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Kadir Has University, Faculty of Arts and Sciences, Cibali Campus,

34083, Cibali-Istanbul, Turkey

(Communicated by Shigefumi Mori, m.j.a., Oct. 12, 2006)

Abstract: In this paper, it is proved that if, at each point of a Weyl manifold, the sectional
curvature is independent of the plane chosen, then the Weyl manifold is locally conformal to
an Einstein manifold and that the scalar curvature of the Weyl manifold is prolonged covariant
constant.
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1. Introduction. A differentiable manifold
of dimension n having a conformal class C of metrics
and a torsion- free connection ∇ preserving the con-
formal class C is called a Weyl manifold which will be
denoted by Wn(g, w) where g ∈ C and w is a 1−form
satisfying the so-called compatibility condition

∇g = 2(g ⊗ w).(1)

Under the conformal re-scaling (renormalisa-
tion)

ḡ = λ2g (λ > 0)(2)

of the representative metric tensor g, w is trans-
formed by the law

w̄ = w + d ln λ.(3)

A quantity A defined on Wn(g, w) is called a
satellite of g of weight {p} if it admits a transforma-
tion of the form

Ā = λpA(4)

under the conformal re-scaling (2) of g ([1–3]).
It can be easily seen that the pair (ḡ, w̄) gener-

ates the same Weyl manifold. The process of passing
from (g, w) to (ḡ, w̄) is called a gauge transformation.

The curvature tensor , covariant curvature ten-
sor, the Ricci tensor and the scalar curvature of
Wn(g, w) are respectively defined by

(∇k∇l −∇l∇k)vp = vjW p
jkl ,(5)
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Whjkl = ghp W p
jkl ,(6)

Wij = W p
ijp = ghkWhijk ,(7)

W = gij Wij .(8)

Clearly, the curvature tensor and the Ricci ten-
sor are gauge invariants while the covariant curvature
tensor and the scalar curvature are satellites of g of
weight {2} and {−2} respectively.

The curvature tensor, the covariant curvature
tensor and the Ricci tensor of Wn(g, w) satisfy the
following properties ([4–6]):

(9)

W p
jkl = −W p

jlk, Wijkl = −Wijlk, W k
kij = −2W[ij],

(10)

Wijkl + Wjikl = 2gij(∇lwk −∇kwl) = 4gij∇[lwk],

W[ij] = n∇[iwj].(11)

The prolonged (extended) covariant derivative
of the satellite A of weight {p} in the direction of
the vector X is defined by

∇̇XA = ∇XA − pw(X)A(12)

from which it follows that

∇̇X g = 0(13)

for any X ([1–3]).
A satellite of g is called prolonged covariant con-

stant if its prolonged covariant derivative vanishes
identically.

A Riemannian manifold is called an Einstein
manifold if its Ricci tensor is proportional to its met-
ric.
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A Weyl manifold is said to be an Einstein-Weyl
manifold if the symmetric part of the Ricci tensor is
proportional to the metric g ∈ C([8, 9]), i. e., if

W(ij) = λ gij(14)

where λ is a scalar function defined on Wn(g, w).
By using the second Bianchi identity

∇̇lWmijk + ∇̇kWmilj + ∇̇jRmikl = 0,

proved in [5], for a Weyl manifold and the relations
(9) and (10), the generalization of Einstein’s tensor
for a Riemannian manifold to a Weyl manifold is
obtained, in [6], as

(15)

Gj
l =

1
2
δj
l W − W j

l + 2gjk∇[kwl], W j
l = gijWil

satisfying the equation

∇̇jG
j
l = 0(16)

where we have called Gj
l the generalized Einstein’s

tensor for Wn(g, w), and ∇̇jG
j
l the generalized di-

vergence of Gj
l , since in the case of a Riemannian

manifold they reduce to Einstein’s tensor and its di-
vergence respectively.

We note that for an Einstein-Weyl manifold we
have from (15) and (16) that

Gj
l =

n − 2
2

(
W

n
δj
l − 2gjk∇[kwl]

)
,

∇̇jG
j
l =

1
2
(n − 2)

[
1
n

(∇̇jW )δj
l − 2gjk∇̇j(∇[kwl])

]
= 0

from which it follows for n > 2 that

1
n

(∇̇jW )δj
l − 2gjk∇̇j(∇[kwl]) = 0.(17)

We now state the following lemma which will be
used in our subsequent work:

Lemma 1.1. Suppose that S is any 4-covariant
tensor and that X and Y are two arbitrary linearly
independent vectors. If for all X and Y

SαβλµXα Y β Xλ Y µ = 0,

then

Sαβλµ + Sλµαβ + Sαµλβ + Sλβαµ = 0,(18)

where Xα and Y β are respectively the components of
X and Y ([7]).

Recently, there has been considerable interest in
Weyl geometry, mainly in Einstein-Weyl manifolds
([9–11]).

In [9] it is proved that if, in a compact positive-
definite Einstein-Weyl manifold, the scalar curvature
W is everywhere strictly negative, then the manifold
is conformal to an Einstein manifold.

In the present paper, we give a sufficient condi-
tion for a Weyl manifold to be locally conformal to an
Einstein manifold by means of sectional curvatures
(Theorem 2.1).

2. Sectional curvatures of a Weyl mani-
fold. Let P (xk) be any point of Wn(g, w) and let
us denote by Xα, Y α the components of two arbi-
trary linearly independent vectors X, Y ∈ Tp(Wn).
These vectors determine a two-dimensional subspace
(plane) π of Tp M . The scalar defined by [7]

K(π) = K(x, X, Y )(19)

=
WαβλµXαY βXλY µ

(gαλgβµ − gαµgβλ)XαY βXλY µ

is called the sectional curvature of Wn(g, w) at P

with respect to the plane π.
From (19) it follows that

SαβλµXαY βXλY µ = 0(20)

where we have put

Sαβλµ = [Wαβλµ − K(π)(gαλgβµ(21)

−gαµgβλ)]XαY βXλY µ.

Assume now that at the point P ∈ Wn(g, w)
the sectional curvature is the same for all planes in
Tp M . The case of a 2-dimensional Weyl manifold
need not be considered, for it has only one plane
at each point. Then, according to Lemma 1.1, the
condition (18) gives

Wαβλµ + Wλµαβ + Wαµλβ + Wλβαµ(22)

= 4Kgαλgβµ − 2K(gµαgλβ + gαβgµλ).

Transvecting (22) by gαγ and using (6) yields

W γ
βλµ + W γ

µλβ + gαγWλµαβ + gαγWλβαµ(23)

= 2K(2δγ
λgβµ − δγ

µgλβ − δγ
βgλµ).

Using the first Bianchi identity [5]

Wλµαβ + Wλαβµ + Wλβµα = 0(24)
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and the relations (9) and (10) we find that

gαγ(Wλµαβ + Wλβαµ)(25)

= gαγ [Wαλβµ + 2Wβλµα]

− 4δγ
λ∇[µwβ] − 8gαγgλβ∇[αwµ].

Inserting (25) into (23) and making the neces-
sary arrangements we obtain

W γ
βλµ + W γ

µλβ + W γ
λβµ + 2gαγWβλµα(26)

= 4δγ
λ∇[µwβ] + 8gαγgλβ∇[αwµ]

+ 2K(2δγ
λgβµ − δγ

µgλβ − δγ
βgλµ).

Contracting with respect to γ and β and making
use of (8), the third relation in (9) and (11) we get

2W(λµ) − 2W[λµ] = 4∇[λwµ] + 2K(1 − n)gλµ

from which it follows, by (11), that

W(λµ) = K(1 − n)gλµ,(27)

∇[λwµ] = 0.(28)

(27) means that Wn(g, w) is an Einstein-Weyl
manifold while (28) implies that the 1- form w is
locally a gradient and so can be removed by a con-
formal rescaling (2)-(3).

On the other hand, remembering that the scalar
curvature W is a satellite of g of weight {−2} we get
from (17) and (28) that

∇̇jW = ∇jW + 2Wwj = 0,(29)

showing that, unlike the Riemannian case, instead
of being constant in general, W is prolonged covari-
ant constant. However, under the condition (28) the
scalar curvature W can be made constant by a con-
formal rescaling of the representative metric g.

Summing up what we have found above we can
state

Theorem 2.1. A sufficient condition for a
Weyl manifold of dimension n > 2 to be locally con-
formal to an Einstein manifold is that the sectional
curvature at each point be independent of the plane
chosen.

This theorem may be considered as an analogue
of Schur’s theorem for a Riemannian manifold which
can be stated as follows:

If at each point of a Weyl manifold the sectional
curvature is independent of the plane chosen, then
the scalar curvature W is prolonged covariant con-
stant throughout the manifold and that the manifold
is locally conformal to an Einstein manifold.

Remark 2.1. By straightforward calculations
it can be shown that every two dimensional Weyl
manifold is an Einstein-Weyl manifold and that any
two 2-dimensional Weyl manifolds can be locally
mapped conformally upon each other.
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