 for a scalar-parameter
case. For the hypotheses in (4), the ideal values for the
ARL function for A <0 and A > 0 are infinity and
unity, respectively. In other words, ideally speaking,
the change is to be detected as soon as it occurs
and false alarms should be avoided forever. Therefore,
better discrimination between the hypotheses is achieved
as the magnitude of the slope of the ARL curve at A =0
is increased.

Efn| o
Efn| 6, ) .\\.
“:....
T
00 [2
A<0 A>0

Figure 2. Real (dotted) and ideal (solid) ARL functions for
a scalar parameter.
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Optimal inputs in the above sense are given in the
following theorem.

Theorem 1: Asymptotically optimal power-constrained
offline stationary input signals for the CUSUM test
defined by (5) and (1) consist of a single frequency and
are given as:

ifw*=0o0rm

u(k) = sign()y/K, cos(w*k)

(14)
u(k) = 2K, cos(w'k +¢)  if o* € (0, 7),
where
\ A(e/)Dy(e’®) — B(e/*)D 4(e/)|*
w = argmax - -
b A(e7*)C(e ) 00,

with

Dulg ) =dig +drg >+ +dyg ™
DB(q_l) = dn,,Jrl + dn,,+2q_1 +--- 4+ dnﬂJrn;,Jrlq_nh

and ¢ is uniformly distributed in [—, 7].

Proof: To optimize the Kullback information, first
note that the conditional distribution of a single obser-
vation obtained from the process (2) can be written as:

Jo(y(k) | ¢k — 1)) =

1 r,
expl ———=¢(k)¢, 15
J%p{zd2 U} (15)
where ¢(k— D) =[p(k—1),...,u(k—d),...]" is the
vector containing all the data available at time k — 1.
From (15) and (8), it follows that

otk 0) = — <& 20

30 (16)

The partial (sensitivity) derivatives of e(k) with respect
to the parameters can be obtained from (2) as

de(k)  Blg™")
da; — A(g=")C(g™")

u(k —d —i)

1 . .
T k=D =l ()
k 1
a§¥—awﬂww—a P=0,m (18)
fe(k 1
Z(CA)?c(q—n)e(k—i) i=l...ne (19

The partial derivatives in (17-19) can be substituted into
(16), to rewrite z(k, 0) as

2k 0) = D (0, + ). (20)

o2

where

_B@hH
Al
P, = L @1
ClqhH ™"

0,
and

1

pe - 0)1;7+1 s
—1 e
1,
Clgh "

where u; ; and e; ; are the vectors composed of relevant
recent samples of the input and the innovations, respec-
tively. That is,

w, =[utk—d—1i),...ulk—d—)l,
e = le(k—i),....e(k— "

and 0; denotes an i-dimensional zero vector.
Therefore, from (7) and (20) it follows that

€(k)

d'F(0)d = dTE{2
o

(pu + pe)(pu + ps)T ‘ O}d
1 .
=4 El(pu +PJ(P, +Pe) ‘ 0}d.
Since the auxiliary stochastic input u(k) and €(/) are

statistically independent, so are p, and p.. Therefore,
we have

E{(p, + PP, +p)" |0} = E{p,p} |0} + E{p.p! | 0}.

Hence, the input signal should be chosen so as to
maximize

J=E{d"p,p,d"|0= 0} (22)

0:00}.

(23)

In view of (21) and (3), (22) can be written as

_r(psa  BaHDa@H T
J"E{[((X¢*>_'A@—Ucm—n>“%{
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The cost function in (23) can be expressed in frequency
domain as

J— 1[ IR(™) |2 dé(w), (24)
T Jo

where

A(e’”)Dp(e’) = B(e”)D 4(e’®)
A(ei@)C(ei) .

R(e’”) =

Under the power constraint given in (11), one con-
cludes from (24) that all input power should be concen-
trated at the frequency

w* = arg max |R(e’®)|>.
weR

Hence, the optimal stationary inputs can be generated as

in (14). O

It is interesting to note that (23) does not contain
any information about the changes in the coefficients
of C(¢~"). Therefore, the test performance cannot be
affected by the input signal if the change is expected
only in the C(¢~") polynomial.

3.2. Detecting changes of unknown magnitude
and direction

When the change direction is not specified, the
Kullback information cannot be represented as a multi-
ple of the change magnitude, i.e. as in (13), any more.
In view of (10) and (12), an asymptotically optimal
input should maximize a suitable scalar function of
F1(0y). Different choices are possible for such a scalar
function, such as the determinant, trace, largest eigen-
value, etc. Note that all such optimizations aim to con-
tract the ellipsoid describing the possible parameters
after the change, and hence are expected to improve
the detection performance. In particular, optimizing
det F1(0p) would minimize the volume of the ellipsoid
defining H, hypothesis, if an a priori Gaussian distribu-
tion is assumed for the parameter vector (Cramer 1946).
On the other hand, maximizing the largest eigenvalue of
the Information Matrix would minimize the length
along its largest axis. We shall adopt the largest-determi-
nant criterion, that is, maximize det F;(6y). In fact,
optimization of the Fisher Information Matrix in the
context of parameter estimation has been treated in
detail by Goodwin and Payne (1977). The analysis
below will follow their work closely.

Let us rewrite the ARMAX process (2) as

(k) = Gulq™ ulk — d) + Ge(g~ (),

where
1 B 0y C@™h
Gla )=y Gl =0
Note that
k G
868(0) 71( 71)8 (q ) (k)
(25)

Therefore, since the innovations and the off-line input
are statistically independent, using (7), (16), (25) and
the stationarity of u(k), the Information Matrix can be
written as

F1(0) = F.(0) + F(0), (26)

where

0 = | (60 M)

T
< 1( —1) u(q )(k)>

Fe(o)zéE{( G 'tq *UaGe(q )<k>>

-1

d
i

Hence, the problem of finding asymptotically optimal
inputs under a power constraint can be cast in the
frequency domain as

maximize det|:1 J Fdé(a)) +F ]

| (27)
subject to —J dé(w) < K,

T Jo

where

w —jo\ T
Fo)=R { 162 e O ule! )(3Gu(ef )) }

a0

0=0,
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Following Goodwin and Payne, it is straightforward
to show that

~ ng+np+1 _
)=+ 3 SSE=Do)_qo g1l g
o k=1 | C(e '/w) | |A (e '/w) | 0:9()

where € is a matrix with the (i, j)-th element 8);_j—x+1,
8 being the Kronecker delta, and

L a - ay, 0 e 0 T
0 1 a - ay, :
: 0
T=1o 1 a ay,
0 —by -+ - =—b, 0

L0 -+ 0 =By - o —b, |

From (26-28), it follows that detF () is an
(ng + np + 1)-dimensional variety and the following
theorem follows by applying Caratheodory’s theorem
(Rockafellar 1970).

Theorem 2 (Goodwin and Payne 1977): An optimal
power-constrained input maximizing detF(0y) exists
comprising not more than (n, + n, + 1) frequencies.

Note that the proof given by Goodwin and Payne
assumes that n, = n;, + 1; nevertheless, a generalization
to the case where one has arbitrary degrees for A(g~")
and B(q~") is straightforward.

The above theorem is quite useful in determining
an optimal spectrum for the input signal. It reduces
the search for the optimal spectrum to a search over
ng + n, + 1 frequencies and, in view of the power con-
straint in (27), n,4+n, magnitudes corresponding to
these frequencies. In other words, an unconstrained
search has to be done in a (2(n, + np) + 1)-dimensional
space. With the optimal frequencies (w;, i =1,...,n,+
ny 4+ 1) and the optimal powers at these frequencies
(pii=1,...,n,+ n, + 1) at hand, the optimal input is
generated as

ng+np+1
uk)y =Y ui(k),
i=1
where
® J/Di sign(g;) cos(wjk)  for wf =0orm
Uu; =
2p; cos(wik + ¢;) for w} € (0, m)

and ¢;’s are random variables uniformly distributed in
[—m, 7]

4. Simulation examples

This section presents two examples to demonstrate the
effect of suitably chosen inputs on the detection perfor-
mance of modified CUSUM tests. Monte Carlo simula-
tions have been used to estimate the ADD and MTBFA
by taking the means obtained from 500 runs for each
case. To estimate ADD the data are generated according
to the Hy hypothesis up to k=50, which is the instant
when the change occurs. Both the maximum allowable
input power and the noise variance are taken as unity.

4.1. Example 1

The process is assumed to be operating under the
normal mode as

(1 —0.4g7" +0.6472 +0.3¢7)y(k)
= (1+0.9¢ Hu(k) + (1 +0.2¢7" — 0.15¢)e(k).

The change direction is specified by
d=[0.318 0.106 —0.423 0 —0.318 0.741 0.243]",

and the change magnitude is unknown. The system is
simulated after the change as

(1—=0.1¢7" +0.7¢7> = 0.1¢7 (k)
= (1 40.6¢ Yu(k) + (14 0.9¢7" +0.08¢)e(k),

which correspond to a change with A = 0.945. The opti-
mal input frequency can be found by a search over the
|R(e/)|?, which is plotted in figure 3, as o* = 1.155.
Therefore, the optimal input is chosen as

u(k) = /2 cos(1.155k + ).

Also note that the worst possible single frequency in this
case turns out to be w = 2.388, which gives the minimum
of |R(e/®)|?.

Table 1 presents the estimates of ADD and MTBFA,
which have been generated by selecting the test thresh-
old as B=200. It is seen that any input can improve
the detection delay as compared with no-input case.
Nevertheless, the price paid for this improvement
is a degradation in the MTBFA. So, the choice of the
input signal should be so that the best ADD versus
MTBFA tradeoff is achieved.

To facilitate a fair comparison among different types
of input, simulations are repeated with thresholds
chosen separately for each type of input so as to
obtain similar MTBFAs. Different input schemes can
then be compared for their detection performance. From
the results shown in table 2, the optimal input, which
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7 T T

T T T T

Figure 3. Function |R(¢/”)* in example 1.

Table 1. Estimates of ADD and MTBFA in

example 1
ADD MTBFA
No input 171 26.3 x 10°
White input 84 9.9 x 10°
Optimal input 13 4.1x10°

Table 2. Estimates of ADD and MTBFA for
different test thresholds in example 1

B ADD MTBFA
No input 200 171 26.3 x 10°
Worst input 200 166 25.5% 10°
White input 275 118 25.5 % 10°
Optimal input 350 47 27.2 x 10°

delivered the fastest ADD and yet the longest average
false alarm time, achieved a far better tradeoff in the
above sense as compared with other types of inputs. A
white noise input also gives some improvement in
ADD, but not as much as the optimal one. Note that
if the input is generated with the frequency, which mini-
mizes |R(e/?)|?, there is only a marginal reduction in the
ADD, even much less than that obtained by the white
input. This fact emphasizes the relevance of a proper
choice for the input frequency.

On the other hand, figure 4 depicts the behaviour
of ARL around A=0 . The roll-off of the ARL
curve for the optimal-input case is steeper than that
corresponding to the no-input case. This means that
the optimal input achieves a better discrimination
between H, and H;, and, hence, improves the detec-
tion performance.

4.2. Example 2

To demonstrate the effect of auxiliary inputs on the
performance of the modified CUSUM test defined by
(9) and (1), let us consider the following normal operat-
ing mode for an ARMA process, where the output is
corrupted by white noise

0.8
ky=——utk—1 k
90 = g3 k= D+ k)
and the dynamics after the change is unknown. A
change is to be declared as soon as possible after the
system dynamics switches to H; specified by (6) with
A1 = 0.4. In simulation, the process has been changed to

0.5
(k) = w u(k — 1) + €(k).

By Theorem 2, a power-constrained optimal input can
be generated using at most two frequencies. In fact,
a numerical search over two frequencies and the input
power at these frequencies yield the result that the opti-
mal input consists of only one frequency in this case.
An optimal input turns out to be

u(k) = v/2 cos(0.685k + ¢), (29)

where ¢ is a uniformly-distributed random phase.

A comparison of the test performances of the input
in (29) and a white-noise input can be made in view of
table 3, which is obtained by using a test threshold of
B=06. It is seen that the optimal offline input greatly
improves both the ADD and the MTBFA.
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Figure 4.

Table 3. Estimates of ADD and MTBFA
in example 2

ADD MTBFA
White input 113 7.6 x 10°
Optimal input 63 19.4 x 10°

5. Conclusions

We have derived optimal off-line inputs to improve
performances of extensions to the CUSUM algorithm
for cases where the after-change hypotheses are not
specified completely in detecting changes in the param-
eters of a ARMAX process. It is shown that asymptoti-
cally optimal inputs have discrete spectra. If the change
direction is known, a single-frequency input will be suf-
ficient. For a more general case where the direction of

change in the parameter space is also unknown, the

inputs are obtained by optimizing the determinant (or

other suitable scalar functions) of the Fisher
Information Matrix corresponding to the parameters
before the change. In this case, the number of frequen-
cies needed is determined by the number of poles and
zeros of the input-output transfer function of the
ARMAX process.

For both types of extensions of the CUSUM test, it is
possible to obtain significant improvement in the detec-
tion delay and/or false alarm rate, if the input is wisely
chosen. It is interesting to note that the simulations sug-
gest that the classical tradeoff in statistical change detec-
tion (i.e. the one between ADD and MTBFA) is also
valid for the first CUSUM extension. On the other

hand, as far as the second extension is concerned, in

Estimated ARL curves with optimal off-line input (solid) and no input (dashed) in example 1.

particular changes the inputs can improve both ADD
and MTBFA.

We should also note that the input in the known-
change-direction case cannot be effective if the change
is on the C(¢~") polynomial only. Nor does the C(g~")
polynomial have any effect on the number of frequencies

for the second extension of the CUSUM test.
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