
ISCAS 2000 - IEEE International Symposium on Circuits and Systems, May 28-31, 2000, Geneva, Switzerland 

VLSI IMPLEMENTATION OF GRBF (Gaussian Radial Basis Function) NETWORKS 

I.C. Cevikbat'), A.S. Ogrenci''), G. Di i~~dar '~)  and S. Balk~r '~ .~ )  
( I )  YITAL, Marmara Research Center, TUBITAK (The Scientific and Technical Research Council of Turkey) 

(3) Electrical and Electronic Engineering Department, Bogazici University, Bebek 80815, Istanbul, Turkey 
'')Dept. of Elect. Eng., 209N WSEC 0511, University of Nebraska-Lincoln, Lincoln, NE 68588, USA 

E-mail: sbalkir@unlserve.unl.edu 

Electronics Engineering Department, Kadir Has University, Istanbul, Turkey 

Abstract: A GRBF network is designed for VLSI 
implementation. Building blocks of the network consist mainly 
of analog circuits: op-amp, multiplier, multiplying DAC 
(digital to analog converter), floating resistor, summer and 
exponentiator. Parameters of the network (center, width of the 
Gaussian function and output layer weights) are represented 
digitally for convenient interfacing. It is shown that individual 
GRBF units allow independent tuning of center, width and 
amplitude. Several network structures are simulated as 
function approximation examples, and the performance is 
verified to be satisfactory. 

1. Introduction 

GRBF neural networks can be used effectively for both 
supervised and unsupervised types of learning. They are used 
for function approximation, where the highly nonlinear 
Gaussian basis functions provide good locality for incremental 
leaming [1]-[2]. GRBF networks are also used where a 
similarity measure has to be computed such as in classification 
and self organization problems. Lastly, GRBF networks are 
functionally equivalent to Takagi-Sugeno model of fuzzy 
inference systems [3]. 

The main advantages of GRBF networks can be 
summarized as follows: Training time for such networks is 
generally "order of magnitude" less than the time required for 
comparable MLP (Multi Layer Perceptron) structures [4]. 
They also exhibit a higher degree of fault tolerance in 
comparison to MLP networks [2]. Furthermore, Gaussian 
function can also be used as the nonlinearity (instead of the 
sigmoid function) in MLP networks trained by 
backpropagation. This is reported to perform again "order of 
magnitude" speed-up in training of pattern recognition 
problems [5 ] .  GRBF networks are an attractive solution for 
many neural network applications; however, special hardware 
implementations of GRBF circuitry are needed for fast and 
independent operation. The essential mathematical 
computations to be performed in a GRBF network are as 
follows: 

computation of cross correlation terms and a weighted 
summation r=Ck,[(x,-m,)(xJ-mJ)/, where x are the inputs, m are 
the centers and k are related to the widths of GRBF units, 

exponentiation, exp(- r), 
weighted summation of Gaussian outputs. 

Several researchers have contributed to analog 
hardware implementation of GRBF networks by work on 
building blocks. A pulsed VLSI radial basis function chip is 

reported in [6]. Churcher et al. [4] proposed circuits for 
programmable Gaussian operation, that is, center and 
width of the Gaussian function can be tuned. This :IS 

essential for learning. In fact, the learning process 
adjusts centers and widths of Gaussian functions and 
weights for their outputs. Choi et al. presented 
Gaussian synapse cells employing differential pairs for 
resembling the exponential nonlinearity by piecewise 
approximation [7]. Exponential characteristic of MOS 
devices in weak inversion is exploited for gaussian 
function in [8]. Recently, Lin et al. [9] used current 
correlator [ 101 based circuits for realizing Gaussian 
"bump" type operation where the center, width and 
amplitude of the bump can be tuned independently. 
The output is essentially Gaussian-like in weak.- 
inversion operation and square function in strong- 
inversion. However, there is still a lack of well defined 
methodology for hardware realization of complete 
GRBF networks. The aim of this work is to design 
circuit building blocks and combine them to a GRBF 
network for satisfactory operation. The results of 
simulation experiments for three approximation 
problems demonstrate the validity of the designs. 

2. GRBF Neural Network Building Blocks 

A multi-input, single-output GRBF neural network 
-consists of a layer of GRBF units with their current 
outputs summed. Inputs to the GRBF units are a:, 
(external inputs), and parameters of the unit: mi 
(centers of gaussian functions), ki (cross correlation 
terms, widths of gaussians) and output weights. 
Parameters are stored in registers as 8-bit signed 
numbers. Center values are converted to analog 
voltage by means of a DAC with an output range of 
- l V  to 1V. The main components in a GRBF unit are 
the product calculator, summer & exponentiator and 
weight multiplying DAC. The block diagram of the 
GRBF unit can be seen in Figure 1 for the case when 
there are two inputs XI and x2. ml  and m2 are actually 
voltage outputs of the DAC. In each product calculator 
(Figure 2), a standard four quadrant Gilbert multiplier 
computes the product (x;-m;) *(xj-mj) and produces a 
differential current which is further multiplied by the 
width parameter in a multiplying DAC shown in 
Figure 3. The output of the multiplying DAC is the 
current k*(x,-m;) *(xi-mi) where k resembles the width 
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of the Gaussian circuit. According to the sign bit of the 
width parameter, the current will come out through the MP 
or the MN terminal contributing to the LP and LN currents 
of the product calculator block. 

LP and LN nodes of all product calculators are 
connected together and applied to the summer & 
exponentiator block (Figure 4). The differential PI and NI 
currents are mirrored and converted to a single ended 
current which is then converted to voltage by employing 

X I  D , I 

,ID 

an opamp and a floating resistor. The floating resistor 
is realized using 6 MOS transistors as described in 
[ 111. Finally, the output voltage of the opamp drives 
base of an npn transistor for obtaining the exponential 
current through the transistor which builds a voltage at 
the collector node (E1 in Figure 4). This exponential 
voltage output will be multiplied by the output layer 
weight (linear weight) using a multiplying DAC 
similar to the one described above. 
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Figure 4. Summer and exponentiator block. Figure 3. Weight multiplying DAC 
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The differential output current of the multiplying DAC in the 
output stage of the GRBF unit is proportional to the value 

-C% -m, I( X J  -mJ) e 
A current summer and I-V conversion circuitry similar to the 
summer of Figure 4 is used to combine GRBF unit outputs. 
Hence, our GRBF network accepts analog inputs (range 
between -2V to 2V) and digital parameters, employs current 
output stages along with multiplying DAC's and gives 
voltage output. 

3. Characteristics of the GRBF Unit 

The building blocks described in Section 2 are connected 
together (with extra digital circuitry for registers) to form a 
GRBF unit with one input and one output for 
characterization purposes. For the following simulations +/- 
5V supplies are used along with HBIMOS Spice model 
parameters of the Alcatel Micro-electronics 2pm technology. 
The tuning performance of the GRBF unit is displayed in 
Figures 5-7 where it is shown that center, width and peak 
amplitude of the GRBF unit can be altered independently. 

Figure 5 displays tuning of the center of the GRBF 
unit for maximum peak value. In Figure 6, the width of the 
Gaussian is adjusted for a center value of 0.5V and for half 
of the maximum peak value. Last, in Figure 7, peak of the 
GRBF unit is varied. As can be seen from the figures, the 
results obtained are quite satisfactory: the parameters of the 
GRBF units can be tuned independently. The outputs also 
reveal that symmetrical operation and proper scaling of 
outputs with respect to weights are achieved. Further 
simulations also suggest that the maximum values can be 
altered by simple design modifications in transistor sizing. 
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Figure 5. Variation of the center. 
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Figure 7. Variation of the peak. 

4. Simulation Experiments 

In order to verify the circuits described and characterized 
above, three different single-input, single-output 
functions are approximated: 

one period of sine function 
square wave 
f (x)=-35(~+ 1. I ) (x+O.  I)(x-O. 7 ) ( ~ - 2 )  

Parameters for the GRBF network are initially obtained 
through training of an ideal GRBF network by software. 
Then, the parameters (center, width and output weight 
values) are "scaled" so that they are compatible with our 
circuitry. Center values are just converted to an 8-bit 
digital code so as to give the same value of analog 
voltage. Width and output weights are scaled among 
themselves according to the maximum magnitude 
obtained. A single fine tuning iteration of these two set 
of parameters was necessary for the third example, f(x.,. 
The issue of proper training will also be addressed in the 
conclusion. 

Parameters for each GRBF unit used in the 
approximation of the functions are given in Tables 1,:). 
Simulation results obtained from HSPICE are depicted 
in Figures 8-10 along with desired (ideal) outputs. As 
can be seen, the approximation can be regarded as 
satisfactory. Maximum, average and rms deviations 
between the desired and simulated values are given in 
Table 4. Note that the approximation tof(x) is only valid 
for the range - lV to 1V. 
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Figure 6. Variation of the width. 

width I max I max I max 1 max 
peak I 0.37max I -max 1 max I-0.37max 

111-648 



unit 1 2 3 
center -0.8 0.4 0.8 
width max 0.8lmax max/4 

~ peak max/2 -0.8lmax max/4 

Table 4. Deviation between simulation and ideal case: % 

% deviation 
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Figure 8. Approximation of sine function. 

Figure 9. Approximation of square wave 
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Figure 10. Approximation off[x)., 

5. Conclusion 

Building blocks for a GRBF neural network unit are 
designed and combined together with digital registers to 
incorporate parameters such as center, width and peak 
amplitude. The GRBF unit exhibits efficient tuning 

performance with regard to the parameters mentioned 
above. It has been shown that these units can be used to 
implement GRBF networks. The essential requirement 
for proper training of GRBF networks of larger size is 
that the main blocks of the GRBF unit, namely the 
product calculator, summer & exponentiator and 
multiplying DAC's, have to be modeled. Necessary 
scaling of parameters will then be possible. Modeling 
based on regression of simulation results of blocks has 
been applied for backpropagation training of MLP 
networks successfully [12]; whereas the extension of this 
approach to GRBF networks with nonideal components 
needs to be done. 
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