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This paper proposes a computationally efficient, linear min-
imum mean square error (MMSE) channel estimation al-
gorithm based on KL series expansion for OFDM systems.
Based on such expansion, no matrix inversion is required in
the proposed MMSE estimator. Moreover, truncation in the
linear expansion of channel is achieved by exploiting the op-
timal truncation property of the KL expansion resulting in a
smaller computational load on the estimation algorithm. The
performance of the proposed approach is studied through an-
alytical and experimental results. We provide performance
analysis results studying the influence of the effect of SNR and
correlation mismatch on the estimator performance. Simula-
tion results confirm our theoretical results and illustrate that
the proposed algorithm is capable of tracking fast fading and
improving performance.
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In a wireless orthogonal frequency division multiplexing
(OFDM) systems over a frequency selective fading, channel
variations arise mainly due to multipath effect [1]. Basis
expansion approach could be natural way of modelling the
channel variations [2]. Fourier, Taylor series, and polynomial
expansion have played a prominent role in deterministic mod-
elling [3]. As an alternative to the deterministic approaches,
the variation in the channel can be captured by means of
a stochastic modelling [2]. Note that, the random process
can be represented as a series expansion involving a complete
set of deterministic vectors with corresponding random co-
efficients. This expansion therefore provides a second order
characterization in terms of random variables and determin-
istic vectors. There are several such series that are widely
in use. A commonly used series is the Karhunen-Loeve (KL)
expansion [4]. The use of KL expansion with orthogonal de-
terministic basis vectors and uncorrelated random coefficients
has generated interest because of its bi-orthogonal property,
that is, both the deterministic basis vectors and the corre-
sponding random coefficients are orthogonal. This allows for
the optimal encapsulation of the information contained in the
random process into a set of discrete uncorrelated random
variables.

In this paper we will focus on OFDM systems over fre-
quency selective fading channel. Channel estimation for
OFDM systems has attracted much attention with pioneer-
ing works of [5, 6, 7]. Numerous pilot-aided channel esti-
mation methods for OFDM have been developed [5, 6, 7].
In particular, a low-rank approximation is applied to linear
MMSE estimator for the estimation of subcarrier channel at-
tenuations by using the frequency correlation of the chan-
nel [5]. In [6], a MMSE channel estimator, which makes
full use of the time and frequency correlation of the time-
varying dispersive channel was proposed. Multipath fading
channels have been studied extensively, and several models
have been developed to describe their variations [7]. In the
case of KL series representation of stochastic channel model,

a convenient choice of orthogonal basis set is one that makes
the expansion coefficient random variables uncorrelated [8].
When these orthogonal bases are employed to characterize
the variation of the channel impulse response, uncorrelated
coefficients indeed represent the channel. Therefore, KL rep-
resentation allows one to tackle the estimation of correlated
channel parameters as a parameter estimation problem of the
uncorrelated coefficients. Exploiting KL, expansion, the main
contribution of this paper is to propose a computationally
efficient, pilot-aided MMSE channel estimation algorithms.
Based on such representation, no matrix inversion is required
in the proposed approach. Moreover, optimal rank reduction
is achieved by exploiting the optimal truncation property of
the KL expansion resulting in a smaller computational load
on the estimation algorithm. The performance of the pro-
posed batch approach is explored based on the evaluation of
the Bayesian MSE for the random KL coefficients.
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In this section, we introduce a general model for OFDM sys-
tems with N subcarriers signaling through a frequency selec-
tive fading channel. The channel response is assumed to be
constant during one symbol duration. The block diagram in
Figure 1. describes of such an OFDM system. The binary
information data is grouped and mapped into multiphase sig-
nals. In this paper the QPSK modulation is employed. An
IDFT is then applied the QPSK symbols {Xk}kNgol, resulting
in {J;n}ﬁlz_ol, ie., z, = IDFT{X;}. In order to eliminate in-
tersymbol interference arising due to multipath channel, the
guard interval is inserted between OFDM frames. After pulse
shaping and parallel to serial conversion, the signals are then
transmitted through a frequency selective fading channel. At
the receiver, after matched filtering and removing the guard
interval, the time-domain received samples {yn}fj:_Dl, are then
sent to the DFT block to demultiplex the multicarrier signals
Yy = DFT{y,}. For OFDM systems with proper cyclic ex-
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Figure 1: OFDM System Block Diagram

tensions and sample timing, the DFT output frequency do-
main subcarrier symbols can be expressed as

Yi = XpHy + Vi (1)

where V, = DFT{v,} is frequency domain AWGN samples
with zero mean and variance o and Hj is the channel fre-



quency response given by

Hy=w'(k)h , k=0,1,.,N—1 (2)
where h = [ho, h1,...., hp—1] contains the time response of
all L taps, and w(k) = [1, e I2TRIN efj%k(Lil)/N]f con-

tains the corresponding DFT coefficients and (-)' denotes the
Hermitian transpose. Substituting (2) into (1) yields

Y =Xsw (k)h+Vi , k=0,.,N—1. (3)

If we focus at received block Y = [Yp, Y1, ..., YNfl]T, we can
write the following from (3):

Y=W h+V (4)

where X = diag[Xo, X1, ..., Xn—1] is a diagonal matrix with
symbol entries, W = [w(0), ..., w(N —1)]1 is DFT matrix and
similarly V is a zero-mean i.i.d. complex Gaussian vector.

Based on the model (4), our main objective in this pa-
per is to develop batch pilot-aided channel time response es-
timation algorithm according to MMSE criterion and then
explore the performance of the estimators. A proposed ap-
proach adapted herein explicitly models the random channel
parameters by the KL series representation and estimates the
uncorrelated expansion coefficients. Furthermore, the compu-
tational load of the proposed MMSE estimation technique is
further reduced with the application of the KL expansion op-
timal truncation property [4]. Let us then introduce random
channel model first.

3

The series expansion referred to as KL expansion provides
a second moment characterization in terms of uncorrelated
random variables and deterministic orthogonal vectors. In
the KL expansion method, the orthogonal deterministic basis
vectors and its magnitude are, respectively the eigenfunction
and eigenvalue of the covariance matrix. Since channel im-
pulse response h is a zero-mean Gaussian process with covari-
ance matrix Cp,, the KL transformation rotates the vector h
so that all its components are uncorrelated. Thus the vector
h, representing the channel impulse response during OFDM
block, can be expressed as a linear combination of the or-

thonormal basis vectors as h = ZIL;OI qp, = Wg, where
W = [y, %, ¥, _1], ¥,’s are the orthonormal basis vec-
tors, g = [go, 91, gr—1)7, and g; is the weights of the ex-
pansion. If we form the covariance matrix as Cp, = W g\IfT,

where Ag = E{gg'}, the KL expansion is the one in which
Ag of Cp, is a diagonal matrix (i.e., the coefficients are uncor-

related). If Ag is diagonal, then the form W g\IﬂL is called an
eigendecomposition of Cyp. The fact that only the eigenvec-
tors diagonalize Cp, leads to the desirable property that the
KL coefficients are uncorrelated. Furthermore, in Gaussian
case, the uncorrelatedness of the coefficients renders them
independent as well, providing additional simplicity. Thus,
the channel estimation problem in this application is equiv-
alent to estimating the i.i.d. complex Gaussian vector g KL
expansion coefficients.

4

A low-rank approximation to the frequency-domain linear
MMSE channel estimator is provided by [5] to reduce the
complexity of the estimator. Optimal rank reduction is
achieved in this approach by using the SVD of the channel
attenuations covariance matrix Cyg of dimension N X N. In
contrast, we adapt the MMSE estimator for the estimation
of multipath channel parameters h that uses covariance ma-
trix of dimension L x L. The proposed approach employs KL
expansion of multipath channel parameters and reduces the
complexity of the SVD used in eigendecomposition since L is
usually much less than N. We will now develop MMSE batch
estimator for pilot assisted OFDM system in the sequel.

|
Considering (4), we now assume that N, pilot symbols are
uniformly inserted at known locations of the :** OFDM block,

the N, x 1 vector corresponding to the DFT output at the
pilot locations becomes

Y, =X,W,h+V, (5)

where X,, = diag[X;(0), X,;(A), -+, X;((Np — 1)A)] is a di-
agonal matrix with pilot symbol entries, A is pilot spacing
interval, W, is an N, x L FFT matrix generated based on
pilot indices, and similarly V, is the under-sampled noise
vector.

For the estimation of h, the new linear signal model can
be formed by premultiplying both sides of (5) by X; and
assuming pilot symbols are taken from a QPSK constellation
X} X, = In,, then the new form of (5) becomes

Y=W,h+V (6)

where Y = XI,YP and V = X;Vp and V is statistically
equivalent to V.

Equation (6) offers a Bayesian linear model representa-
tion. Based on this representation, the minimum variance
estimator for the time-domain channel vector h for the ith
OFDM block, i.e., conditional mean of h given Y, can be
obtained using MMSE estimator. We should clearly make
the assumptions that h ~ N (0,Cp), V ~ N (0, CV) and h

is uncorrelated with V. Therefore, MMSE estimate of h is
given by [9]:

h=(W,CJ'W, +C; 1) "WIC'Y . (7)

\% PV

We now us assume that CV =F [\7\71 = UQIN,, and uni-

formly spaced pilot symbols are inserted with pilot spacing
interval A and N = A x Np, correspondingly, WLWP reduces
to WIW, = N,Ip,and we can therefore express (7) by

h = (NyIr +0°Cp ) ' WY . (8)

Since MMSE estimation still requires the inversion of Cy,,
it therefore suffers from a high computational complexity.
However, it is possible to reduce complexity of the MMSE
algorithm by diagonalizing channel covariance matrix with a
linear KL, expansion.

2 HiEi

In contrast to (6) in which only h is to be estimated, we now
assume the KL series expansion coefficients g is unknown.
Substituting h = ¥g in (6), the data model (6) is then rewrit-
ten for each OFDM block as

Y=W,¥g+V 9)

which is also recognized as a Bayesian linear model, and recall
that g ~ N(0,Ag). As a result, the MMSE estimator of g is

g=1 "Wy (10)
where
I' = Ag(N,Ag+0o°Ir)7! (11)
. A Agr_1
- d 90 R
lag{)‘goNp"‘Uw 7>‘9L_1Nfo‘f'<72
and Agy, Agy, -+, Ag,_, are the singular values of Ag.

It is clear that the complexity of the MMSE estimator in
(8) is reduced by the application of KL expansion. However,
the complexity of the g can be further reduced by exploiting
the optimal truncation property of the KL expansion [4].
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A truncated expansion g, can be formed by selecting or-
thonormal basis vectors associated with the first largest r
eigenvalues. For the problem at hand, truncation property
of the KL expansion results in a low-rank approximation as
well. Thus, a rank-r approximation to Ag  is defined as
Agp_1,0,-+,0} .

Ag, = diag {Xge, Mgy (12)

Since the trailing L—r variances { g, }IL::,l are small compared
to the leading r variances {\g, }/_,, then the trailing L —
r variances are set to zero to produce the approximation.
However, typically the pattern of eigenvalues for Ag splits
the eigenvectors into dominant and subdominant sets. Then
the choice of r is more or less obvious. The optimal truncated
KL (rank-r) estimator of (10) now becomes

g, =T, Wiy (13)

where

I, = Ag (K,Ag +0°1.)""

A
= d 90 R
1ag { Aoy Np + 02
5 I
We turn our attention to analytical performance results of the
MMSE approach. We exploit the performance of the trun-
cated MMSE KL estimator under SNR and correlation mis-
matches. With these performance results, then the estimator

performance can also be obtained for some special cases, i.e.,
the case of the MMSE KL estimator under no mismatch.
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Bayesian MSE is computed for the truncated (low-rank) case
as follows. Substituting (9) in (13), truncated MMSE KL
estimator now becomes

G, =N, T, g+T, ¥¥'Wiv . (15)
The estimation error
é&r=9g-g,=I, - N, T,)g T, ¥'Wiv (16)
and then taking as ¢ = 1/SNR and &°> = l/Sf];]/R7 the
average Bayesian MSE is
R 1
BJ\ISE(QT) = Z tr (C A7')
1A (L4 Ny, )
= = g, (1
L;O (14 NpAg, SNR LZ a:(17)

Based on the result obtained in (17), Bayesian estima-
tor performance can be further elaborated for the following
scenarios: .

e By taking SNR = SNR, the performance result for the
case of no SNR mismatch is
r—1

1 Ag;
L 1+N/\ SNR LZ)\‘“' (18)

1=0

Buse(d,) =

Notice that, the second term in (18) is the sum of the
powers in the KL transform coefficients not used in the
truncated estimator. Thus, truncated Baysg(g,) can be
lower bounded by % Zf;ﬂl Ag; which will cause an irre-
ducible error floor in the SER results.

e Finally, as r — L in (17), the Bayesian MSE in the case
of no SNR mismatch is also be obtained as,

L1
1 Ag;

L £ 14N, SNR (19)

Bumse(g) =
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In this section we derive the Bayesian MSE of the truncated
MMSE KL estimator under correlation mismatch. Although
the real multipath channel h has the expansion correlation
C i We designed the estimator for the multipath channel h =
Wg with correlation Cg,. To evaluate the estimation error
g—g, in the same space, we expand the h onto the eigenspace

of has h = Wg resulting in correlated expansion coefficients.
For the real channel, data model in (9) can be rewritten

as
Y=W,¥g+V (20)

and substituting in (13), truncated MMSE KL estimator now
becomes

g, =N, T, g+T, ¥'W]V (21)
For the truncated MMSE estimator, the error is
é&r=g—g,=0, - N, T,)g—-T, ¥'Wiv (22)
As a result, taking as ¢® = 1/SNR, the average Bayesian
MSE is
Buss(d,) = + tr (Ce, (23)
L
_lrzilj‘gz +NP SNR A91'(5‘.!11: +)‘ 251) 7L715\
T L — 14+ Np SNR Ay, L — 9i

where 3 is the real part of E[gg'] and 8;’s are the diagonal
elements of B. With this result, we will now highlight some
special cases:

o Letting 5; = Ay, = Ay, for the case of no mismatch in
the correlation of KL expansion coefficients, truncated
Bayesian MSE is identical to that obtained in (18).

e As r — L in (23), Bayesian MSE under no correlation
mismatch is identical to that in (19).

6 Wl

In this section, the merits of our channel estimators is illus-
trated through simulations. We choose average mean square
error (MSE) as our figure of merit. We consider the fading
multipath channel with L paths given by (2) with an expo-
nentially decaying power delay profile [5].

The scenario for our simulation study consists of a wire-
less QPSK OFDM system employing the pulse shape as
a unit-energy Nyquist-root raised-cosine shape with rolloff
a = 0.2, with a symbol period(7s) of 0.120 us, correspond-
ing to an uncoded symbol rate of 8.33 Mbit/s. Transmission
bandwidth(5 MHz) is divided into 1024 tones. We assume
that the fading multipath channel has L. = 40 paths with
an exponentially decaying power delay profile (2) with an
Trms = D sample (0.6 us) long.

A QPSK-OFDM sequence passes through channel taps
and is corrupted by AWGN (10dB, 20dB, 30dB and 40dB
respectively). We use a pilot symbol for every twenty (A=20)
symbols.

In order to evaluate the performance of the proposed full-
rank MMSE estimator to mismatch only in SNR design, the
estimator is tested when SNRs of 10 and 30 dB are used in
the design. The MSE curves for a design SNR of 10, 30dB are



shown in Figure 3. The performance of the MMSE estimator
for high SNR (30 dB) design is better than low SNR (10 dB)
design across a range of SNR values (0 - 30 dB). This results
confirm that channel estimation error is concealed in noise for
low SNR whereas it tends to dominate for high SNR. Thus,
the system performance degrades especially for low SNR de-
sign.

To analyze full-rank MMSE estimator’s performance fur-
ther, we need to study sensitivity of the estimator to design
errors, i.e., correlation mismatch. We therefore designed the
estimator for a uniform channel correlation which gives the
worst MSE performance among all channels [5] and evaluated
for an exponentially decaying power-delay profile. As it can
be seen from Figure 4 only small performance loss is observed
for low SNRs when the estimator is designed for mismatched
channel statistics. This justifies the result that a design for
worst correlation is robust to mismatch.

The truncated estimator performance is also studied as a
function of the number of KL coefficients. Figure 5 presents
the MSE result of the truncated MMSE estimator. If only a
few expansion coefficients is employed to reduce the complex-
ity of the proposed estimator, then the MSE between channel
parameters becomes large. However, if the number of param-
eters in the expansion is increased, the irreducible error floor
still occurs.

7N

We consider the design of low complexity MMSE channel
estimator for OFDM systems in unknown wireless dispersive
fading channels. We derive the batch MMSE estimator based
on the stochastic orthogonal expansion representation of the
channel via KL transform. Based on such representation, we
show that no matrix inversion is needed in the MMSE algo-
rithm. Therefore, the computational cost for implementing
the proposed MMSE estimator is low and computation is nu-
merically stable. Moreover, the performance of our proposed
batch method was studied through the derivation of mini-
mum Bayesian MSE. Since the actual channel statistics and
SNR may vary within OFDM block, we have also analyzed
the effect of modelling mismatch on the estimator perfor-
mance and shown both analytically and through simulations
that the performance degradation due to such mismatch is
negligible for low SNR values.
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