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Abstract— This paper proposes a computationally efficient,
pilot-aided minimum mean square error (MMSE) channel estima-
tion algorithm for OFDM systems. The proposed approach em-
ploys a convenient representation of the discrete multipath fading
channel based on the Karhunen-Loeve (KL) orthogonal expansion
and estimates uncorrelated series expansion coefficients. More-
over, optimal rank reduction is achieved in the proposed approach
by exploiting the optimal truncation property of the KL expan-
sion resulting in a smaller computational load on the estimation
algorithm. The performance of the proposed approach is studied
through analytical and experimental results. We first consider the
stochastic Cramer-Rao bound and derive the closed-form expres-
sion for the random KL coefficients. We then exploit the perfor-
mance of the MMSE channel estimator based on the evaluation of
minimum Bayesian MSE.

I. INTRODUCTION

Traditional wireless technologies are not very well suited to
meet the demanding requirements of providing very high data
rates with the ubiquity and mobility. Given the scarcity and
exorbitant cost of radio spectrum, such data rates dictate the
need for extremely high spectral efficient modulation schemes
[1]. Holding great promise to use the frequency resources as
efficiently as possible, OFDM is a strong candidate to provide
substantial capacity enhancement for future wireless systems
[2]. OFDM is therefore currently being adopted and tested for
many standards, including terrestrial digital broadcasting (DAB
and DVB) in Europe, and high speed modems over Digital Sub-
scriber Lines in the US. It has also been implemented for broad-
band indoor wireless systems including IEEE802.11a, MMAC
and HIPERLAN/2.

An OFDM system operating over a wireless communication
channel effectively forms a number of parallel frequency non-
selective fading channels thereby reducing intersymbol inter-
ference (ISI) and obviating the need for complex equalization
thus greatly simplifying channel estimation/equalization task.
Moreover, OFDM is bandwidth efficient since the spectra of the
neighboring subchannels overlap, yet channels can still be sep-
arated through the use of orthogonality of the carriers. Further-
more, its structure also allows efficient hardware implementa-
tions using fast Fourier transform (FFT) and polyphase filtering
[2].
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Although the structure of OFDM signalling avoids ISI aris-
ing due to channel memory, fading multipath channel still intro-
duces random attenuations on each tone. Furthermore, simple
frequency domain equalization, which divides the FFT output
by the corresponding channel frequency response, does not as-
sure symbol recovery if the channel has nulls on some subcar-
riers. Hence, accurate channel estimation technique have to be
used to improve the performance of the OFDM systems. Nu-
merous pilot-aided channel estimation methods for OFDM have
been developed [3], [4], [5]. In particular, a low-rank approxi-
mation is applied to linear MMSE estimator for the estimation
of subcarrier channel attenuations by using the frequency cor-
relation of the channel [3]. In [4], a MMSE channel estimator,
which makes full use of the time and frequency correlation of
the time-varying dispersive channel was proposed. Moreover,
a low complexity MMSE based doubly channel estimation ap-
proaches were presented in [5].

In this paper, we develop a pilot-aided low-rank MMSE
channel estimation method with the inverse FFT based interpo-
lation. In contrast to [3], the proposed approach requires a con-
venient representation of the multipath channel parameters by
the Karhunen-Loeve (KL) series expansion. With the applica-
tion of KL expansion, rather than estimating correlated channel
impulse response, the uncorrelated series expansion coefficients
are estimated. Furthermore, optimal rank reduction is achieved
in the proposed approach by exploiting the optimal truncation
property of the KL expansion, resulting in a smaller computa-
tional load on the MMSE channel estimation algorithm.

II. SYSTEM MODEL

In order to eliminate ISI arising due to multipath chan-
nel and preserve orthogonality of the subcarrier frequencies
(tones), conventional OFDM systems first take the IFFT of
data symbols and then insert redundancy in the form of a
Cyclic Prefix (CP) of length LCP larger than the channel or-
der L. CP is discarded at the receiver and remaining part of
the OFDM symbol is FFT processed. Combination of IFFT
and CP at the transmitter with the FFT at the receiver converts
the frequency-selective channel to separate flat-fading subchan-
nels. The block diagram in Fig. 1 describes the conventional
OFDM system. We consider an OFDM system with K subcar-
riers for the transmission of K parallel data symbols. Thus,
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Fig. 1. OFDM System Block Diagram

the information stream X(n) is parsed into K-long blocks:
Xi = [Xi(0),Xi(1), · · · ,Xi(K − 1)]T where i = 1, 2, · · ·
is the block index and the superscript (·)T indicates the vec-
tor transpose. The K × 1 symbol block is then mapped to a
(K + L) × 1 vector by first taking the IFFT of Xi and then
replicating the last LCP elements as

si = [si(0), si(1), · · · , si(K + LCP − 1)]T . (1)

si is serially transmitted over the channel. At the receiver, the
CP of length LCP is removed first and FFT is performed on the
remaining K × 1 vector. Therefore, we can write the output of
the FFT unit in matrix form as

Yi = AiHi + ηi (2)

where Ai is the diagonal matrix Ai = diag (Xi) and Hi

is the channel vector. The elements of Hi are values of
the channel frequency response evaluated at the subcarriers.
Therefore, we can write Hi = [Hi(0),Hi(exp(j2π/K)), · · · ,
Hi(exp(j2π(K − 1)/K))]T as Hi = Fhi where F is the
FFT matrix with (m,n) entry exp(−j2πmn/K) and hi =
[hi(0), hi(1), · · · , hi(L − 1)]T is the overall channel impulse
during the ith OFDM block. Finally, ηi is an K×1 zero-mean,
i.i.d complex Gaussian vector that models additive noise in the
K sub-channels (tones). We have E[ηiη

†
i ] = σ2IK where IK

represents an K × K identity matrix, σ2 is the variance of the
additive noise entering the system and the superscript (·)† indi-
cates the Hermitian transpose.

Based on the model (2), our main objective in this paper is to
develop a pilot-aided channel estimation algorithm according
to MMSE criterion and then explore the performance of the es-
timator based on the evaluation of the Cramer-Rao bound and
Bayesian MSE. An approach adapted herein explicitly model
the channel parameters by the Karhunen-Loeve (KL) series
representation since expansion allows one to tackle estimation
of correlated parameters as a parameter estimation problem of
the uncorrelated coefficients. Note that KL expansion is well
known for its optimal truncation property [7]. That is, the KL
expansion requires the minimum number of terms among all
possible series expansions in representing a random channel for
a given mean-squared error. Thus, the optimal truncation prop-
erty of the KL expansion results in a smaller computational load

on the channel estimation algorithm. We will therefore employ
KL expansion of the multipath channel in the derivation of the
MMSE estimator to further reduce the complexity.

III. MMSE ESTIMATION OF KL COEFFICIENTS

A low-rank approximation to the frequency-domain linear
MMSE channel estimator is provided by [3] to reduce the com-
plexity of the estimator. Optimal rank reduction is achieved in
this approach by using the singular value decomposition (SVD)
of the channel attenuations covariance matrix CH of dimension
K ×K. In contrast, we adapt the MMSE estimator for the esti-
mation of multipath channel parameters h that uses covariance
matrix of dimension L × L. The proposed approach employs
KL expansion of multipath channel parameters and reduces the
complexity of the SVD used in eigendecomposition since L is
usually much less than M . We will first develop MMSE esti-
mator for pilot assisted OFDM system in the sequel.

A. MMSE Channel Estimation

Pilot symbol assisted techniques can provide information
about a undersampled version of the channel that may be easier
to identify. In this paper, we therefore address the problem of
estimating multipath channel parameters by exploiting the dis-
tributed training symbols. Considering (2), and in order that
the pilot symbols are included in the output vector for our es-
timation purposes, we focus on a under-sampled signal model.
Assuming Kp pilot symbols are uniformly inserted at known lo-
cations of the ith OFDM block, the Kp×1 vector corresponding
the FFT output at the pilot locations becomes

Y = AFh+ η (3)

where A = diag[Ai(0), Ai(∆), · · · , Ai((Kp−1)∆)] is a diago-
nal matrix with pilot symbol entries, ∆ is pilot spacing interval,
F is an Kp × L FFT matrix generated based on pilot indices,
and similarly η is the under-sampled noise vector.

For the estimation of h, the new linear signal model can be
formed by premultiplying both sides of (3) by A† and assuming
pilot symbols are taken from a PSK constellation, then the new
form of (3) becomes

A†Y = Fh+ A†η
Ỹ = Fh+ η̃ (4)

where Ỹ and η̃ are related to Y and η by the linear transforma-
tion respectively. Furthermore, η̃ is statistically equivalent to
η.

Equation (4) offers a Bayesian linear model representation.
Based on this representation, the minimum variance estima-
tor for the time-domain channel vector h for the ith OFDM
block, i.e., conditional mean of h given Ỹ, can be obtained us-
ing MMSE estimator. We should clearly make the assumptions

Globecom 2004 2362 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



that h ∼ N (0, Ch), η̃ ∼ N (0, Cη̃) and h is uncorrelated with
η̃. Therefore, MMSE estimate of h is given by [8]:

ĥ = (F†C−1
η̃ F + C−1

h )−1F†C−1
η̃ Ỹ . (5)

Due to PSK pilot symbol assumption, Cη̃ = E
[
η̃η̃†

]
=

σ2IKp
, therefore we can express (5) by

ĥ = (F†F + σ2C−1

h )−1F†Ỹ . (6)

Under the assumption that uniformly spaced pilot symbols
are inserted with pilot spacing interval ∆ and K = ∆ × Kp,
correspondingly, F†F reduces to

F†F = KpIL (7)

Then according to (6) and (7), we arrive at the expression

ĥ = (KpIL + σ2C−1

h )−1F†Ỹ . (8)

Since MMSE estimation still requires the inversion of C−1

h , it
therefore suffers from a high computational complexity. How-
ever, it is possible to reduce complexity of the MMSE algorithm
by diagonalizing channel covariance matrix with an KL expan-
sion.

B. KL Expansion

Channel impulse responseh is a zero-mean Gaussian process
with covariance matrix Ch. The KL transformation is therefore
employed here to rotate the vector h so that all its components
are uncorrelated. The vector h, representing the channel im-
pulse response during ith OFDM block, can be expressed as a
linear combination of the orthonormal basis vectors as follows:

h =
L−1∑
l=0

glψl = Ψg (9)

where Ψ = [ψ0,ψ1, · · · ,ψL−1], ψl’s are the orthonormal ba-
sis vectors, g = [g0, g1, · · · gL−1]T , and gl is the weights of the
expansion. If we form the covariance matrix Ch as

Ch = ΨΛgΨ† (10)

where Λg = E{gg†}, the KL expansion is the one in which
Λg of Ch is a diagonal matrix (i.e., the coefficients are uncor-
related). If Λg is diagonal, then the form ΨΛgΨ† is called an
eigendecomposition of Ch. The fact that only the eigenvectors
diagonalize Ch leads to the desirable property that the KL co-
efficients are uncorrelated. Furthermore, in Gaussian case, the
uncorrelateness of the coefficients renders them independent as
well, providing additional simplicity.

Thus, the channel estimation problem in this application is
equivalent to estimating the iid complex Gaussian vector g KL
expansion coefficients.

C. Estimation of KL Coefficients

In contrast to (4) in which only h is to be estimated, we now
assume the KL coefficients g is unknown. Thus the data model
(4) is rewritten for each OFDM block as

Ỹ = FΨg + η̃ (11)

which is also recognized as a Bayesian linear model, and recall
that g ∼ N (0,Λg). As a result, the MMSE estimator of g is

ĝ = Λg(KpΛg + σ2IL)−1Ψ†F†Ỹ

= Γ Ψ†F†Ỹ (12)

where

Γ = Λg(KpΛg + σ2IL)−1 (13)

= diag
{

λg0

λg0Kp + σ2
, · · · , λgL−1

λgL−1Kp + σ2

}

and λg0 , λg1 , · · · , λgL−1 are the singular values of Λg .
It is clear that the complexity of the MMSE estimator in (8)

is reduced by the application of KL expansion. However, the
complexity of the ĝ can be further reduced by exploiting the
optimal truncation property of the KL expansion [7].

D. Truncated KL Expansion

A truncated expansion gr can be formed by selecting r or-
thonormal basis vectors among all basis vectors that satisfy
ChΨ = ΨΛg . The optimal one that yields the smallest av-
erage mean-squared truncation error 1

L E[ε†rεr] is the one ex-
panded with the orthonormal basis vectors associated with the
first largest r eigenvalues as given by

1
L

E[ε†rεr] =
1
L

L−1∑
i=r

λgi
(14)

where εr = g − gr. For the problem at hand, truncation prop-
erty of the KL expansion results in a low-rank approximation
as well. Thus, a rank-r approximation to Λgr

is defined as

Λgr
= diag

{
λg0 , λg1 , · · · , λgr−1 , 0, · · · , 0}

. (15)

Since the trailing L−r variances {λgl
}L−1

l=r are small compared
to the leading r variances {λgl

}r−1
l=0 , then the trailing L−r vari-

ances are set to zero to produce the approximation. However,
typically the pattern of eigenvalues for Λg splits the eigenvec-
tors into dominant and subdominant sets. Then the choice of
r is more or less obvious. The optimal truncated KL (rank-r)
estimator of (12) now becomes

ĝr = Γr Ψ†F†Ỹ (16)

where

Γr = Λgr
(KpΛgr

+ σ2IL)−1 (17)

= diag
{

λg0

λg0Kp + σ2
, · · · , λgr−1

λgr−1Kp + σ2
, 0, · · · , 0

}
.
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Since our ultimate goal is to obtain MMSE estimator for the
channel frequency response H, from the invariance property of
the MMSE estimator, it follows that if ĝ is the estimate of g,
then the corresponding estimate of H can be obtained for the
ith OFDM block as

Ĥ = FΨĝ . (18)

IV. PERFORMANCE ANALYSIS

In this section, we turn our attention to analytical perfor-
mance results. We first consider the CRB and derive the closed-
form expression for the random KL coefficients. We then ex-
ploit the performance of the MMSE channel estimator based on
the evaluation of minimum Bayesian MSE.

A. Cramer-Rao Bound for Random KL Coeficients

The mean-squared estimation error for any estimate of a non-
random parameter has a lower bound, the Cramer-Rao bound
(CRB), which defines the ultimate accuracy of any estimation
procedure. Suppose ĝ is an unbiased estimator of a vector of
unknown parameters g (i.e. E{ĝ} = g) then the mean-squared
error matrix is lower bounded by a inverse of a Fisher informa-
tion matrix (FIM):

E
{
(g − ĝ)(g − ĝ)†} ≥ J−1(g) . (19)

Since we consider the estimation of unknown random pa-
rameters g via MMSE approach in this paper, the modified
FIM needs to be taken into account in the derivation of stochas-
tic CRB [9]. Fortunately, modified FIM can be obtained by a
straightforward modification of the (19) as,

JM (g) � J(g) + JP (g) (20)

where JP (g) represents the a priori information.
Under the assumption that g and η̃ are independent and η̃p

is a zero-mean, from [9] the conditional PDF is given by

p(Ỹ|g) =
1

πKp |Cη̃ |
exp{−(Ỹ − FΨg)†C−1

η̃ (Ỹ − FΨg)}
(21)

from which the derivatives follow as

∂ ln p(Ỹ|g)
∂gT

= (Ỹ − FΨg)†C−1
η̃ FΨ (22)

∂2 ln p(Ỹ|g)
∂g∗∂gT

= −Ψ†F†C−1
η̃ FΨ . (23)

Using Cη̃p
= σ2IKp

, ΨHΨ = IL and FH
p Fp = KpIL, and

taking the expected value yields the following simple form:

J(g) = −E[
∂2 ln p(Ỹp|g)

∂g∗∂gT
]

= −E[−Kp

σ2
IL]

=
Kp

σ2
IL . (24)

Second term in (20) is easily obtained as follows. Consider
prior PDF of g

p(g) =
1

πL|Λg | exp{−g†Λ−1
g g} . (25)

The derivatives are found as

∂ ln p(g)
∂gT

= −g†Λ−1
g (26)

∂2 ln p(g)
∂g∗∂gT

= −Λ−1
g (27)

Upon taking the negative expectations, second term in (20)
becomes

JP (g) = −E[
∂2 ln p(g)
∂g∗∂gT

]

= −E[−Λ−1
g ]

= Λ−1
g (28)

Substituting (24) and (28) in (20) produces for the modified
FIM

JM (g) = J(g) + JP (g)

=
Kp

σ2
IL + Λ−1

g

=
1
σ2

(
KpIL + σ2Λ−1

g

)

=
1
σ2

Γ−1 . (29)

Inverting the matrix JM (g) yields

CRB(ĝ) = J−1
M (g)

= σ2 Γ . (30)

B. Bayesian MSE

For the MMSE estimator ĝ, the error is

ε = g − ĝ . (31)

Since the diagonal entries of the covariance matrix of the er-
ror represent the minimum Bayesian MSE, we now derive co-
variance matrix of the error Cε. From the Performance of the
MMSE estimator for the Bayesian Linear model Theorem [8],
the error covariance matrix is obtained as

Cε =
(
Λ−1
g + (FΨ)†C−1

η̃ (FΨ)
)−1

= σ2
(
KpIL + σ2Λ−1

g

)−1

= σ2 Γ (32)
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and the Bayesian MSE is

BMSE(ĝ) =
1
L

tr (Cε)

=
1
L

tr
(
σ2Γ

)

=
1
L

L−1∑
i=0

λgi

1 + Kp λgi
SNR

(33)

where SNR = 1/σ2. Similarly, the Bayesian MSE for the
low-rank case is

BMSE(ĝr) =
1
L

r−1∑
i=0

λgi

1 + Kpλgi
SNR

+
1
L

L−1∑
i=r

λgi
. (34)

Comparing (30) with (32), the error covariance matrix of the
MMSE estimator coincides with the stochastic CRB of the ran-
dom vector estimator. Thus, the MMSE estimate of g achieves
the stochastic CRB.

V. SIMULATIONS

In this section, we will illustrate the merits of our channel
estimator through simulations. The figure of merit here is to
average mean square error (MSE). In the simulation, number
of subchannels(K),pilot space(∆),number of channel taps(L),
and rms value of path delays (τrms) are chosen as 1024, 20, 40,
and 5 sample respectively.

The MSE at each SNR point is averaged over 500 realiza-
tions. We compare the experimental MSE performance and
its theoretical Bayesian MSE of the proposed MMSE estimator
with maximum likelihood (ML) estimator and its correspond-
ing Cramer-Rao bound (CRB). Fig. 2 confirms that MMSE esti-
mator performs better than ML estimator at low SNR. However,
two approaches has comparable performance at high SNRs. To
observe the performance, we also present the theoretical, MLE
as well as MMSE estimated channel SER results in Fig. 3.

VI. CONCLUSION

We have developed a low complexity MMSE channel estima-
tion scheme for OFDM systems. Modelling multipath channel
as stochastic processes, KL expansion was employed to rep-
resent the correlated channel parameters with an i.i.d. Gaus-
sian coefficients. Thus, KL representation allowed us to tackle
the estimation of correlated multipath parameters as a param-
eter estimation problem of the uncorrelated coefficients result-
ing in reduced computational load in the MMSE channel esti-
mation approach. Moreover, the performance of our proposed
method was first studied through the derivation of stochastic
CRB for Bayesian approach. Then the stochastic CRB result
is compared with the MMSE estimator performance measure
Bayesian MSE.

0 5 10 15 20 25 30 35

10
−5

10
−4

10
−3

10
−2

 Average SNR (dB)

 M
ea

n 
S

qu
ar

e 
E

rr
or

(M
S

E
)

Simulation Results − MMSE Estimator
Theoretical Bmse, Stochastic CRB
Simulation Results − ML Estimator
CRB

Fig. 2. Performance of Proposed MMSE and MLE together with Bmse
and CRB

0 5 10 15 20 25 30 35

10
−3

10
−2

10
−1

Average SNR (dB)

S
ym

bo
l E

rr
or

 R
at

e 
(S

E
R

)

Simulation Results − MMSE Estimator
Theoretical Results − MMSE Estimator
Simulation Results − ML Estimator

Fig. 3. Symbol Error Rate results

REFERENCES

[1] R. Van Nee and R. Prasad, “ OFDM Wireless Multimedia Communica-
tions”, in Artech House Publishers, 2000.

[2] H. Sari, G. Karam, and I. Jeanclaude, “Transmission techniques for digital
terrestrial TV broadcasting,” IEEE Commun. Mag., vol. 33, pp. 100-109,
Feb., 1995.

[3] O. Edfords, M. Sandell, J.J. Van de Beek, S.K.. Wilson, and P.O. Borjes-
son, ”OFDM Channel estimation by singular value decomposition,” IEEE
Trans. on Commun. vol. 46, pp. 931-938 july 1998.

[4] Y. (G.) Li, L. J. Cimini, and N. R. Sollenberger, ”Robust channel esti-
mation for OFDM systems with rapid dispersive fading channels,” IEEE
Trans. Commun., Vol. 46, No.7, pages 902-914, July 1998.

[5] P. Schniter, Low-Complexity Estimation of Doubly-Selective Channels,
IEEE workshop on Signal Processing Advances inWireless Communica-
tions, SPAWC-2003, Rome, Italy, 15-18 June 2003.

[6] W.C. Jakes, ”Microwave Mobile Communications,” New York Plenum
1974.

[7] K. Yip and T. Ng, ”Karhunen-Loeve Expansion of the WSSUS Channel
Output and its Application to Efficient Simulation,” IEEE Journal on Se-
lected Areas in Communications, vol. 15, no 4, pp.640-646, May 1997.

[8] S.M. Kay, ”Fundamentals of Statistical Signal Processing: Estimation
Theory,” Prentice Hall 1993.

[9] H. L. Van Trees, ”Detection, Estimation and Modulation Theory, Part I,”
Wiley Interscience 1993.

Globecom 2004 2365 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society


	footer1: 
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004       


