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Abstract tors. 

Since maximum likelihood (ML) approaches have better 
resolution pe$omtance than the conventional localization 
methods in the presence of less number and highly corre- 
lated source signal samples and low signal to noise ratios, 
we propose unconditional ML (UML) method for  estimat- 
ing azimuth, elevation and range parameters of near-field 
sources in 3-0  space in this paper: Besides these superi- 
orities, stabdig, asymptotic unbiasedness, asymptotic min- 
imum variance properties are motivated the application of 
M L  approach. Despite these advantages, ML estimator has 
computational complexig. Fortunately, this problem can 
be tackled by the application of Expectation/Maximization 
(EM) iterabive algorithm which converts the multidimen- 
sional search problem t~ one dimensional parallel search 
problems in order to prevent computational complexiq. 

1. Introduction 

Localization of sources at the different plane with an- 
tenna array is more applicable to the real world array pro- 
cessing problems. Primary research results presented under 
this assumption were for localization of narrow-band far- 
field source signals [l], [2], [3], [4]. Moreover, recent 
research results on localization of near-field narrow-band 
sources in 3-D space were also presented [ 5 ] ,  [6].  Faced 
with inability to completely evaluate performances of opti- 
mal 3-D near-field localization approaches from [ 5 ] ,  [6], 
it is reasonable to resort to a asymptotically optimal estima- 

The localization of the near-field sources in 3-D space is 
in general nontrivial, since localisation of near- field sources 
requires estimation of the azimuth and elevation together 
with the range parameters. Recently, an algorithm using 
3-D Music with polynomial rooting have been developed 
(51. High-order subspace based algorithms was introduced 
in [6]. In contrast to suboptimal approaches proposed in 
[ 5 ] ,  [6], we now investigate an alternative estimator that is 
asymptotically efficient. Due to many attractive properties 
of maximum likelihood (ML) estimation methods such as 
consistency, asymptotic unbiasedness and asymptotic mini- 
mum variance, we concentrate on ML method for localiza- 
tion of near-field sources in 3-D space. Furthermore it has a 
better resolution performance than the other methods in the 
presence of less number and highly correlated source signal 
samples and low signal to noise ratios. Besides these supe- 
riorities, bring no restrictions on the antenna array are the 
additional reasons for the decision of this method. Regard- 
ing the assumption on the narrow-band source signals, there 
are two different types of models. These two models lead 
corresponding ML solutions. The models are: i. Deter- 
ministic Model which assumes the signals to be unknown 
but deterministic (Le., the same in all realizations) and ii. 
Stochastic Model (SM) which assumes the signals to be 
random. ML methods corresponding to the signal models 
(i) and (ii) are termed conditional ML (CML) and uncondi- 
tional ML (UML) respectively. Expectation/Maximization 
(EM) based deterministic ML (signal model (i)) near-field 
location estimator have been studied in [7]. The goal of 
the present paper is to provide an UML approach for the 
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estimation of the DOA and range parameters of near-field 
sources. However, calculation of ML estimation from cor- 
responding likelihood function for the unconditional case 
results in further difficult nonlinear constrained optimiza- 
tion problem, which must be solved iteratively. We there- 
fore employed the EM iterative method for obtaining ML 
estimator, The most important feature of the algorithm is 
that it decomposes the observed data into its signal com- 
ponents and then estimates the parameters of each signal 
component separately. 

2. Signal Model 

Consider a near-field scenario in which narrowband sig- 
nals from d sources received by an K x L clement antenna 
array. Let the array center be the phase reference point with 
index '(0,O)'. Assuming 2-D rectangular uniform linear 
array consisting of omnidirectional sensors with interele- 
ment spacing A along each axes, we write the output of the 
( l c )  sensor with narrowband, co-channel signal at time 
tn as, 

d 

Z k , l ( t n )  = si(tn)&Tkl(i) + 1Zk ,&), 1 I tn 5 N 
i=l  

(1) 
where s j ( t n )  denotes the complex envelope of the ith 
source signal, n k , l ( t n )  is an additive complex Gaussian sen- 
sor noise and ~k-(i) is the phase difference of the ith sig- 
nal collected at sensor ( k , l )  with respect to the ith signal 
collected at reference sensor ' (0,O)'. The phase difference 
is ~kl(i) = [w,ik + dXik2  + w,il -t q$J2 + ,4$kZ] where 
w5i = - (1 - sin ~i cos2 p i ) ,  2 sin B* cos P I ,  #zi = 

2rA inoi . sin p i ,  dyi = %(I - sin2 ei sin2 pi) 2; ii i z s s i n 2  di sin 2pi. 
For a collection of observed outputs of K x L sensors in 

2 - D array x(tn)  = [ X T L m a ,  (tn), * ' * 7 XTL,,, (tn)lT, the 
model (1) is written more compactly in matrix notation as 

x(tn) = A(@, cp, r )s ( tn)  + n(tn), 1 I tn I N (2) 

where the super vector x( tn )  consists of xl(tn) = 

[XK,,, ,1 ( tn  ) 
. . . ~ ~ , , , , ~ ( t ~ ) ] ~  which is output of only one 
column sub-array of the 2-D rectangular array, 
s(tn) = [ s l ( tn ) .  . . s d ( t n ) l T  is the collection 
of d source signals impinging to 2 - D array, 
n(tn) = [nEmi, ( tn) .  . . nzm,, (tn)] is super Gaus- 
sian complex vector with zero-mean and known spatial 
covariance 0'1, which consists of sub-array noise vectors 

A(@, cp, r) = [AI (8, p, T )  * 1 &(e, cp) .)I is the a- 
rays steering matrix in the near-field scenario which 

T 

one forming as nl(tn) = [n~, , ,+ , , i ( tn)  *..n~,,,,i(tn)l T 

is known as a function of unknown set of parameters 
B = 101 a . + B ~ I ~ ,  cp = a . . p d j T ,  r = [TI  . . - r d ]  , 
consisting of sub-array steering vectors one forming as 
4 8 ,  PI .) = [.Z,,,,'(4 PI 7-1 ' ' a:,n,, (e> cp, .)IT and 
al(B, p, T )  is l th sub-array steering vector for ith source, in 

T 

the al,,(o,,p, r )  = [ejTK,,,[(i) . . . , 1, ,$Tl l ( i ) ,  &Ql( t )  , I  . . . 
eJTKm,,1(2)]T form. 

We are interested in UML approach for the estimation of 
3-D near-field source location parameters {e,  c p )  r} 
= {(81,(pI,~1), ( d d , p d , r d ) }  from N observations 
zc = [xT ( l ) ,  . .. , xT(N)IT made from (2). The data for 
this problem consists of a set of discrete samples {x(k) ;  1 5 
k 5 N )  of the process x(tn). Our approach is to derive an 
iterative UML estimator based on the EM algorithm, that 
performs joint sample covariance and location parameters 
estimation in alternating steps. 

3, UMI, Estimator 

In this section we derive the UML estimator for the prob- 
lem defined above. To describe stochastic ML estimator's 
derivation, we made the following assumptions on the sig- 
nal model (1): 
AS1: The source signal s(k) is temporally and spatially un- 
correlated circular complex Gaussian random process with 
zero-mean and nonsingular unknown covariance matrix Ks, 

E [ s (k1)sH(k2)]  = K s s k l , k a  

E [s(kl)sT(k2)] = 0 for ali kl and kz . (3) 

where b k l , k z  is the Kronecker delta (6kl,kz = 1 if kl = IC2 
and 0 otherwise), ( + I H  is the conjugate transpose and ( .)T 
is the transpose of a matrix. 
AS2: The additive noise vector n(k) is temporally and spa- 
tially uncorrelated circular complex Gaussian process with 
zero-mean and standard derivative u2 as 

E [n(h)nH(k2)]  = U 2 I S k l , k 2  (4) 

E [n(kl)nT(kz)] = 0 for all kl and k2 . (5) 

AS3: The source signal s (k1)  and the noise n(k2) are un- 
correlated for aI1 kl and k2. 

Based on the assumptions AS2 and AS3 the array ob- 
servations x are Gaussian distributed with zero-mean and 
covariance Kx(t3, cp, r, Ks), where K,(B, cp, r, K,) = 

E[x(k1)xH(k2)]  = A(@, cp ,  r)KsAH(B, cp, r) + m21. 
Then joint probability density function of the observation 
cc = {x(k), k = 1, . e . ,  N }  given (8, c p ,  r, K,} can be 
written as follows: 

N 

f(z; 8, cp) r, K,) = n 2 ~ - ~ ~ / ~ ( d e t  K,)-1/2 
k= 1 

x exp ( - 5 x H ( k ) ) K ; 1 ~ ( k ) )  1 (6) 
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The joint probability function (6) can also be written as 

and the negative log-likelihood function (after discarding 
unnecessary terms) is 

L(m;  0, cp, r, K,) = - lndet(K,) (8) 

1 N 

--U- K , ' X x ( k ) x H ( k )  . 
N [ k=l 

AS2 implies that, by the Iaw of large numbers x ( k )  is 
second-order ergodic, i.e., 

,-. 
where K, is the sample covariance matrix. Then the nega- 
tive log-likelihood function becomes 

L(m;  0, cp, r, K,) = - Indet(K,) - tr [Ki'k,] . (10) 

The ML estimates of {e, (2., i) and & are those which Io- 
cally minimizes the negative log-likelihood function (8). 
However, minimizing (8) is a difficult nonlinear constraint 
optimization problem, and does not yield to a closed-form 
solution. Thus, a computationally efficient iterative algo- 
rithm is required for solving resulting optimization prob- 
lem. To solve this problem, we propose an UML estimation 
technique based on the EM algorithm which decomposes 
the observed data into its signal components and then esti- 
mates the parameters of each signal components separately. 
The EM algorithm iterates as the parameter updates in a 
manner which guarantees an increase in the likelihood func- 
tion. The EM algorithm requires the definition of the com- 
plete data and its associated log-likelihood function. The 
choice for the complete data vector is obtained from hypo- 
thetical independent observations of each incident wave as 

yi(k)=di(B,p,r)si(k)+ni(k), 1 Si< d ( 1 1 )  

where ni(k) is the Gaussian noise vector belongs to it* 
signal. Motivation behind this choice is that, if one could 
somehow observe each of the incident waves separately, the 
estimation of its near-field parameters would be straightfor- 
ward by performing d parallel maximizations. The incom- 
plete data is the set of observations themselves. 

Under AS1, the covariance matrix K, is a diagonal ma- 
trix K, = diaglal, . . - , ad], then the complete data yi(k) 
is the Gaussian process with mean zero and covariance 

n 

Then the log-likelihood function of the complete data yi ( k )  
is 

L,(yi; 8, rp, r, K,) = - Indet K,; (13) 

At the ( p  + l)th iteration, two step EM algorithm for our 
problem has the following steps: 

Expectation Step: Compute conditional expectation of 
the sufficient statistics for the complete data log-likelihood. 
The sufficient statistics is the sample covariance of the 
complete-data, 

. N  

At the (p+ l)th iteration, expected value of kc!' given KE 
andKgi is 

E P + l  Yi = qkYi I K ; + , K : , ~ }  

= ~;,(~px)-%,(~p,)-~~p Yi 

+KCi - K& (K",-lKCi . (15) 

In (15), Kgk and KE can be obtained from the estimates of 
near-field parameters {ep,  rpp, rp) at iteration p ,  

KP, = A(B", pP, rp)K:AH(Bp, 'pp, r") + 021 
U2 

d KGi = (.P.4Z(8",(p",r").Ai~(~p,cpp,rp) + --I (16) 

Maximization Step: The conditional expectation of the 
sufficient statistics obtained in Expectation Step is substi- 
tuted in (13). Then the complete-data likelihood function is 
maximized with respect to the parameters to be estimated 

{6Jp'1, pyfl, ~ p + ~  , Kc:'} 

i&,cpi,ri1Ky): 

= arg max { - In det Kyi 
{e,wrP> 

-tr [kG,K;:] } (17) 

The determinant of KYi can be obtained by using the spec- 
tral decomposition. One eigenvector of K,; is &(8, p, r ) /  
[Ai(@, rp, r)I, K x L  - 1 other mutually orthogonal eigen- 
vector can be chosen from orthogonal complement of 
Ai (0, cp, T )  and are equal to 0 2 / d .  Then the eigenvalue cor- 
responding to the distinct eigenvector is ai IR(8, cp, r)I2 + 
rr2/d. 

Then the determinant of K,; can be written as 
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Since the inverse of KYi  is required in (17), it could be 
determined by employing matrix inverse lemma as 

Ki: = -1- d A(Q,cP,~)dzH(~,cp,r) 
U2 IAi(Q, PI r)I2 

5. ConcIusions 

If we substitute the eigenvalues and the inverse of K,; into 
(17), and maximizing (17) for ai > 0, the estimates of near- 
field parameters become 

Based on this results, the steps of the proposed UML 
algorithm are summarized as follows: 

Repeat steps 1-3 for i = 1 , .  . . , d 

1. Given {e:, (p:, ~ ~ a ~ ) ,  p = 0, 

- Obtain k;T1 from (15), 

- Substitute Kc:' in (20), and then solve (20) 
for {P+', pP+l,rp+'), 

- Substitute the estimates iOp+' ,cpP+',rP+'} 

in (21), then compute ay 
3. Continue this process until {Oi,pi,~;) and cq 

2. p = p + l ,  

converges. 

4. Simulation 

To illustrate the the effectiveness and applicability of the 
proposed method, we consider the following scenario. A 
Uniform rectangular linear array of K = L = 3 totaly 9 
sensors with inter-element spacing A = $ was used to esti- 
mate the locations of two sources located at {&, rpl ,  T I }  = 
{24', 80', 2X) and (82, c p ~ ,  Q} = {34O, 5', 1.6A}. The 
number of the snapshots (N) set to 80 and the SNR was 
varied from 0 to 30dB. The proposed method was tested for 
M = 100 independent trials. The resulting RMSE of the 
estimated DOAs (azimuths and elevations) in degrees and 
ranges in wavelengths are shown in Fig.l., Fig.2. and Fig.3. 
respectively. The results were compared with the Cramer- 
Rao Bounds. 

Based on the simulation results we made the following 
observations: 

-For a sufficiently good initialization, proposed algo- 
rithm converges rapidly to the ML estimate of {e, (b, F} and 
es. Since the spatial structure of the array matrix is known, 
then the good initial estimates of the steering matrix can be 
obtained from MUSIC and ESPRIT algorithms. 

-For high SNRs the RMSEs obtained from simulations 
becomes almost identical to the CRB results derived by 
modifying the results in [8 1. 

10 15 20 25 30 
SNR in dB 

2 SDUrcB 2 

'?i 10-3 10 SNR 15 in dB 20 25 33 

Fig. I. RMSE of the estimated azimuths 

'"t 
0 5 10 15 20 25 30 

SNR in dB 

Fig. 2. RMSE of the estimated elevations 
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Fig. 3. RMSE of the estimated ranges 
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