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Abstract

Minimum shift keying (MSK) modulation has features such as constant envelope, compact spectrum

and good error performance, which are all desirable in many digital applications including mobile radio.

Numerous receiver structures to demodulate MSK have been suggested, such as correlation receivers,

differential detectors and frequency discriminators. MSK is a form of biphase keying and can be detected

by a zero-crossing based phase demodulator which gives near optimum performance. In this paper, the

bit error performance of a zero-crossing based coherent MSK demodulator is theoretically investigated

and a closed-form expression for the bit error rate is derived. The results indicate that the demodulator

performs within 0.8-1 dB of the theoratical optimum for MSK. Towards the goal of deriving probability

of bit error, it is also shown that under additive white Gaussian noise (AWGN) zero-crossing locations

of MSK signals are Gaussian distributed except at very low signal-to-noise ratios.

Key Words: Minimum shift keying modulation, receiver performance, zero-crossing properties, non-

parametric testing.

1. Introduction

Minimum shift keying (MSK) is a constant envelope, spectrally-efficient modulation scheme which has long
been used in digital mobile radio applications including the communications standards such as Digital
European Cordless Telecommunications (DECT) and Global System for Mobile Communications (GSM)

[1], [2], [3]. In addition to its spectral efficiency, MSK has a good error performance and self-synchronising

capability [4].

MSK, conventionally, is a special case of offset quadrature phase-shift keying (OQPSK) with sinusoidal

symbol weighting [5]. That is, two sinusoidally-shaped bit streams, one having a bit-period time-offset relative
∗Feza Kerestecioğlu is currently on leave for his studies at Kadir Has University, İstanbul
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to the other, are employed to modulate orthogonal components of a carrier. The signal in this format is often
referred to as precoded MSK [6]. MSK signals can also be obtained by a simpler biphase modulator which

accepts the data in serial form [7]. During any keying interval of bit duration, one of the two frequencies,
f1 and f0 , are transmitted, where f1 and f0 stand in a special relationship to the baud rate. In view of
this, MSK can also be thought of as a form of continuous-phase frequency-shift keying (CPFSK) where the

modulation index is 0.5 [4].

Precoded MSK can be coherently detected either by matched filter [5] or by differential decoders [8].
MSK, in biphase keying format, can be detected both coherently and noncoherently. It can be detected as
a binary phase-shift keyed (BPSK) signal by a matched filter or noncoherently by a frequency discriminator

[7], [9], [10].

MSK, in biphase keying format, can also be detected by a zero-crossing based phase demodulator.
In this approach two frequencies, say, f1 = 1200 Hz and f0 = 1800 Hz are transmitted for binary 1 and
0, respectively,with a baud rate of 1200 bps. The resulting signal spectrum is then centred on a carrier
located at the mid-frequency between f1 and f0 (1500 Hz). This ensures that the signal phase changes ±
90 relative to the carrier by the end of each period. Coherent detection is achieved by extracting the signal
phase from its zero crossings and comparing it to the carrier phase at bit ends.

In this paper the bit error rate (BER) performance of one such receiver is analysed. This requires
information on the zero-crossing properties of MSK signals. Therefore, following a brief introduction of
MSK signalling and receiver specifications, zero-crossing properties of MSK signals are investigated and
asymptotic expressions for the probability density of zero-crossing locations and intervals are derived in
Section 2. Using the results of Section 2, an expression for bit error probability is obtained in Section 3
and performance results obtained from the simulations are presented in Section 4. Conclusions are drawn in
Section 5.

2. System specifications of the receiver

The block diagram of the zero-crossing based coherent MSK demodulator is shown in Figure 1. The system
is basically made up of a phase detector followed by a carrier and clock recovery and decision stages. The
received signal r(t) + n(t), after noise limiting, is fed to a zero-crossing detector (ZCD) which generates a
sequence of positive impulses at its output. Note that, in order to realise a ZCD, one would hardlimit the
input waveform, differentiate to accentuate the zero-crossing points and pass through a full-wave rectifier to
eliminate negative pulses due to negative-going zero crossings. The resultant signal is then low-pass filtered
and integrated over a bit period to produce an output proportional to the instantaneous signal phase. Here,
it would be useful to note that, theoretically, samples of the accumulated signal phase at each zero crossing
could have been obtained by directly integrating the ZCD output. However, this would enable one to know
the phase values only where the zero crossings occur. As will be explained below, mid-bit and end-bit
instantaneous phase values are needed for clock and carrier recovery. A low-pass filter (LPF) cascaded with
the ZCD will provide the phase value at any instant over the bit period. The end-bit sample is used for the
decision and the mid-bit value, together with the end-bit value, by the clock and carrier recovery stage.

A coherent decision is made by comparing the end-bit sample to a recovered carrier reference. If the
signal phase is larger than the carrier phase a binary 0 is selected. Otherwise, the decision is made in favour
of a binary 1.

The receiver in Figure 1 can also operate noncoherently. In this case, carrier recovery is not necessary
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and the decision will be based on a comparison of two measured phase samples from the received signal;
namely, one at the start of the bit period and the other at the end of the bit period. A decision will be made
by looking at the direction of the phase change over the bit period.

BPF ZCD LPF dt
r (t)Decision stagê

carrier & clock
recovery

∫ Tb
0

z(Tb)
z(Tb)    h<

>
r(t)+n(t)

Figure 1. A coherent MSK receiver.

The carrier recovery stage uses the mid-bit phase measurements from the signal to extract the phase
reference. If the phase is rising, relative to the carrier phase during the bit period, then the mid-bit phase
difference should be 45o more than the one at the start of the bit period. Similarly, if the phase is falling
with respect to the carrier phase then the mid-bit phase difference should be 45o less than its value at the
start of the bit period. By comparing the mid-bit phase with the expected one, the size and direction of the
carrier error is obtained and a proportion of this error is used to correct the phase reference [11].

On the other hand, clock recovery is achieved by using a peak search algorithm. It uses three phase
samples: two mid-bit samples from two consecutive bits and an end-bit sample between them. Considering
the possibility that the phase trajectory relative to the carrier phase has a local maximum (or minimum) at

the end of a bit period (this happens whenever a change in the received binary symbol occurs), the algorithm
compares the differences in phase between three samples to determine the timing error.

3. Zero-Crossing Properties of MSK Signals

Zero-crossing based demodulation is one of the various schemes used in the detection of frequency modulated
signals [12], [13], [14]. Both analogue or digital FM-modulated signals can be recovered from the zero
crossings of the received signal; in the case of analogue FM this is done by determining the average number of
zero crossings over a certain period and estimating the instantaneous signal frequency from this measurement
[15]. In digital FM, normally, more “exact” techniques are used. The currently investigated MSK modem

is one where the decision is made on the basis of one zero-crossing difference (i.e., two zero crossings will be

received for binary 1 and three for binary 0). The instantaneous signal phase obtained by the integration of

interpolated (by the LPF) zero crossings is therefore highly sensitive to the locations of the zero crossings as
well as to their number. Gaussian noise added to the MSK signal will result in displacements and density
changes in its zero crossings, as shown in Figure 2. This will cause fluctuations in the measured phase
and thus erroneous symbol decisions. The error performance analysis of the receiver, therefore, demands
information on the statistical properties of zero crossings.

The received MSK signal is simply modelled as a sinusoidal wave plus additive narrow-band Gaussian
noise, that is

Z(t) = A cosωt + n(t) (1)

where ω is the signal frequency and n(t), narrow-band noise in a quadrature form, is

n(t) = nc(t) cosωt+ ns(t) sinωt. (2)
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Figure 2. Zero crossings of MSK signals: a) Pure and noisy waveforms (SNR=3 dB) b) Representation of

associated zero crossings.

The envelope and phase representation of the signal Z(t) is

Z(t) = R(t) cos(ωt+ θ(t)) (3)

where the envelope R(t) is given by

R(t) =
√

(A + nc(t))2 + n2
s(t), (4)

and the phase θ(t) is

θ(t) = tan−1 ns(t)
nc(t) + A

. (5)

It is well known that the joint pdf of R and θ is given as [16]

PR,θ(r, θ) =
r

2πN
exp

(
−(r2 +A2 − 2Ar cos θ)

2N

)
r > 0,−π < θ < π (6)

where N = E{n 2 (t)}. From (3), the zero-crossing instants of the received signal will satisfy

ωtk + θ = (2k − 1)
π

2
. (7)

Hence, time of the k th zero crossing is

tk =
(2k − 1)π2 − θ

ω
. (8)

Note that since the process θ(t) is strict sense stationary, its distribution will be independent of time;

therefore, in the analysis the time argument of θ(t) is dropped. As can be seen from (8), the pdf of the

location of the zero crossings can be obtained from the pdf of θ . The pdf of θ , Pθ(θ) , can be obtained by

integrating out r in the joint pdf PR,θ (r, θ) as
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Pθ(θ) =
∫ ∞

0

pR,θ(r, θ)dr

=
∫ ∞

0

r

2πN
exp

(
−r

2 +A2 − 2Ar cos θ +A2 cos2 θ −A2 cos2 θ

2N

)
dr

=
1

2πN
exp

(
−A

2 sin2 θ

2N

) ∞∫
0

r exp

(
−(r −A cos θ)2

2N

)
dr. (9)

Let u =(r − A cos θ) /
√
N . Then the integral on the right-hand side will be

∫ ∞
−A cos θ/

√
N

(√
Nu+ A cos θ

)
exp

(
−u

2

2

)√
Ndu

= N

∫ ∞
−A cos θ/

√
N

u exp
(
−u

2

2

)
du+ A cos θ

√
N

∫ ∞
−A cos θ/

√
N

exp
(
−u

2

2

)
du

= N exp
(
−A

2 cos2 θ

2N

)
+A cos θ

√
2πNQ(−A cos θ√

N
) (10)

where Q(x) is a complementary Gaussian cumulative distribution function defined as [6]

Q(x) =
1√
2π

∫ ∞
x

exp
(
−1

2
u2

)
du.

It follows that

pθ(θ) =
1
2π

exp
(
− A

2

2N

)
+
A cos θ√

2πN
Q(−A cos θ√

N
) exp

(
−A

2 sin2 θ

2N

)
. (11)

Let Γ = A/
√
N . Then pθ(θ) can be written as

pθ(θ) =
1
2π

exp
(
−Γ2

2

)
+

Γ cos θ√
2π

Q(−Γ cos θ) exp
(
−Γ2 sin2 θ

2

)
. (12)

For large Γ and small θ, (12) reduces to Gaussian probability distribution function, that is

pθ(θ) ≈
Γ√
2π

exp
(
−Γ2θ2

2

)
. (13)

Here, notice that Γ2/2 corresponds to SNR. In Figure 3, pθ(θ) given by Eq. (12), is plotted for

various Γ. Here, θ is in radians. It is seen from the figure that pθ(θ) resembles the Gaussian shape more
as Γ gets larger. For small SNR values it tends to approximate the uniform distribution as expected.

From (8) and (13) the zero-crossing locations have a variance of 1/ (Γω)2 . Thus, the Gaussian random
variables representing the zero-crossing locations of the received 1’s and 0’s can be given as
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x1k ∼ N
(

(2k − 1)π/2
ω1

,
1

Γ2ω2
1

)
k = 1, 2 (14a)

and

x0k ∼ N
(

(2k − 1)π/2
ω0

,
1

Γ2ω2
0

)
k = 1, 2, 3. (14b)

where the index k has been used to distinguish between consecutive zero crossings. The confidence level,
at which the approximation in (13) holds (thus the zero-crossing locations can be assumed to be Gaussian

distributed), can be determined by conducting a nonparametric statistical test. The following subsection
deals with this issue.
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Figure 3. Probability density of θ .

3.1. Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) one-sample test is suitable for testing the result in (14a,b). The test involves
examining random samples with some unknown probability distribution in order to test the null hypothesis
that the unknown distribution is in fact a known, specified function. This is done by comparing the
experimental cumulative frequency distribution function (CDF) to the theoretical CDF, which should be
expected under the null hypothesis. If there is a good agreement between these two, the null hypothesis
is accepted, otherwise it is concluded that the unknown probability distribution is not the one in the null
hypothesis [17].

Let Sn (x) and F (x) denote the experimental and the specified theoretical distributions, respectively,
where n stands for the sample size. In view of the analysis in the preceding section, the null hypothesis is
chosen as

H o : The probability density of zero-crossing locations is Gaussian.

The K-S test can then be conducted by taking the following steps:

1. The theoretical CDF, F(x), expected under the null hypothesis is obtained.
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KALKAN, KERESTECİOĞLU: Zero-Crossing Based Demodulation of Minimum Shift Keying,

2. The observed values {x1,...,xn } are arranged in an empirical CDF, Sn (x).

3. The test statistic T = max1≤i≤n|F (xi) − Sn(xi)| is calculated.

4. T is compared to a predetermined threshold h and H o is accepted if T ≤ h .

The critical values of the probability of falsely rejecting H o , when in fact it is true (i.e., type I error),

associated with particular values of h are tabulated in the literature [18]. These probabilities are called
levels of significance and are denoted by α . Common values of α are 0.20 ∼ 0.01. The significance level of
0.20 is the one at which the strongest confirmation of the null hypothesis is obtained.

For the computation of the test statistics, samples of the zero-crossing locations of the waveform
corresponding to binary 1 under additive Gaussian noise are obtained. Figure 4 shows a histogram of zero-
crossing locations in an interval of width Tb /2 for a sample size of n = 3000. The SNR has been chosen

as 5 dB. In producing the histogram the waveform has been sampled at a rate of 100/Tb . The empirical
CDF obtained from these sample values and the theoretical CDF are plotted in Figure 5. The test statistic
T is found to be 0.0102. It can be seen from the tabulated statistics [18] that the probability of type I
error corresponding to this value of T is larger than the significance level of 0.20. Thus the test passes most
confidently. The same procedure has been repeated for various SNR values. The results show that even at a
low SNR value of 3 dB, the test passes at a significance level of 0.10 and it is needless to say that the larger
the SNR the higher is the significance level. We note that similar results hold in the case of binary 0, and
so they are not repeated here.
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Figure 4. Histogram of zero-crossing locations.

4. Bit Error Probabilities for the Coherent MSK Demodulator

In order to derive the bit error probability one should obtain the decision variable z , which is the accumulated
phase at the end of a bit period. One method of doing this is to calculate the spectrum of an aperiodic
impulse train and convolve it with the frequency response of the LPF. Integration of the inverse transform
of this result over the period Tb would then give the variable z . The MSK signal is made up of randomly
interleaved signals of two different frequencies. Thus, when the zero crossings are detected, one would have
an aperiodic sequence of impulses even in the absence of noise. The spectrum of a periodic impulse train
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with random shifts due to the noise is given in the literature [19]; however, that of the aperiodic pulse train
seems to be quite difficult, if not impossible, to obtain.
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Figure 5. Cumulative distribution of zero-crossing locations.

A relatively practical way of obtaining z is to consider a rectangular time window of length Tb

cascaded to the ZCD output (this will, of course, require almost perfect clock recovery). Multiplication of
the impulse train with this type of window function results in a certain number of impulses selected over a
bit period, as illustrated in Figure 6. The spectrum of a signal like this can be expressed in a simple form
and this allows one to obtain z analytically, as shown in the subsection below.

4.1. Derivation of the bit error probability

Assume that the impulse train at the ZCD output is sequentially multiplied by a rectangular window of
length Tb s. Therefore, in the noise-free case the resulting signal will be two impulse functions, one shifted
by Tb /2 s relative to the other, when a one is sent. In the case of a transmitted zero there will be three

impulses separated by Tb /3 s. Recall from Section 2 that when Gaussian noise is added to the signal zero
crossings will be randomly shifted away from where they should be in the noise-free case and these locations
themselves will be Gaussian random variables. Thus, in the case of a noisy one the Fourier Transform of the
signal is (see Figure 6a)

f1(t) f0(t)

x11

x12

x01

x02

x03

(k-1)Tb kTb t (k-1)Tb
kTb t

a b

Figure 6. Representation of shifted zero-crossings incorporating a window function. a) Binary 1 b) Binary 0.
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F (ω, x11, x12) = e−jωx11 + e−jωx12 (15)

where x1i denotes the occurrence time (location) of the ith zero crossing. After the low-pass filtering, the
frequency-domain representation of the signal will be

X(f) =
{
e−jωx11 + e−jωx12

0
ω ≤ ωc
elsewhere

(16)

where ωc is the filter cut-off frequency (in radians). The inverse transform of (16) yields

s1(t) =
sin(ωc(t− x11))
π(t − x11)

+
sin(ωc(t − x12))
π(t− x12)

. (17)

The decision variable z1 will then be the integrator output:

z1 =
∫ Tb

0

sin(ωc(t − x11))
π(t− x11)

dt+
∫ Tb

0

sin(ωc(t− x12))
π(t − x12)

dt. (18)

Substituting the variable transform x = ωc(t− x1i) in (18),

z1 =
∫ ωc(Tb−x11)

−ωcx11

1
π
.
sinx
x

dx+
∫ ωc(Tb−x12)

−ωcx12

1
π
.
sinx
x

dx . (19)

Noting that
∫ a

0
sinx/xdx is known as the sine integral, Si(a), and is tabulated in the literature [20], (19) is

finally written as

z1 =
1
π

(Si(ωc(Tb − x11)) + Si(ωcx11) + Si(ωc(Tb − x12)) + Si(ωcx12)) . (20)

Similarly, in the case of a noisy “zero” the transform of the signal (after windowing operation) will be

F (ω, x01, x02, x03) = e−jωx01 + e−jωx02 + e−jωx03 . (21)

Taking the same steps as in (15)-(20), the decision variable z0 is obtained as

z0 =
∫ ωc(Tb−x01)

−ωcx01

1
π
.
sinx
x

dx+
∫ ωc(Tb−x02)

−ωcx02

1
π
.
sinx
x

dx+
∫ ωc(Tb−x03)

−ωcx03

1
π
.
sinx
x

dx. (22)

In addition, (22) can be written in the form

z0 =
1
π

(Si(ωc(Tb − x01)) + Si(ωcx01) + Si(ωc(Tb − x02)) + Si(ωcx02) + Si(ωc(Tb − x03)) + Si(ωcx03))
(23)
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The LPF and integrator outputs of binary 1 and 0 are shown in Figure 7. It is seen from these figures
that the LPF, basically, interpolates between the zero crossings and this results in a smooth increase in
variables z1(t) and z0(t).

The next step in obtaining the error probability is to find the pdf’s of the decision variables z1 and
z0 . Both z1 andz0 are functions of random variables with known (Gaussian) statistics. However, their
densities cannot be determined in a closed form from these statistics, because x11 , for example, cannot be
expressed as a function of z1 and x12 (see (19)).
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Figure 7. LPF and integrator outputs: a) and b) Binary 1, c) and d) Binary 0.

Nevertheless, one can obtain approximate expressions for z1 and z0 and then determine the desired
densities. Let us express z1 in (19) as

z1 =
1
π

(f(x11) + f(x12)) (24)

where f(x11) and f(x12) denote respectively the first and the second integral terms on the right-hand side.

The variable z1 can be linearly approximated by expanding f(x11) and f(x12) into their Taylor series about

the points x11 = Tb/4 and x12 = 3Tb/4, respectively, and neglecting terms of order higher than two. Thus,

f(x11) ≈ f(Tb/4) + f ′(Tb/4)(x11 − Tb/4). (25)

Clearly, such an approximation is valid if the deviation of x11 from its mean is small, i.e., if the SNR
is reasonably high. After straightforward calculations (25) can be written as

f(x11) ≈ Si(A1) + Si(A2)− sinA1 +
1
3

sinA2 +
4
Tb

(
sinA1 −

1
3

sinA2

)
x11 (26)
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where A1 = ωcTb/4 and A2 = 3ωcTb/4. Similarly an expansion for f(x12) will yield

f(x12) ≈ f(3Tb/4) + f ′(3Tb/4)(x12− 3Tb/4). (27)

After some manipulations,

f(x12) ≈ Si(A1) + Si(A2) + 3 sinA1 − sinA2 −
4
Tb

(
sinA1 −

1
3

sinA2

)
x12. (28)

We have from (26), (28) and (24)

z1 ≈
2
π

(
Si(A1) + Si(A2) + sinA1 −

1
3

sinA2

)
+

4
πTb

(
1
3

sinA2 − sinA1

)
(x12 − x11) . (29)

Finally, (29) can be expressed as

z1 = C1 + C2(x12 − x11) (30)

where

C1 =
2
π

(
Si(A1) + Si(A2) + sinA1 −

1
3

sinA2

)
(31a)

and

C2 =
4
πTb

(
1
3

sinA2 − sinA1

)
. (31b)

Similarly the decision variable z0 can be written from (22) as

z0 =
1
π

(f(x01) + f(x02) + f(x03)) . (32)

The linear approximation to f(x01) about the point x01 = Tb/6 yields

f(x01) ≈ Si(A3) + Si(A4)− sinA3 +
1
5

sinA4 +
6
Tb

(
sinA3 −

1
5

sinA4

)
x01 (33)

where A3 = ωcTb/6 and A4 = 5ωcTb/6. Notice that the point Tb/6, which is the centre point of this
approximation, is the expected value of occurrence time of the first zero crossing for a “zero” signal. The
expansion for f(x02) will be about the point Tb/2(i.e.,E{x02}):

f(x02) ≈ 2Si(A5) (34)

where A5 = ωcTb/2. It follows that
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f(x03) ≈ Si(A3) + Si(A4) + 5 sinA3 − sinA4 +
6
Tb

(
1
5

sinA4 − sinA3

)
x03 (35)

where A3 and A4 are defined as before and the expansion is about the point E{x03} = 5Tb/6. Substituting

(32), (33) and (34) into (31)

z0 ≈
2
π

(
Si(A3) + Si(A4) + 2 sinA3 −

2
5

sinA4 + Si(A5)
)

+
6
πTb

(
1
5

sinA4 − sinA3

)
(x03 − x01), (36)

i.e.,

z0 = C3 + C4(x03 − x01) (37)

where the constants C3 and C4 are

C3 =
2
π

(
Si(A3) + Si(A4) + 2 sinA3 −

2
5

sinA4 + Si(A5)
)

(38a)

and

C4 =
6
πTb

(
1
5

sinA4 − sinA3

)
. (38b)

Having put z1 and z0 into forms as in (30) and (37), respectively, one can now determine their

densities in terms of the known densities of zero-crossing locations, x1k and x0k . It can be seen from (30)

that z1 is a function of (x11 − x12 ), which is the distance between two consecutive zero crossings in the
case of a transmitted one. Recall from Section 2 that zero-crossing locations are Gaussian distributed. The
distance between the zero crossings, which is in fact the difference of two Gaussian random variables, is
therefore Gaussian distributed with a mean being the difference of their means and a variance which equals
the sum of their variances. Let δ1 denote the difference random variable (x11 − x12 ). Thus the pdf of δ1
would be given as

pδ1(δ) =
1

σδ1
√

2π
exp

(
−1

2
(δ − Tb/2)2

σ2
δ1

)
(39)

where Tb/2 and σ2
δ are the mean and the variance of δ respectively. Assuming x11 and x12 are statistically

independent, we have σ2
δ = 2σ2

1 , where σ2
1 is the variance of zero-crossing locations in the case of a binary

1. Thus from (14a)

σ2
δ1

= 2σ2
1 =

1
2π2Γ2f2

1

. (40)

It can be seen from (30) and (39) that the pdf of z1 can be written as
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pz1(z) =
1

|C2|σδ1
√

2π
exp

(
−(z − (Tb/2 +C1))

2

2C2
2σ

2
δ1

)
. (41)

Similar to the steps as in (39)-(41), the density of z0 can be obtained as

pz0(z) =
1

|C4|σδ0
√

2π
exp

(
−(z − (2Tb/3 + C3))

2

2C2
4σ

2
δ0

)
(42)

where the variance σ2
δ0

is given as (see (14b))

σ2
δ0 = 2σ2

0 =
1

2π2Γ2f2
0

· (43)

For the currently considered binary MSK there are two ways in which errors can occur. That is, an
error occurs when the signal s1(t) (i.e., binary 1) is transmitted, but hypothesis Hb0 (hypothesis that a zero

was sent) is chosen or s0(t) (i.e., binary 0) is transmitted and hypothesis Hb1 is chosen. Therefore, the
probability of error is

PB = P (H 0|s1)P (s1) + P (H 1|s0)P (s0) (44)

where P (s1)and P (s0) are a priori probabilities of sending binary 1 and binary 0, respectively. As explained
in Subsection 6.1.1, the detection is achieved by comparing the phase sample taken at the end of the bit
period with the estimate of the carrier phase. This corresponds to comparing the decision variable z (being

z1 or z0 ) to a threshold h which is mid-way between the expected values of z1 and z0 . Since the lower

frequency is used for binary 1, z1 (i.e., the phase sample) is supposed to be less than the threshold h for

correct detection. Thus, assuming P (s1) = P (s0) = 1/2, (44) can be expressed as

PB =
1
2
P (z1 > h) +

1
2
P (z0 < h). (45)

The probability that z1 exceeds h can be computed by integrating Pz1(z) between the limits h and ∞

P (z1 > h) =
∫ ∞
h

1
|C2|σδ1

√
2π

exp

(
−1

2
(z − (Tb/2 +C1))2

C2
2σ

2
δ1

)
dz. (46)

Substituting (z − (Tb/2 +C1))/C2σδ1 = u and dz = C2σδ1du in (46)

P (z1 > h) =
∫ ∞

[h−(Tb/2+C1)]/C2σδ1

exp(−1
2
u2)du. (47)

It follows that
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P (z1 > h) = Q

(
h − (Tb/2 +C1)

C2σδ1

)
. (48)

Similarly, P (z0 < h) is obtained by integrating Pz0(z) between the limits −∞ and h . This yields, after
some manipulations,

P (z0 < h) = Q

(
(2Tb/3 +C3) − h

C4σδ0

)
. (49)

Substituting (48) and (49) into (45), PB is expressed as

PB =
1
2

{
Q

(
h − (Tb/2 +C1)

C2σδ1

)
+Q

(
(2Tb/3 +C3)− h

C4σδ0

)}
· (50)

The probability of bit error given in (50) is plotted in Figure 8 together with the optimum error

probability for binary MSK1. The currently investigated scheme performs with a degradation of about 1.5
dB with respect to the optimum MSK detector. Recall that in the model, on which the error probability
analysis has been based, the errors are assumed to be made due to shifted zero-crossing locations only.
However, especially at low SNRs, errors can also be due to extra or missing zero crossings, which are other
manifestations of additive noise. Thus, PB in (50) sets a lower bound on the system’s error rate which, in
actual occasions, will be higher. Nevertheless, in the next section where the theoretical results are compared
to the simulations, some empirically obtained rules will be presented which can reduce the performance
degradation due to such extra or missing zero crossings.

5. Simulation Results

The coherent demodulator described in Section 1 is digitally simulated under perfect carrier and clock
recovery to obtain the error performance. A high sampling rate of 100 samples/bit is chosen to ensure
accurate measurement of the noisy signal phase. The LPF used is a sixth-order Butterworth with optimum
cut-off frequency of 1200 Hz. Figure 9 shows the theoretical and simulated BER curves. In the SNR region
of 4-8 dB the simulation results are about 0.8 ∼ 1 dB worse than the theoretical. The difference diminishes
for larger SNR. This is partly due to the fact that the approximations involved in the derivation of the BER
(i.e., Gaussianity of zero-crossing locations and the linear approximations to z0 and z1 ) hold better for
high SNR values. Nevertheless, it can also be an indication of another error-causing event, which has not
been considered in the original model: at low-to-medium SNRs, noise also results in extra or missing zero
crossings (in addition to those shifted) in the received signal. This causes a sudden increase (if extra) or

decrease (if missing) in the signal phase resulting in erroneous detection. However, a zero-crossing correction
algorithm can be used to correct such errors as will be shown in the subsection below.

1The optimum error rate for coherently detected binary MSK is given as [6]

PB = Q
�p

2Eb/N0

�
where Eb is the energy per bit and N0 is the noise power spectral density.
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Figure 8. Bit error probability for optimally detected MSK and the receiver of Figure 1.

5.1. A zero-crossing correction rule

An algorithm to avoid the detection errors caused by extra or missing zero crossings would, basically, count
the number of zero crossings in a bit period then decide on whether extras or missings occurred and if they
did how many.

The simulations are run for 3000 bits to determine the likelihood of extras and missings in the case of
two binary waveforms, 1200 Hz and 1800 Hz, respectively. Table 1 shows the results for a noise bandwidth
of W = 800 Hz. Note that SNR = 2 dB here.

Table 1. Distribution of number of zero crossings (800 Hz).

# of zero crossings 0 1 2 3 4

# of bits
f1 = 1200Hz 0 11 2676 151 162
f0 = 1800Hz 0 27 182 2727 64

Thus, in the case of a binary 1, two extra crossings are most likely to occur. For binary 0, however, a
single missing is the most possible. On the other hand, the results with doubled noise bandwidth (i.e. W =

1600 Hz) without changing the SNR are given in Table 2.
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Figure 9. Theoretical BER and simulation results.

It can be concluded from these statistics that the lower frequency is more likely to get two extra
crossings while the higher will receive single missings with the highest probability. The logical explanation
to this is that noise components significantly higher than the signal frequency are likely to cause extra zero
crossings, while the lower ones would result in waveforms with missing zero crossings. Note that when W =
800 Hz (i.e. the noise band is 1100-1900 Hz) the noise would mostly contain frequencies higher than a signal
frequency of 1200 Hz. However, if the signal frequency is 1800 Hz the noise will be composed of relatively
lower frequencies. When the noise bandwidth is doubled towards the band 700-2300 Hz, one obtains an
increased number of extra crossings in the lower frequency signal and missings in the high frequency signal
(see Tables 1 and 2)

Table 2. Distribution of number of zero crossings (W = 1600 Hz).

# of zero crossings 0 1 2 3 4 5 6

# of bits
f1 = 1200Hz 0 20 2432 229 310 8 1
f0 = 1800Hz 0 35 120 2724 91 30 0

In view of these findings some simple rules can be applied to avoid such errors:

1. If the number of zero crossings counted in a bit period is more than three (and, hence, there are

definitely extras) some of the impulses at the output of the zero-crossing detector must be removed so
as to make the total number two. That is, the correction will be made as if a binary 1 is transmitted
during that bit period. This is because, the occurrence of extra crossings under a binary 1 is much
more likely than that under binary 0.

2. In the case of having a single zero crossing within a bit period two more will be inserted as if binary
0 is sent, since the probability of the occurrence of a single missing is much higher in the case of a
binary 0, compared to that of a binary 1. Evidently, each added zero crossing is placed in the middle
of the largest interval between other zero crossing(s) and/or the bit ends so as to yield the most even
possible placement.
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3. In the cases of having two or three zero crossings no correction should be made.

These rules make use of only the number of zero crossings to rectify obvious errors. It can also be
suggested that further information about the zero crossing locations (e.g., their relative distances) can be
used to correct possible missing or extra zero crossings even when there are two or three crossings during a
bit period. When two crossings are counted, the signal might be a true 1, or a 0 with one missed crossing.
Similarly, in the case of three crossings it might either be a 0, or a 1 with an extra crossing. We can see
from the Tables 1 and 2 that such events have nonzero probabilities. It has been shown in Section 3 that
the distance between the zero crossings is of a Gaussian random variable with a mean Tb/2 or Tb/3 and a

variance σ2
δ1

or σ2
δ0

, respectively for binary 1 or 0. If the distance values which are likely under binary 1 and

0 do not overlap one can use this information to find out whether the number of zero crossings is erroneous.
For example, two crossings in a bit period whose distance is about Tb/3would mean that one zero crossing
out of three is missing. Assuming that, in practice, the distances would spread around their means not more
than 3σδ , in order to apply such rules reliably it is required that 3σδ1 + 3σδ0 ≤ Tb/6. In view of (40) and

(43), this condition is satisfied for SNR ≥ 6 dB. Thus, such corrections by looking at distances among zero
crossings would not be possible for low-to-moderate SNR values.

The MSK receiver of Figure 1 is digitally simulated with the zero-crossing correction rule. It is seen
from Figure 10 that, with the correction applied, an improvement of 0.5-0.7 dB is achieved in the BER
performance over the SNR range of 3-8 dB. Notice that with this improvement the theoretical values are
well confirmed. For larger SNRs, this improvement is lost since extra or missing zero crossings are unlikely
to occur. Although the correction of the zero crossings is based on an intuitive rule of thumb, it can result
in moderately improved BER performance. However, the simulations show that it is not that useful for SNR
values lower than 3 dB.

In addition, it would be useful to indicate that performance gain by the zero-crossing corrections
will be more apparent under operations with imperfect carrier recovery. In the case of having extra or
missing zero crossings, the signal phase will experience abrupt changes which will worsen carrier recovery.
Resynchronisation of the carrier phase will usually take somewhat longer than a bit period (faster recovery

may not be suitable, because this will increase the sensitivity of the recovered phase to the noise) [11].
Therefore, a number of bits can be decoded erroneously during the acquisition time. Thus, reversing the
effect of extra or missing crossings by the correction rule will also prevent the system performance from
being degraded further due to a carrier unlock.

5.2. Noncoherent detector performance

As stated previously, the receiver structure in Figure 1 can also be used for the noncoherent detection of
MSK. In this type of operation, the decision will be made by comparing the signal phase by comparing
the signal phase sampled at the end of the bit period with the one at the start of the bit period. This
will reduce receiver complexity since no carrier recovery is needed. However, the performance will be much
poorer compared to the coherent receiver. This is because a detection based on a comparison of two noisy
samples is more sensitive to noise than the one between a noisy phase and a phase reference. Figure 11
shows the BER of a noncoherent receiver obtained by simulation. It is seen that the degradation is about
4.5 dB compared to the performance of the coherent receiver (see Figure 9).
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Figure 10. Improvement in BER performance by zero-crossing correction.

1

10-1

10-2

10-3

B
E

R

1084 62
Eb/No (dB)

0 12 14

*
*

* *
* * * * *

* * *
* * *

* *

*

*

*

*

Figure 11. BER for noncoherently detected MSK.

6. Conclusions

In this paper, the bit error performance of a zero-crossing-based MSK demodulator has been theoretically
investigated. A closed form expression for BER was derived. The results have indicated that the system
performs within 0.8-1 dB of the theoretical optimum for MSK. This is a much better performance than those
of many types of MSK receivers; namely, differentially coherent ones or frequency discriminators [6]. Thus,
with its good error performance and simplicity, the receiver is a good candidate for many digital applications.

It has been shown that the location of a zero crossing is Gaussian distributed except at low SNR values.
In this sense, bit error probability is an asymptotic expression and is more reliable at medium to high SNR
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values. This is not only because of the approximations involved in the distribution of zero crossings, but
also due to extra and missing zero crossings occuring at low SNRs.

The probability of the zero-crossing intervals obtained from this result has been shown to be useful
in the performance analysis of the coherent receiver. In fact, analysis of any zero-crossing-based digital FM
demodulator would require such information; therefore this result may also prove to be useful in the analysis
of other receivers.
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