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TARGETING CANCER EPIGENETIC MODIFIERS: THE DESIGN OF ISOFORM-
SELECTIVE HISTONE DEACETYLASE INHIBITORS 

ABSTRACT 

Epigenetic alterations are believed to be the common hallmark of human cancers. 
Histone deacetylase (HDAC) inhibitors have proven to be effective in cancer cases 
where HDACs are up-regulated. However, lack of selectivity of many of the HDAC 
inhibitors in clinical use and those at various stages of preclinical and clinical trials 
causes toxicity to the normal cells. It is believed that the continuous identification of 
isoform-selective HDAC inhibitors can eliminate this adverse effect — a task that 
remains particularly challenging due to the high sequence and structural conservations 
around the active site of HDAC isoforms. The original contribution of this study was 
analyzing the similarity among class I HDACs (1, 2, 3 and 8) and class IIb HDACs (6 
and 10) by sequence and structural alignments, catalytic channel extraction, and 
identification of catalytically essential amino acid residues. In addition, homology 
model of human HDAC10 was built using a recently-released X-ray crystal structure of 
Danio rerio (zebrafish) HDAC10 as a template. Using these data, isoform-selective 
HDAC inhibitors were designed by topology-based scaffold hopping, structure- and 
ligand-based virtual screening. The top inhibitors (in terms of both binding affinity and 
selectivity) were subjected to structure-based in silico absorption, distribution, 
metabolism, elimination and toxicity (ADMET) prediction, which showed their drug-
likeness. Furthermore, their docking complexes were submitted to molecular dynamics 
(MD) simulations to examine the stability of ligand binding modes. These potential
isoform-selective HDAC inhibitors showed stable binding mode over time of the
simulation. They can therefore serve as drug candidates or viable lead compounds for
further modeling-based and experimental optimization towards the design of safe,
potent and selective HDAC inhibitors.

Keywords: Epigenetic alterations in cancer, Homology modeling of human HDAC10, 

Structure-based drug design, Structure-based ADMET prediction, Isoform-selective 

HDAC inhibitors. 
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KANSER EPİGENETİK MODİFİYE EDİCİLERİN HEDEFLENMESİ: 
İZOFORMA ÖZEL SEÇİMLİ HİSTON DEASETİLAZ İNHİBİTÖR DİZAYNI 

ÖZET 

Epigenetik değişiklikler insan kanserlerinin karakteristik bir özelliğidir. Histon 
deasetilaz (HDAC) inhibitörlerinin, HDAC seviyesinin yükseldiği kanser vakalarında 
etkili olduğu görülmüştür. Fakat, HDAC inhibitörlerinin izoformlar arasında seçici 
olmaması, klinik olarak kullanımda olan, klinik ve pre-klinik denemelerde normal 
hücreler üzerinde toksik etki göstermesine neden olmaktadır. HDAC izoformlarına 
özgü inhibitör keşfinin bu yan etkileri gidereceğine inanılmaktadır. Ama bu keşif, 
bilhassa HDAC izoformlarının yüksek sekans benzerliği ve aktif yüzeylerindeki yapısal 
korunmuşluk yüzünden bir hayli zordur. Bu çalışmanın orijinal katkısı, sınıf I 
HDAC’ların (HDAC 1, 2, 3 ve 8) ve sınıf IIb HDAC’ların (HDAC 6 ve 10) sekans ve 
yapısal benzerliklerini, katalitik kanalın çözümlenmesini, ve kataliz için elzem amino 
asitleri çalışmak oldu. Bunun yanı sıra, X-ray yapısı yeni yayınlanmış Danio rerio 
(zebra balığı) HDAC10 proteinini kullanarak insan HDAC10 homoloji modeli inşa 
edildi. Bu veriyi kullanarak, topoloji temelli iskelet sekmesi, yapı temelli ve ligand 
temelli sanal tarama yöntemleriyle, izoforma özgü HDAC inhibitörleri dizayn ettim. 
Bağlanma afinitesi ve seçicilik açısından en iyi inhibitör adayları, ilaç benzerlik 
özelliklerini gösteren ADMET (in silico soğurma, dağılma, metabolizma, atılma ve 
seçicilik) öngörü testine tabii tutuldu. Bunların kenetlenme (docking) kompleksleri, 
ligand bağlanmasının stabilitesini ölçmek üzere, moleküler dinamik simülasyonlarına 
sokuldu. Potansiyel HDAC izoformuna özgü inhibitör adayları, simülasyon boyunca 
stabil bağlanma gösterdi. Bu sebepten ilaç adayı veya kuvvetli öncü moleküller 
olabilirler; ilerde bu molekülleri modelleme yöntemleri veya deneysel optimizasyon 
yöntemleri ile geliştirerek daha güvenli, kuvvetli, ve seçici HDAC inhibitörleri de elde 
edilebilir.  

Anahtar Sözcükler: Kanserde epigenetik değişiklikler, İnsan HDAC10 proteininin 
homoloji modellemesi, Yapı temelli ilaç dizaynı, Yapı temelli ADMET öngörüsü, 
İzoforma özgü HDAC inhibitörleri.  
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1. INTRODUCTION 

Cancer is a term used to describe the uncontrolled growth of abnormal cells that can 

spread to other parts of the body. Cancer is generally treated with chemotherapeutic 

agents that act via different mechanisms. These include microtubule (MT) inhibitors 

such as Vincristine, Vinblastine, and Colchicine – these drugs bind tubulin and inhibit 

MT polymerization thereby blocking mitosis. Another drug, Taxol stabilizes the MT 

and blocks cell division (Cooper and Hausman, 2007). Alkylating agents which directly 

bind and inhibit DNA replication include Cytoxan and Temodar. Antimetabolites such 

as 5-fluorouracil and 6-mercaptopurine damage cell during S-phase. Antitumor 

antibiotics such as Anthracyclines interfere with enzymes involved in DNA replication. 

Other chemotherapeutic agents include topoisomerase inhibitors (Teniposide, 

doxorubicin, Irinotecan and Topotecan), mitotic inhibitors (Docetaxel, Estramustine, 

Paclitaxel, and Vinblastine), PARP inhibitors (Olaparib and Iniparib) and 

corticosteroids. Recently, Bcl-2 inhibitor (Venetoclax) was at phase II clinical trial for 

the treatment of relapsed or refractory chronic lymphocytic leukaemia with 17p deletion 

(Stilgenbauer et al., 2016). In addition, other types of cancer-fighting strategies that are 

not considered as chemotherapy include "Targeted therapies" with agents such as 

Imatinib, Gefitinib, Sunitinib and Bortezomib. Differentiating agents such as Retinoids, 

Bexarotene, and Arsenic trioxide. Hormone therapy (anti-estrogens, aromatase 

inhibitors, anti-androgens). Immunotherapy which involves the use of monoclonal 

antibody therapy, non-specific immunotherapies and adjuvants, immunomodulating 

drugs. For example, Anti-PD-L1 mAb (Atezolizumab) is at phase II trial in patients 

with locally advanced and metastatic urothelial carcinoma who have progressed 

following treatment with platinum-based chemotherapy (Rosenberg et al., 2016).  Anti-

PDGFRα mAb (growth factor receptor α monoclonal antibody) (Olaratumab) in 

combination with doxorubicin for treatment of soft-tissue sarcoma at randomized phase 

II trial (Tap et al., 2016).  
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Despite the above-mentioned cancer-fighting agents many have died and continue to die 

of cancers every year, prompting further investigation of complementary and alternative 

therapeutic targets of cancer. 

 

Much effort has been invested in identifying genetic mutations resulting in constitutive 

activation of oncogenes or functional inactivation of tumor suppressor genes in various 

types of cancers (Knudson, 1971; Wooster et al., 1995; Jackson and Loeb, 1998; Xing, 

2005; Beerenwinkel et al., 2007; Kadota et al., 2009; Montagut et al., 2012; Alexandrov 

et al., 2013; Burrell et al., 2013; Tamborero et al., 2013). Mutations early in the genesis 

of common cancers have also been identified, and these are likely to be associated with 

tumor initiation (Mamane et al., 2006; Bauer et al., 2014).  In contrast, few specific 

genetic mutations have been linked to tumor progression (Yokota, 2000; Derynck et al., 

2001; Furuta et al., 2010a, 2010b; Ichikawa et al., 2011; Takeda et al., 2015). This led to 

the investigation of epigenetic changes in various cancer pathogenesis (Novak, 2004; 

Feinberg and Tycko, 2004; Feinberg et al., 2006; Esteller, 2008; Risch and Plass, 2008; 

Sharma et al., 2009; Rodríguez-Paredes et al., 2011).  Epigenetics refers to somatically 

heritable changes to molecular processes that occur without a change in the DNA 

sequence — and these changes can be induced by various factors (Eccleston et al., 

2007; Armstrong, 2013). 

 

The human genome is packaged into chromatin inside the nucleus of the cell. 

Nucleosomes are structural units of chromatin containing approximately 146 base pairs 

of DNA wrapped around a histone octamer: two copies each of histones H2A, H2B, H3, 

and H4. The lysine and arginine residues of histone protein are subject to an array of 

post-translational modifications. The best characterized of these are acetylation, 

methylation, and phosphorylation (Egger et al., 2004; Zhang and Dent, 2005).  For each 

modification, there are enzymes responsible for either adding the appropriate mark or 

removing it. Active genes tend to be enriched with particular modifications (e.g. 

H3K4me3 and H3K9ac), whereas inactive genes have a different specific combination 

of marks (e.g. H3K9me2 and H3K9me3; H3K27me2 and H3K27me3).  Even though 

there are no absolute rules and many active and inactive genes have overlapping 
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patterns of histone modifications, it is believed that aberrant epigenetic regulation may 

contribute to the progression of cancer (Egger et al., 2004; Zhang and Dent, 2005). 

 

The N-terminal of histones (the histone ‘tails') is crucial in maintaining the chromatin 

stability by allowing acetylation and deacetylation of various lysine residues within 

these regions. The acetylation state of histones is reversibly regulated by two classes of 

enzymes, histone acetyltransferases (HATs) and histone deacetylases (HDACs) (Roth et 

al., 2001; Richmond and Davey, 2003; Khorasanizadeh, 2004; Kouzarides, 2007). 

HDACs are components of transcriptional co-repressor complexes and catalyze the 

deacetylation of acetyl-L-lysine side chains in histone proteins thereby altering 

chromatin structure and repressing gene transcription.  

 

 

 

Figure 1. 1. Structure of nucleosome showing dynamics on reversible activities of HAT 
and HDAC for regulating gene expression through addition and removal of acetyl 
groups from the N-terminal region (histone tail) thereby respectively, allowing and 

repressing gene transcription. 
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This removal of acetyl group creates a positive charge that causes the negatively 

charged phosphate backbone of DNA to tightly coil and restrict chromatin structures 

(Figure 1.1). In addition, HDAC-promoted deacetylation of acetylated lysine is a key 

epigenetic marker read by bromodomains within transcription factor complexes that 

recruit RNA polymerases which further dampens the transcriptional activity of 

hypoacetylated chromatin. HDACs have been shown to act not only on histone proteins 

but also on non-histone substrates (Yang and Seto, 2008; Singh et al., 2010), and hence 

more generally designated as "lysine deacetylases". These non-histone proteins 

identified as HDAC substrates with diverse biological functions include α-tubulin, 

chaperons (HSP90), transcription factors (E2F, p53, c-Myc, NF-κB) , estrogen receptor 

1 (ER 1), androgen receptor (AR), hypoxia-inducible factor 1 alpha (HIF-1α), signaling 

mediators (Stat3, Smad7), MyoD, β-catenin, retinoblastoma protein (pRb), DNA repair 

proteins (Ku70) and many more (Singh et al., 2010; Kim and Bae, 2011). Using high-

resolution mass spectrometry 3,600 acetylation sites in 1,750 human proteins have been 

identified and these data suggested that lysine acetylation plays a major role in the 

regulation of nearly all nuclear functions and many cytoplasmic processes (Choudhary 

et al., 2009). 

 

HDACs have already gained a lot of attention as epigenetic targets in various diseases 

including cystic fibrosis, muscular dystrophy, sickle cell anemia, HIV infection, and 

neurodegenerative and inflammatory disorders (Wiech et al., 2009; Wagner et al., 2010; 

Marks, 2010). HDACs are well-validated targets of anticancer drugs giving rise to a 

huge number of publications over the last 2 decades. They are implicated in the 

pathologies of various cancer types in which their genetic knockdown and 

pharmacological blockade have proven to be promising in reversing the malignant 

phenotypes. 

 

To date, few HDAC inhibitors have been approved by the United State Food and Drug 

Administration (FDA) and these are Suberoylanilide hydroxamic acid (SAHA)-

(Vorinostat), a pan-HDAC inhibitor for the treatment of cutaneous T-cell lymphoma in 

2006; Romidepsin for the treatment of peripheral T-cell lymphoma (PTCL) in 2011; 
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Belinostat for the treatment of patients with relapsed or refractory PTCL in 2014 

(Bolden et al., 2006) and recently (2015), Panobinostat for the treatment of multiple 

myeloma (Bailey et al., 2015). 

 

Currently, many potential drugs are in clinical trials for use against various solid and 

non-solid cancers alone or in combination with other established cancer-fighting agents. 

Mocetinostat is an HDAC inhibitor with remarkable potency against HDAC1 compared 

with HDACs 2, 3 and 11, in the clinical trial for the treatment of leukemia or 

myelodysplastic syndromes (MDS) (Garcia-Manero et al., 2008). Entinostat and 

Tacedinaline are class I selective, in clinical trials for the treatment of advanced solid 

tumor (Pili et al., 2011; Prakash et al., 2001). MRLB-223 is in the preclinical trial as 

HDACs 1- and 2- selective inhibitor (Newbold et al., 2013). BG45 in combination with 

bortezomib is in the preclinical trial as a class I-selective inhibitor (McConkey et al, 

2012). Rocilinostat (ACY-1215) is in phase II trial as an HDAC6-selective inhibitor 

(Cosenza et al., 2014). Tubacin, another HDAC6-selective inhibitor (Haggarty et al., 

2003), is in various stages of trial for the treatment of cancers and neurodegenerative 

diseases. PCI-34051 is in the preclinical trial as an HDAC8-selective inhibitor 

(Balasubramanian, 2008).  

 

HDAC inhibitors have the ability to influence a variety of cellular processes such as cell 

cycle arrest, immune modulation, angiogenesis, and apoptosis by targeting both histone 

and non-histone proteins (Bolden et al, 2006; Peng and Seto, 2011; Barneda-Zahonero 

and Parra, 2012). However, the exact mechanisms by which they work are unclear — 

epigenetic pathways are proposed (Richon et al., 2000; Vigushin and Coombes, 2004; 

Claude-Monneret, 2007).  

 

HDAC inhibitors are generally classified into hydroxamic acids, benzamides, short 

chain fatty acids and cyclic peptides (Jung, 2001; Drummond et al., 2005; Bolden et al, 

2006; Dokmanovic et al., 2007; Mottamal et al., 2015). Most of HDAC inhibitors obey 

a common "cap-linker-chelator" pharmacophore model. The chelator refers to the metal 

binding group that can engages zinc metal ion in the deep HDAC active site. The linker 

generally mimics lysine side chain and spans the narrow catalytic channel thereby 
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connecting the chelator to aromatic or macrocyclic cap group (Figure 1.2). The cap 

group capping group is a critical determinant of isoform selectivity. 

 

 

Figure 1. 2. Structure of Vorinostat (SAHA) showing the general pharmacophore 
features of HDAC inhibitors. The capping group, linker and zinc-binding domain are 

highlighted in green, red, and blue colors respectively. 

  

To discover more potent and selective inhibitors, various rational drug design 

approaches have been applied. Computer-aided scaffold replacement method is used 

wherein a portion of a molecule could be replaced, or a group added to achieve a polar 

or steric interaction that may enhance the binding affinity or selectivity. In addition, a 

database of a large chemical library can be probed for potential inhibitors. For instance, 

both structure- and ligand-based virtual screening have been applied for identification of 

selective HDAC inhibitors (Wang et al., 2013; Huang et al., 2016). Structure- and 

ligand-based pharmacophore modeling (Chen et al., 2008), flexible docking, and three-

dimensional QSAR (3D–QSAR) have been applied towards this goal (Nair et al., 2012). 

Micelli and Rastelli, (2015) suggested that the high plasticity of HDAC8 catalytic 

channel may provide the opportunity for achieving selectivity. Very recently, SAHA 

analogs modified at the C2 position displayed HDAC6/8 dual selectivity (Negmeldin et 

al., 2017). Previously, Wagner et al. (2013) speculated that HDAC6 selectivity could be 

achieved by careful choice of linker element only. Taha et al. (2017) evaluated C1-

substituted tetrahydroisoquinoline (TIQ)-based HDAC8-selective inhibitors in 

neuroblastoma cell.   
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Here, because of abundant information regarding the sequences and structures of the 

HDACs, a combination of structure-based drug design techniques will be applied for the 

design of isoform-selective HDAC inhibitors. 

 
 
Background 

 
HDAC inhibitors have proven to be effective in cancer cases where HDACs are up-

regulated. However, lack of selectivity of many of the HDAC inhibitors in clinical use 

and those at various phases of preclinical and clinical trials have contributed to the 

toxicities being reported. This is as a result of disruption of multiple signaling pathways 

by HDAC inhibitors (Peng and Seto, 2011; Barneda-Zahonero and Parra, 2012). It is 

believed that the continued identification of isoform-selective inhibitors can eliminate 

these undesirable adverse effects — the task that remains a major challenge to HDAC 

inhibitor design due to high structural similarity of the highly conserved active sites of 

HDACs. This poses difficulty in specific targeting of these individual isoforms. Class I 

HDACs 1-3 are components of repressive complexes crucial for tumorigenesis and 

share high structural homology. Aberrant recruitment of these complexes to the 

promoter of the tumor suppressor, p53 epigenetically represses transcriptional activity 

of the gene (Luo et al., 2000). Thus, anti-tumor effect of HDAC inhibitors is widely 

linked to class I HDACs inhibition (Dejligbjerg et al., 2008). 

 

The original contribution of this study was designing potential isoform-selective 

inhibitors of each individual member of the human class I HDACs using a combined 

rational drug design. While undertaking this research work, the crystal structure of 

human HDAC6 catalytic domain 2 (CD2) was solved (PDB ID; 5EDU, release date 27-

07-2016) (Hai and Christianson, 2016) — another druggable target in cancer. HDAC6 

controls motility and metastatic potential of the cell through its influence on 

microtubule formation which allows progression and growth of malignancies by 

enabling them to survive even in the absence of adequate anchoring to the extracellular 

matrix (Witt et al., 2009). According to evolutionary origin, HDACs 6 and 10 are the 
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closest relative of each other. However, the experimental crystal structure of human 

HDAC10 has not been resolved to date. Therefore, here, a homology model of the 

enzyme was built using the recently-released X-ray crystal structure of Danio rerio 

(zebrafish) HDAC10 (PDB ID; 5TD7, release date 24-05-2017). Taken together, class I 

(HDACs 1, 2, 3 and 8) and class IIb (HDACs 6 and 10) are critical targets for anticancer 

drug design. Their individual pharmacological blockade may provide insight into their 

role in a given cancer pathogenesis. Moreover, additional isoform-selective HDAC 

inhibitors may help reduce the adverse effects associated with the current HDAC 

inhibitors in clinical use and trials. 

 
 
Aim and Objectives 

These studies are aimed at designing isoform-selective HDAC inhibitors as epigenetic-

based anticancer agents that may serve as potential lead compounds for further 

optimization.  

The following specific objectives are hereby pursued: 

i. Comparative sequence and structural analyses of class I HDACs   

ii. The design of isoform-selective HDAC inhibitors of individual members of class I 

HDACs by scaffold hopping approach. 

iii. Identification of isoform-selective HDAC inhibitors of each individual member of 

the class I HDACs and a class IIb HDAC6 by structure-based virtual screening. 

iv. The search for potential inhibitors of HDAC6 catalytic domain 2 via 

pharmacophore modeling  

v. Homology modeling of human HDAC10 and the design of selective inhibitors by 

ligand-based virtual screening. 
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2. LITERATURE REVIEW 
 

2.1 Histone Deacetylases 

 

Histone deacetylases (HDACs) are enzymes that remove an acetyl group from the lysine 

sidechain in histone tail thereby regulating gene expression. There are eighteen genes 

encoding HDAC family members in human genome grouped into four classes based on 

their homology to yeast. Their size, cellular location, and enzymatic activity are given in 

Table 2.1 (Bernstein et al., 2000; Ruijter et al., 2003; Gregoretti et al., 2004). Classes I, 

II and IV are zinc-dependent whereas Class III are NAD+ (nicotinamide adenine 

dinucleotide)-dependent enzymes. Class I show strongest enzymatic activity among 

the HDAC classes and consist of HDACs 1, 2, 3 and 8 isoforms (Zhang and Zhong, 

2014). They share sequence homology with yeast reduced potassium dependency-3 

(RPD3) and are localized in the nucleus of the cells (Bertos et al., 2001; Gregoretti et 

al., 2004; Brosch et al., 2008). Class II HDACs share sequence homology with the yeast 

histone deacetylase 1 (Hda1) and are further subdivided into Class IIa (HDACs 4, 5, 7 

and 9) and Class IIb (HDAC6 and 10), and are primarily localized in the cytoplasm, but 

can be shuttled between the cytoplasm and nucleus depending on the phosphorylation 

status. The NAD+-dependent Class III HDACs consist of seven mammalian sirtuin 

proteins (Sirt1–Sirt7) (Sir2 family), also shown to be critically important in 

carcinogenesis (Saunders and Verdin, 2007; Bosch-Presegue and Vaquero, 2011; 

McGuinness et al., 2011; Martinez-Pastor and Mostoslavsky, 2012; Roth and Chen, 

2014; Chalkiadaki and Guarente, 2015). HDAC11 is the only known member of class 

IV HDAC with conserved residues in the catalytic core regions shared by both class I 

and II mammalian HDACs (Haberland et al., 2009). 
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Table 2. 1.  Classification of HDACs by structure and cellular localization. Classes I 
and IIb HDACs studied here, are highlighted in bold. 

 
HDAC Size (a.a) Location Activity 
Class I    

HDAC1 482 Nucleus Deacetylase 
HDAC2 488 Nucleus Deacetylase 
HDAC3 428 Nucleus Deacetylase 
HDAC8 377 Nucleus Deacetylase 
Class IIa   Deacetylase 
HDAC4 1084 Nucleus/Cytoplasm Deacetylase 
HDAC5 1122 Nucleus/Cytoplasm Deacetylase 
HDAC7 952 Nucleus/Cytoplasm Deacetylase 
HDAC9 1011 Nucleus/Cytoplasm Deacetylase 
ClassIIb    
HDAC6 1215 Mainly cytoplasm Deacetylase 
HDAC10 669 Mainly cytoplasm Deacetylase 
Class III    

Sirt1 747 Nucleus/Cytoplasm Deacetylase 
Sirt2 389 Nucleus Deacetylase 
Sirt3 399 Mitochondria Deacetylase 
Sirt4 314 Mitochondria ADP ribosyltransferase 

Sirt5 310 Mitochondria Demalonylase-
desuccinylase 

Sirt6 355 Nucleus Weak deacetylase/ 
ADP-ribosyltransferase 

Sirt7 400 Nucleus Week deacetylase 
Class IV    
HDAC11 347 Nucleus/Cytoplasm Deacetylase 

 
 

HDACs induce the formation of a compacted, transcriptionally repressed chromatin 

structure. HDACs 1-3 are components of multiprotein complexes in which they act as 

their catalytic subunit to repress gene expression. Class I HDACs are involved in cell 

proliferation and survival (Marks, 2010; Haberland et al., 2009). Human HDACs 1 and 

2 are the product of recent evolutionary gene duplication, exhibit a high degree of 

homology (Gregoretti et al., 2004) and have undergone little functional divergence, 

although each of them has specific and distinct roles (Brunmeir et al., 2009). 
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HDACs 1–3 are assembled into at least five large multiprotein corepressor complexes 

are recruited to chromatin through interaction with repressive transcription factors 

(Watson et al., 2012). Significant enhancement of the enzymatic activity of HDACs 1–3 

is observed when incorporated into their cognate corepressor complexes (Lechner et al., 

2000; Guenther et al., 2001) These distinct corepressor complexes include NuRD (Xue 

et al., 1998), Sin3A (Hassig et al.,1997), CoREST (You et al., 2001) and MiDAC 

(Bantscheff et al., 2011) for HDACs 1 and 2 (Figure 2.1). HDAC3, however, is 

exclusively recruited to the SMRT/NCoR corepressor complex (Guenther et al., 2000). 

Very recently, Corin, a synthetic hybrid agent derived from a HDAC inhibitor 

(Entinostat) and an LSD1 inhibitor (tranylcypromine analog) targeting the CoREST 

complex, was designed to split into LSD1 and HDAC inhibitor components after LSD1 

inactivation (Kalin et al., 2018). These authors sought to rationally incorporate multi-

target pharmacology in this anticancer agent. 

 

Structural and functional studies of class I HDACs in complex with their cognate 

corepressors have suggested that their activity is regulated by inositol 1,4,5,6-

tetrakisphosphate (Ins(1,4,5,6)P4) present in the HDAC3:SMRT crystal structure 

(Figure 2.2) (Watson et al., 2016). 
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Figure 2. 1. Multiprotein complexes containing HDACs 1 and 2 homo- or heterodimers. 
HDAC2 requires to be in a phosphorylated form for multiprotein complex formation. 

Phosphorylation is shown in a red-outlined yellow triangle (Delcuve et al., 2012). 
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Figure 2. 2. Crystal structure of HDAC1:MTA1 with Inositol phosphate (InsP6) bound 

at the interface between the two proteins (Watson et al., 2016). 

 

2.3 Mechanism of Histone Deacetylation 

 
Structural analysis revealed that classes I, II and IV HDACs have similar active sites 

and are thought have a common catalytic mechanism. These metal-dependent HDACs 

catalyze the hydrolysis of acetyl-L-lysine side chains in histone and non-histone 

proteins to yield L-lysine and acetate. Removal of an acetyl group from substrate 

proceeds through a “charge-relay system” consisting of two adjacent histidine residues, 

two aspartic residues, and one tyrosine residue at the bottom of the pocket (Finnin et al., 



14 
   

1999). The two active-site HIS-ASP “dyads” work as a general acid-base catalytic pair 

(Finnin et al., 1999; Somoza et al., 2004; Vannini et al., 2004, 2007; Dowling et al., 

2008). The proposed mechanism is illustrated in Figure 2.3 below. 

 

 

Figure 2. 3. Proposed mechanism of HDAC catalysis (Lombardi et al., 2011). 

  

With reference to HDAC8, the active-site transition metal ion (Zn2+) and H143 acting as 

a general base promote the nucleophilic attack of a metal-bound H2O molecule on the 

zinc-coordinated carbonyl group of the acetyl-L-lysine substrate. Upon proton 

abstraction, the nucleophilic lone pair on the metal-bound H2O molecule becomes 

available (e.g., the electron pair of the broken O-H bond could add to the π* orbital of 

the substrate carbonyl group). The oxyanion of the tetrahedral intermediate and its 

flanking transition states are stabilized by zinc coordination as well as H-bond 

interactions with Y306, H143, and H142. H143 serves as a general acid catalyst to 

facilitate the collapse of the tetrahedral intermediate to form acetate and L-lysine after 

an intervening proton transfer.  Lombardi et al. (2011) speculated that the side chain of 

Y306 might undergo a conformational transition from an "out" conformation to an "in" 

conformation to accommodate substrate and subsequent catalysis, based on the 

conformational mobility of the corresponding residue in related enzymes (Y976 in 

H976Y HDAC4 (Bottomley et al., 2008) and Y323 in APAH).  
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2.4 The Role of Class I HDACs in Cancer Pathogenesis 

 
A study on post-translational modifications to histone H4 of normal tissues and cancer 

cell lines suggests that “global loss of monoacetylation at Lys16 and trimethylation at 

Lys20 of histone H4 is a common hallmark of human cancer cells” (Fraga et al., 2005). 

The aberrant expression of HDAC1 tend to be common in cancers and was associated 

with dedifferentiation, enhanced proliferation, and invasion (Witt et al., 2009). 

Overexpressed HDAC1 upregulated hypoxia-inducible factor-α and promoted 

angiogenesis in pancreatic carcinoma (Miyake et al., 2008). Knockdown of HDAC1 by 

siRNA in cancer cells could arrest cell cycle either at the G1 phase or at the G2/M 

transition, resulting in the loss of mitotic cells, cell growth inhibition, and increased 

apoptosis (Glaser et al., 2003; Senese et al., 2007). Halkidou et al. (2004) found 

HDAC1 to play roles in cell proliferation and the development of prostate cancer and 

thus proposed a mechanism for HDAC1 nuclear recruitment. Overexpression of 

HDAC1 might play a critical role in the development of hepatocellular carcinoma via 

systemic regulation of mitotic effectors (Xie et al., 2012). HDAC1 was indicated in 

impaired spermatogenesis and testicular cancer (Cacan et al., 2014). HDAC1 was 

shown to interact with ER- 1 in vitro and in vivo, and to suppress ER-1  transcription 

activity thereby playing a role in breast cancer progression (Kawai et al., 2003). 

Overexpression of HDAC1 independently predicts biochemical recurrence and is 

associated with rapid tumor cell proliferation and genomic instability in prostate cancer 

(Burdelski et al., 2015). High expression of Smad nuclear-interacting protein 1 (SNIP1) 

correlates with poor prognosis in non-small cell lung cancer. SNIP1 interferes with the 

recruitment of HDAC1 to Rb in vitro (Jeon et al., 2013). A study aimed at 

understanding the molecular mechanism of ER-1 gene silencing showed that p53 

protein binds to the promoter of ER-1 through direct interaction with HDAC1 

(Arabsolghar et al., 2013). A cancer-testis antigen, NY-ESO1 (suitable target for the 

immunotherapy of human malignancies), requires the sequential recruitment of the 

HDAC1-mSin3a-NCOR, Dnmt3b-HDAC1-Egr1 repressor complexes (Cartron et al., 

2013). A significant reduction in the HDAC activity of Sin3A, NuRD, and CoREST 

corepressor complexes was caused by germline deletion of HDAC1 (Dovey et al., 

2010). Pharmacological blockade and specific genetic elimination of HDACs 1 and 2 
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was found to reduce the expression of mutant p53 mRNA and protein levels (Stojanovic 

et al., 2017).  

 

Although functional redundancy between HDACs 1 and 2 exists (Haberland et al., 

2009), HDAC2 was shown to be independently implicated in various types of human 

cancers. The up-regulation of tumor-promoting genes, such as those of tyrosine kinases, 

mediators of cell cycle progression and angiogenic factors by HDAC2 mutant cells in 

human cancer has been reported (Ropero et al., 2008).  Evaluation of HDAC2 

expression and the acetylation of histones H4K12 and H3K18 in colonic adenomas and 

carcinomas (CRC) revealed that HDAC2 plays a significant role in CRC progression 

(Ashktorab et al., 2009). HDAC2 inhibition in the pancreatic cancer cell lines induced 

apoptosis by sensitization of the tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL) (Schüler et al., 2010). HDAC2 maintains HIF-1α stability, which in turn leads 

to the increase in cell invasion/migration ability in oral cancer progression (Chang et al., 

2011). Aberrant expression of HDAC2 accelerated the proliferation of gastric cancer 

cells by deregulating expressions of G1/S cell cycle proteins and restored the activity of 

proapoptotic factors (Kim et al., 2013). HDAC2 was involved in repressing micro-RNA 

183 (miR-183) tumor suppressive properties in neuroblastoma (Lodrini et al., 2013). 

Blockade of HDAC2 by Valproic acid significantly reduced adenoma formation in mice 

(Zhu et al., 2004). High expression of HDAC2 was also reported in hepatocellular 

carcinoma (HCC)(Kim et al., 2014; Noh et al., 2014).  Class I HDACs are highly 

expressed in prostate cancer — specifically, HDACs 1 and 2 are significantly associated 

with tumor dedifferentiation (Weichert et al., 2008). HDAC2 was associated with 

decreased intestinal tumor rates in HDAC2-mutant mice (Zimmermann et al., 2007). 

 

Several studies reported the overexpression of HDAC3 in diverse cancer types. High 

expression of HDAC3 and other class I HDACs in colon cancer is associated with 

deregulation of p21expression (Wilson et al., 2006; Spurling et al., 2008). Godman et al. 

(2008) propose that HDAC3 overexpression alters the epigenetic programming of colon 

cancer cells. Cell cycle arrest at G2/M transition phase was noted over the period of 6-

72 hours in Sulforaphane (SFN)-treated colon cancer cells due to SFN-induced 

dissociation of HDAC3/SMRT complexes (Rajendran et al., 2011). The 
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immunhistochemical expression of class I HDACs analyzed on tissue microarrays 

(TMAs) from 238 patients with primary breast cancer showed that HDACs 1-3 are 

differentially expressed in breast cancer (Müller et al., 2013). In another study, HDAC3 

specifically, repressed cyclic AMP-responsive element-binding protein 3 (CREB3)-

mediated transcriptional activation and chemotactic signaling in human metastatic 

breast cancer cell (Kim et al., 2010). HDAC3 in corepressor complex is implicated in 

microRNA-29 (miR-29) repression by MYC in aggressive B-Cell Lymphomas (Zhang 

et al., 2012). The suppression of HDAC3 enhances apoptosis induced by paclitaxel in 

newly diagnosed human maxillary cancer cells in vitro and in vivo, suggesting the 

enzyme as a potential chemotherapeutic target for the treatment of these diseases (Narita 

et al., 2010). 

 

HDAC8 is structurally unique compared to other class I isoforms and is not considered 

a viable target for efficient cancer treatment, probably because it is not a component of 

any corepressor complexes. Recently, with intensifying research in this field, the roles 

of HDAC8 in the pathogenesis of certain types of cancers have started to be uncovered. 

For instance, HDAC8 mRNA was upregulated in urothelial cancer tissues and urothelial 

cancer cell lines compared to benign controls (Lehmann et al., 2014). HDAC8 

inhibition was speculated to be a potential chemotherapeutic target in malignant 

peripheral nerve sheath tumors (MPNST) — an aggressive sarcoma that is notoriously 

therapy resistant (Lopez et al., 2015). In another study, HDAC8 inhibition by SAHA 

and sodium butyrate reduced the binding of transcription factor Yin Yang 1 (YY1) to 

human p53 promoter in triple-negative breast cancer (TNBC) treatment (Wang et al., 

2016). A study on Taiwanese breast cancers revealed that significant hypomethylation 

of the HDAC8 promoter is correlated with overexpression of HDAC8 and breast cancer 

progression (Hsieh et al., 2016). Specific inhibition of HDAC8 can suppress the growth 

of neuroblastoma cells via up regulation of microRNA-137 (miR-137) (Zhao et al., 

2017) – a short non-coding RNA molecule that regulates the expression levels of other 

genes by various mechanisms. 

 

Class I HDACs are recruited by chimeric oncoproteins such as PML-RARα, PLZF-

RAα, and AML1-ETO (seen in leukemia), to mediate aberrant gene silencing 
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(Johnstone and Licht, 2003). Class I HDACs can also interact with non-chimeric 

oncogenes such as BCL6, whose repressive activity is controlled by dynamic 

acetylation (Bereshchenko et al., 2002). Data indicate that chromatin inactivation 

mediated by class I HDACs and DNA methylation is a critical component of ER-1 

silencing in human breast cancer cells (Kawai et al., 2003). Studies cited above and 

many more reported class I HDACs to be directly or indirectly involved in the 

pathogenesis of various cancers via mainly, epigenetic mechanisms. Therefore, there are 

sufficient evidence for considering the individual isoforms of class I HDAC family as 

crucial targets for epigenetics-based anticancer drug design. 

 

2.5 The Role of Class IIb HDACs in Cancer Pathogenesis  
 
HDAC6 is the largest HDAC yet identified in humans with 1215 amino acids 

(Grozinger et al., 1999). HDAC6 is identified as the first HDAC to be actively 

maintained in the cytoplasm (Verdel et al., 2000) and it predominates in the cytoplasm 

due to the nuclear export signal (NES) and serine-glutamate tetradecapeptide repeat 

(SE14) motifs (de Ruijter et al., 2003; Boyault et al., 2007). HDAC6 is unique among 

HDACs harboring 2 homologous catalytic domains CD1 and CD2 (Verdel and 

Khochbin, 1999), and a conserved cysteine- and histidine-rich domain in its C-terminus 

part – also present in ubiquitin-specific proteases and hence named zinc finger 

ubiquitin-binding (ZnF-UBP) (Seigneurin-Berny et al., 2001) (Figure 2.4). HDAC6 

ZnF-UBP domain organization allows its binding to monomeric ubiquitin (Kd = 60 

nM), which is the highest known affinity for ubiquitin binding among all known 

ubiquitin-interacting proteins (Boyault et al., 2006). Both catalytic domains are fully 

functional and contribute independently to the overall activity of the HDAC6 isoform. 

Some studies suggested that both HDAC6 catalytic domains are required for full tubulin 

deacetylase (TDAC) activity (Zhang et al., 2006),  however, in other studies, the TDAC 

activity is attributed to the second domain (Haggarty et al., 2003; Zou et al., 2006). 
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Figure 2. 4. Domain organization: NLS, nuclear localization signal; NES, nuclear export 
signal; DMB, dynein motor binding; SE14, serine-glutamate tetradecapeptide repeat; 

ZnF, zinc-finger ubiquitin-binding domain (Hai and Christianson, 2016). 

 

HDAC6 deacetylates lysine 40 (K40) in α-tubulin subunit of the microtubule (Hubbert 

et al., 2002), thereby regulating microtubule dynamics — thus HDAC6 inhibition leads 

to hyperacetylation of α-tubulin and suppression of microtubule dynamics, whereas 

overexpression of HDAC6 reduces tubulin acetylation and increases cell motility (Parab 

et al., 2015). Thus, HDAC6 deacetylase functions at the “heart of a cellular regulatory 

mechanism capable of coordinating various cellular functions largely relying on the 

microtubule network” (Boyault et al., 2007). HDAC6 also regulates the chaperone 

activity of HSP90 (Kovacs et al., 2005), thereby mediating various cellular events in 

response to different stressful stimuli. The enzyme was shown to mediate the transport 

of misfolded protein in the proteasome system through its simultaneous interaction with 

ubiquitin and dynein motors (Kawaguchi et al., 2003). Subsequently, p97/VCP, upon 

binding to HDAC6, can extract HDAC6 bound to ubiquitinated proteins and therefore 

allows their further processing (Goldberg et al., 2002). It is also a critical component of 

stress granules involved in the stress response (Kwon et al., 2007). 

 

The overexpression of HDAC6 in a variety of cancer cell lines and mouse tumor models 

has been reported.  A study on 135 female patients with invasive breast cancer 

suggested that HDAC6 mRNA expression may have potential both as a marker of 

endocrine responsiveness and also as a prognostic indicator in breast cancer (Zhang et 

al., 2004). HDAC6 regulates cell motility and prognosis in estrogen receptor-positive 

breast cancer via estrogen signaling (Saji et al., 2005). HDAC6 was found to be highly 

expressed in low-grade and high-grade ovarian carcinomas compared with benign 

lesions and immortalized ovarian surface epithelium cell lines (Bazzaro et al., 2008).  
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Investigation in prostate epithelial cells and mouse embryonic fibroblast cells revealed 

that oncogenic Ras can lead to up-regulation of HDAC6 (Lee et al., 2008), suggesting 

that HDAC6 plays a major role in the survival of tumor cells. In another study, HDAC6 

was shown to regulate AR hypersensitivity and nuclear localization, mainly via 

modulating HSP90 acetylation in castration-resistant prostate cancer (Ai et al., 2009). 

 

HDAC6 expression was also upregulated in primary oral squamous cell lines and its 

level of expression correlated with primary tumor stage (Sakuma et al., 2006). In a 

different study, HDAC6 was consistently overexpressed in primary acute myeloid 

leukemia (AML) blasts and in some myeloblastic cell lines (Bradbury et al., 2005). The 

expression levels of HDAC6 in hepatocellular carcinoma (HCC) was explored by Ding 

et al. (2013)  and in this study, both mRNA and protein levels of HDAC6 were up-

regulated in HCC tissues and cell lines by inhibiting P53 transcriptional activity. 

Contrarily, HDAC6 was shown to have a tumor suppressor function, and the molecular 

mechanism of this function is by induction of JNK-mediated Beclin 1-dependent 

autophagic cell death in liver cancer and the loss or suppression of tumor suppressor 

function of HDAC6 is caused by induction of miR-221 through coordinated JNK/c-Jun- 

and NF-κB-signaling pathways during liver tumorigenesis (Bae et al., 2015). 

 

 HDAC6, like all other HDACs, is inhibited by TSA. However, HDAC6 is uniquely 

resistant to the potent HDAC inhibitors Trapoxin-B and Sodium butyrate and thus these 

drugs were used to show that HDAC6 is a deacetylase for tubulin in vivo, and in vitro 

(Matsuyama et al., 2002; Haggarty et al., 2003; Zou et al., 2006). HDAC6 was found 

not to interact with histones in vivo, whilst it was able to deacetylate histones in vitro 

(Grozinger et al.,  1999). This finding prompted an investigation of HDAC inhibitor that 

mediates acetylation of non-histone proteins. One of these inhibitors, Tubacin (Tubulin 

acetylation inducer), possesses HDAC6 inhibition activity. Tubacin was isolated via a 

multidimensional chemical genetic screen and cell-based assay targeting acetylation of 

non-histone protein. Contrary to the mechanism through which other HDAC inhibitors 

act, Tubacin was shown to inhibit the deacetylation of tubulin in mammalian cells 

without affecting the level of histone acetylation, gene expression, or cell cycle 

progression (Haggarty et al., 2003). 
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HDAC10 has an active deacetylase domain (DAC) and a catalytically inactive leucine-

rich domain (LRD) (Tong et al., 2002; Kao et al., 2002; Guardiola et al., 2002). 

Scientists have begun to elucidate the function of HDAC10 in recent years and 

determined that it plays a role in homologous recombination (Kotian et al., 2011). 

HDAC10 suppresses expression of matrix metalloproteinase (MMP) 2 and 9 genes, 

which are known to be critical for cancer cell invasion and metastasis. At the molecular 

level, HDAC10 binds to MMP2 and -9 promoter regions, reduces the histone 

acetylation level, and inhibits the binding of RNA polymerase II to these regions, 

 promotes autophagy and survival in neuroblastoma cells (Oehme et al., 2013), 

suppresses cervical cancer metastasis (Song et al., 2013). HDAC10 is highly expressed 

in lung cancer cells and is required for tumor growth and survival (Yiwei et al., 2016). 

These findings are consistent with those mentioned in a recent report stating that 

HDAC10 regulates the cell cycle (Li et al., 2015). 

 

2.6 HDAC Inhibitors for Cancer Therapy 

 
HDAC inhibitors have proven to be effective in the treatment of the hematological and 

solid tumor.  HDAC inhibitors induce hyperacetylation of transcription factors, resulting 

in a permissive or more open chromatin configuration, leading to potential reactivation 

of aberrantly suppressed (e.g., tumor suppressor) genes (Glance, 2002; Wilson et al., 

2010). They have been reported to induce apoptosis and growth arrest in tumor cells by 

facilitating tumor cell differentiation and promoting the expression of the silenced of 

proapoptotic genes (Camphausen and Tofilon, 2007; Botrugno et al., 2009; Buchwald et 

al., 2009; Ellis and Pili, 2010; Thurn et al., 2011). However, The exact mechanisms by 

which the compounds may work are unclear, but epigenetic pathways are proposed 

(Vigushin and Coombes, 2004; Monneret, 2007; Mack, 2010). HDAC inhibitors can 

induce apoptosis by re-establishing expression of the key co-suppressor proteins such as 

p21(Cip1/WAF1), independent of p53 (Huang et al., 2005). The structural classes and 

selectivity of HDAC inhibitors are given in Table 2.2 below. 
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Table 2. 2. Sructural classes of HDAC inhibitors and their enzyme specificity. 
Approved drugs are highlighted in bold. 

 
HDAC inhibitor Class Selectivity 
Trichostatin A Hydroxamic acid I, II IV 

Vorinostat (SAHA) Hydroxamic acid I, II IV 
Abexinostat(PCI-24781) Hydroxamic acid I and II 

Pracinostat (SB939) Hydroxamic acid I, II and IV 
Resminostat Hydroxamic acid I and II 

Givinostat (ITF-2357) Hydroxamic acid I and II 
CUDC-101 Hydroxamic acid I and II 

Panobinostat Hydroxamic acid I, II and IV 
Belinostat Hydroxamic acid I 

Romidepsin Cyclic Peptide I 
Apicidin Cyclic Peptide I 

Entinostat Benzamide I 
Mocetinostat Benzamide I and IV 
Tacedinaline Benzamide I 

Valparoic acid Short chain fatty acid I 
Butyrate Short chain fatty acid I and II 

 

Based on their chemical structures, HDAC inhibitors are classified into: 

(1) Hydroxamic acids: e.g Vorinostat, TSA, Panobinostat (LAQ824), Belinostat 

(PXD101) (Meinke and Liberator, 2001; Kelly et al., 2003, 2005; Plumb et al., 2003; 

Remiszewski, 2003; Garcia-Manero, Yang, et al., 2008; Kato et al., 2007; Qian et al., 

2006). 

(2) Aliphatic (short-chain fatty) acids: e.g. Valproic acid, Butyric acid. 

(3) Benzamides: e.g CI-994, Entinostat (MS-275), Mocetinostat (MGCD0103) (Prakash 

et al., 2001; Richards et al., 2006; Gojo et al., 2007;  Garcia-Manero et al., 2008)) and  

(4) Cyclic tetrapeptides: e.g. Romidepsin (FK228) (Byrd et al., 2005; Bolden et al., 

2006). 

 

Vorinostat is a pan HDAC inhibitor with IC50 of ~10 nM in cell-free assays (Schölz et 

al., 2015), and was the first HDAC inhibitor to be approved by FDA for the treatment of 

cutaneous T-cell lymphoma (CTCL) in 2006 (Mann et al., 2007). Romidepsin, a 

bicyclic peptide, is a potent inhibitor of HDAC1 and HDAC2 with IC50 of 36 nM and 
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47 nM in cell-free assays, respectively (Bantscheff et al., 2011), and was approved by 

FAD in 2009 for CTCL and other peripheral T-cell lymphoma (PTCL) in patients who 

have received at least 1 prior therapy (Ellis and Pili, 2010). Belinostat is an HDAC 

inhibitor with IC50 of 27 nM in a cell-free assay (Bantscheff et al., 2011), approved by 

FDA for use against PTCL in 2014 (Lee et al., 2015). Recently, Panobinostat 

(LBH589), a broad-spectrum HDAC inhibitor with IC50 of 5 nM in a cell-free assay 

(Schölz et al., 2015), gained approval for treatment of multiple myeloma in 2015 

(Laubach et al., 2015). 

 

Several HDAC inhibitors are in different phases of clinical investigation either alone or 

in combination with other cancer-fighting agents. Some preclinical studies suggest 

improved tumor cell destruction by combining HDAC inhibitors with radio-(chemo) 

therapy (Kelly et al., 2003; Vigushin and Coombes, 2004; Thurn et al., 2011). Phase III 

clinical trials of Valproic acid (as Magnesium valproate) for cervical cancer (Chavez-

Blanco et al., 2005) and ovarian cancer was completed (Duenas-Gonzalez et al., 2014). 

Mocetinostat is a potent HDAC inhibitor with most potency for HDAC1 (IC50 = 0.15 

μM) in a cell-free assay, show 2- to 10- fold selectivity against HDACs 2, 3, and 11 and 

is in clinical trials for treatment of various cancers including, Hodgkin lymphoma, acute 

myeloid leukemia and follicular lymphoma (Schölz et al., 2015). Abexinostat show 

activity against HDAC1 with Ki of 7 nM, modest potency against HDACs 2, 3, 6, and 

10 and > 40-fold selectivity for HDAC8 (Schölz et al., 2015). The phase II clinical trials 

of Abexinostat for sarcoma (Sholler et al., 2013) and for lymphoma have started 

(Morschhauser et al., 2015). Entinostat is a potent inhibitor of HDACs 1 and 3 with 

respective IC50 of 0.51 μM and 1.7 μM in cell-free assays (Schölz et al., 2015), and has 

entered phase III clinical trial for Hodgkin lymphoma, breast cancer and lung cancer 

(Tan et al., 2010). The phase II clinical trial of SB939 for hormone refractory prostate 

cancer (HRPC) has started (Chu et al., 2015) after a successful phase I trial (Razak et 

al., 2011). Resminostat (4SC-201) selectively inhibits HDACs 1/3/6 with IC50 of 42.5 

nM/50.1 nM/71.8 nM respectively, with modes potency for HDAC8 (IC50 of 877 nM), 

underwent clinical trials for hepatocellular carcinoma (R. et al., 2010), and was found to 

inhibit proliferation and induces apoptosis in multiple myeloma cells (Mandl-Weber et 

al., 2010). Givinostat (ITF2357) induces potent caspase-dependent apoptosis in human 
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lymphoblastic leukemia (Ying et al., 2016). Quisinostat (JNJ-26481585) is a second-

generation HDAC inhibitor with highest potency for HDAC1 (IC50 of 0.11 nM) in a 

cell-free assay, and > 30-fold selectivity against HDACs 3, 5, 8, and 9; shows modest 

potency for HDACs 2, 4, 10, and 11; and lowest potency to HDACs 6 and 7 (Suzuki et 

al., 2016). A selective inhibitor of HDAC2, Kevetrin passed pharmacokinetic and 

pharmacodynamic studies in patients with advanced solid tumors (Shapiro et al., 2015)  

 

The clinical trial for CUDC-101 for various cancers has started (Lai et al., 2010; Wang 

et al., 2013; Jin et al., 2014; Galloway et al., 2015). CUDC-101 was also found to 

inhibit class I/II HDACs with IC50 of 4.4 nM (Shimizu et al., 2014; Galloway et al., 

2015). AR-42 has anticancer activity with IC50 of 30 nM, currently at phase 1 trials 

(Lin et al., 2010; Lucas et al., 2010; Zhang et al., 2011; Burns et al., 2013; Lee et al., 

2013; Mims et al., 2013; Li et al., 2015; Tseng et al., 2015; Xu et al., 2015). CHR-2845 

(Ossenkoppele et al., 2010; Zabkiewicz et al., 2016), CHR-3996 (Banerji et al., 2012) 

and 4SC-202 (Zhijun et al., 2016) show selectivity for advanced hematological cancers, 

whereas CG200745 show efficacy against solid tumors (Hwang et al., 2012; Oh et al., 

2012). Ricolinostat (ACY-1215) show selectivity for HDAC6 with IC50 of 5 nM in a 

cell-free assay. It is > 10-fold more selective for HDAC6 than HDACs 1, 2, 3 with 

slight activity against HDAC8 (Dhanyamraju et al., 2015; Terranova-Barberio et al., 

2016; Hasanov et al., 2017). Ricolinostat is currently under evaluation for multiple 

myeloma in combination with bortezomib and with lenalidomide (Yee et al., 2014). 

ME-344 is intended for solid refractory tumors (Bendell et al., 2015). Different HDAC 

inhibitors are continuing to be evaluated on other types of cancers. Most recently, TSA 

in combination with Gemcitabine showed enhanced apoptosis-inducing capability 

(compared to SAHA) against pancreatic ductal adenocarcinoma (PDAC) cells through 

depletion of HDACs 1, 7 and 8 (Cai et al., 2018). NDACI054 was very effective at very 

low concentrations (2.5 nM) in combination with significant radiosensitization of tumor 

cells grown under more physiological cell culture conditions (Hehlgans et al., 2013). In 

a recent study, SAHA induced radiosensitization in lung carcinoma cells A549, thereby 

killing the cancer cells in combination with ᵧ-rays, proton, and carbon ion exposure 

(Gerelchuluun et al., 2018). 

 



25 
   

Both peptide-based macrocyclic (Olsen et al., 2012; Rajak et al., 2013) and non-peptide 

macrocyclic HDAC inhibitors have been shown to possess selective and potent anti-

proliferative activity against human lungs, prostate and breast cancer cell lines (Oyelere 

et al., 2009; Mwakwari et al., 2010; Tapadar et al., 2015).  

   

Desirable alteration in a gene, mRNA and protein expression, protein-protein 

interactions, the shift from euchromatin to heterochromatin, and signal transduction 

have been shown to be the fates of tumor cells following treatment with HDAC 

inhibitor.  (Roskelley et al., 1994; Lee et al., 2007; Pampaloni et al. 2007; Eke et al., 

2013). HDAC inhibitors can induce both mitochondria-mediated apoptosis and caspase-

independent autophagic cell death (Shao et al., 2004). 

 

2.7 Rational Drug Design Techniques 

 
Advances in human genome sequencing have increased the number of new therapeutic 

targets for drug discovery. At the same time, high-throughput crystallography and 

nuclear magnetic resonance (NMR) methods have contributed to the acquisition of the 

atomic structures of proteins and protein-ligand complexes (Langer and Hoffmann, 

2001; Bajorath, 2002; Kitchen et al., 2004). These allow biocomputation to continue to 

thrive as an indispensable component of structure-based drug discovery. The current 

approach to structure-based drug design methods allow for the design of ligands 

containing the necessary features for surface complementarity with target receptor or 

enzyme (Mandal et al., 2009; Press, 2013). Selective interaction of high-affinity ligands 

with target proteins interferes with specific cellular processes, leading ultimately, to the 

desired pharmacological effects (Urwyler, 2011). Molecular modeling procedures 

reduce the cost of discovering new drug — as only most promising compounds are 

synthesized (Wilson and Lill, 2011). These compounds are subject to evaluations of 

biological properties such as potency, affinity, and efficacy using diverse experimental 

platforms (Fang, 2012). Molecular modeling approaches such as molecular docking, 

molecular dynamics, homology modeling and virtual screening are applied alone or in 

combination towards structure-based drug design (Figure 2.5). 
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Figure 2. 5. Schematic representation of in silico rational drug design techniques 
(Cozza, 2017). 

 

2.7.1 Molecular docking  

 

Since the development of the first algorithms in the early 1980s, molecular docking 

became an essential tool in drug discovery (López-Vallejo et al., 2011). The main 

objective of molecular docking is to predict the correct binding mode of a ligand in the 

binding pocket of a target. This method is routinely used to gain insight into the 

interaction between the enzyme and its inhibitors. Several docking studies have been 

reported towards this goal in the literature (Mai et al., 2005; Selvam et al., 2005; Tewari 

et al., 2010; Shultz et al., 2011; Brunsteiner and Petukhov, 2012; Yao et al., 2014; Abd 

El-Karim et al., 2015; Zhang et al., 2015). The binding energy is predicted by 

application of the various scoring function. The optimized docked conformer is one 

with the lowest free energy of binding. The final estimated free energy of binding 

(∆Gbind) is modeled in terms of dispersion and repulsion (∆Gvdw), electrostatic 

(∆Gelec), H-bond (∆Ghbond), torsional free energy (∆Gtor), desolvation (∆Gdesolv), 

final total internal energy (∆Gtotal) and unbound system’s energy (∆Gunb) (Walters et 

al., 1998). There are two basic steps in docking process: prediction of the ligand 

conformation, its position and orientation within these sites (referred to as pose), and 

assessment of the binding affinity. 
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The ligand-receptor binding mechanism was elucidated to be “the lock-and-key theory”. 

In this theory, Fischer (Fischer, 1894) proposed that ligand fits into the receptor’s 

binding pocket like lock and key. The earliest reported docking methods (Kuntz et al., 

1982; Kollman, 1994) were based on this theory and both the ligand and receptor were 

treated as rigid bodies. Later, Koshland, (1963) put forward the “induced-fit” theory in 

which he states that the active site of the protein undergoes conformational changes to 

accommodate ligands as the ligands interact with the protein. According to this theory, 

both ligand and receptor should be treated as flexible during docking. This theory 

describes the binding events more accurately than the rigid treatment considering the 

dynamic behavior of the protein in the real biological environment. The most popular 

and longstanding docking practice is that in which ligand is allowed to be flexible 

around rigid receptor (Rarey et al., 1996; Morris et al., 1998; McGann et al., 2003; 

Perola et al. 2004; Moitessier et al., 2008). However, proteins are not static — they 

show dynamic behavior in the biological system. Thus, many efforts have been made to 

allow flexibility in the receptor (Jiang and Kim, 1991; Alonso et al. 2006; Sherman et 

al., 2006; Subramanian et al., 2006; Sander et al., 2008). However, for available 

docking methods, flexibility in the receptor, especially in its backbone, still presents a 

major challenge. Meng et al. (2011) proposed a Local Move Monte Carlo (LMMC) 

approach to solving flexible receptor docking problems. 

 

Molecular docking programs perform a search algorithm in which the conformation of 

the ligand is evaluated recursively until the convergence to the minimum energy is 

reached. Finally, an affinity scoring function, ΔG [U total in kcal/mol], is employed to 

rank the candidate poses as the sum of the electrostatic and van der Waals energies. 

With the increase in computational power, a large number of docking programs which 

use different scoring functions have been developed including. The scoring function of 

Autodock (Morris and Huey, 2009), one of the most used docking program, is 

represented by the following equation: 
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where ΔG stands for free energy of binding, rij is the magnitude of the distance 

between i and j atoms, qi and qj  are the charge at points i and j respectively, in C 

and ε0 is the permittivity of a vacuum, S - solvation term for atom  V – atomic 

fragmental volume of atom σ – Gaussian distance constant; it is a sum of van der 

Walls, H-bonds,  Electrostatics (Coulomb's Law), torsions and  desolvation 

energies. 

 

Other docking programs include Dock (Ewing et al., 2001), FlexX (Rarey et al., 1996), 

Glide (Halgren et al., 2004), GOLD (Jones et al., 1997), Surflex (Jain, 2003), ICM 

(Schapira et al. 2003), Cdocker, LigandFit (Venkatachalam et al., 2003), Drugster 

(Vlachakis et al., 2013), and eHiTS (Zsoldos et al., 2006, 2007; Ravitz et al., 2011), 

MCDock, FRED (McGann et al. 2003), MOE-Dock (Corbeil et al. 2012), LeDock 

(Zhao and Caflisch 2013), AutoDock Vina (Trott and Olson 2010), rDock (Ruiz-

Carmona et al. 2014), UCSF Dock (Allen et al. 2015), and many others. 

 

Docking programs utilize various methods of conformational search for exploration of 

the ligand conformational space. These are categorized as follows: (a) Systematic 

methods such as Matching algorithm (Brint and Willett, 1987; Fischer et al., 1993; 

Norel et al., 1994), which after considering all degrees of freedom, place ligands in the 

predicted binding site. Matching algorithms for ligand docking are available in FLOG 

(Miller et al., 1994), LibDock (Diller and Merz, 2001) and SANDOCK (Burkhard, 

Taylor and Walkinshaw, 1998) programs. Incremental construction (IC) (DesJarlais et 

al., 1986; Leach and Kuntz, 1992; Rarey et al., 1996) methods put the ligand into an 

active site in a fragmental and incremental fashion.  The incremental construction 

method has been used in DOCK 4.0 (Ewing et al., 2001), FlexX (Rarey et al., 1996), 

Hammerhead (Welch et al., 1996), SLIDE (Schnecke and Kuhn, 2000) and eHiTS 

(Zsoldos et al., 2006). (b) Stochastic torsional conformational searches about rotatable 

(2.1) 
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bonds, such as genetic Monte Carlo (MC) (Hart and Read, 1992; Goodsell et al., 1993) 

and genetic algorithm (GA) (Oshiro et al., 1995; Morris et al., 1998) to “evolve” new 

low energy conformers, (c) Molecular dynamics simulation methods and energy 

minimization for exploring the energy landscape of a molecule. 

 

MC methods generate poses of the ligand through a bond rotation, rigid body translation 

or rotation. The resulting conformation is then tested with an energy-based selection 

criterion. If it meets the criterion, it will be retained and further modified to generate 

next conformation. These iterations proceed until the predefined quantity of 

conformations is collected. The main advantage of MC is that the change can be quite 

large allowing the ligand to cross the energy barriers on the potential energy surface, a 

point that isn’t achieved easily by molecular dynamics-based simulation methods. 

Examples of applying the Monte Carlo methods include an earlier version of AutoDock 

(Goodsell and Olson, 1990), ICM (Abagyan et al., 1994), QXP (McMartin and 

Bohacek, 1997), and Affinity (Dassault Systèmes BIOVIA, 2017). 

 

GA is based on Darwin’s theory of evolution. In GA binary strings called genes, encode 

degrees of freedom of the ligand while chromosomes   represent the pose of the ligand. 

Two kinds of genetic operators in GA are mutation and crossover. Through mutation, 

random changes are made to the genes; when crossover takes place, genes are 

exchanged between two chromosomes. Genetic operators affect the genes which result 

in a new ligand structure. These new ligand structures are assessed by the scoring 

function, and the ones that survived among them (i.e., exceeded a threshold) can be used 

for the next generation. GA have been used in AutoDock (Morris and Huey, 2009), 

GOLD (Verdonk et al., 2003), DIVALI (Clark, 1995) and DARWIN (Taylor and 

Burnett, 2000). Pagadala et al. (2017) in their article entitled “Software for molecular 

docking: a review” provided a comprehensive review of docking software and their 

accuracy in prediction the correct ligand binding mode. 
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2.7.2. Virtual screening 

 
Drug discovery and development is a very complex, exhaustive and expensive process. 

Combinatorial chemistry and high-throughput screening (HTS) have accelerated the 

drug discovery process by enabling large libraries of compounds to be screened in a 

short time. However, due to the high cost and low hit rate of HTS, virtual screening is 

gaining prominence as a method to filter very large chemical space that can be created 

by combinatorial synthesis into a manageable library of likely favorable scaffolds to be 

tested by HTS. Virtual screening can be structure based or ligand-based. In structure-

based virtual screening approach, the 3D structure of the target biological molecule is 

utilized to screen a large library of chemical compounds to identify structurally diverse 

compounds with similar bioactivity. The 3D structure can be X-ray crystal structure, 

Nuclear Magnetic Resonance (NMR) structure or derived via theoretical modeling (eg 

homology modeling). In contrast, the ligand-based virtual screening approach is based 

on the information from existing ligand as a template, resulting in the identification of 

scaffold that is less diverse in structures. Thus, structure-based virtual is believed to be 

more effective at detecting novel chemical scaffolds and is more commonly used in 

academic labs (Walters et al., 1998) – hence, one of the methods applied for identifying 

potential isoform-selective HDAC inhibitors in this study. 

 

2.7.3 Pharmacophore modeling 

 
The concept of pharmacophore was first introduced in 1909 by Ehrlich, (1909), who 

defined pharmacophore as ‘a molecular framework that carries (phoros) the essential 

features responsible for a drug's (pharmacon) biological activity’. Following a century's 

improvement, the essential pharmacophore idea still stays unaltered, however, its 

purposeful significance and application go have been extended impressively. According 

to the International Union of Pure and Applied Chemistry (IUPAC), a pharmacophore 

model is ‘an ensemble of steric and electronic features that is necessary to ensure the 

optimal supramolecular interactions with a specific biological target and to trigger (or 

block) its biological response’ (Wermuth et al., 1998).  These features that represent the 

chemical functionalities of active small molecules are H-bond donors (HBDs), H-bond 
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acceptors (HBAs), hydrophobes (H), positively and negatively ionizable groups (PI/NI), 

and metal coordinating groups (M). Additional size restrictions in the form of a shape or 

exclusion volumes (XVOL) – forbidden areas – can be added to represent the size and 

the shape of the binding pocket. 

 

A pharmacophore model can be developed by superposing a set of active molecules and 

extracting common chemical features that are essential for their bioactivity — this 

approach is referred to as ligand-based pharmacophore model. Alternatively, when the 

interaction between target and ligands is probed to generate a pharmacophore model, it 

is referred to as structure- or receptor-based pharmacophore model. Thus, 

pharmacophore modeling and pharmacophore-based virtual screening are aimed at 

predicting activities by sorting compounds that match the model into actives, and those 

not fitting to the model into inactive. This outputs a list of compounds (hit list) that are 

proposed to be active. Therefore, the advantage of pharmacophore-based virtual 

screening is that compounds that are not likely to be active can be dumped at a very 

early stage of a project thereby saving a lot of resources in the further drug discovery 

process, especially in vitro experiments (Vuorinen and Schuster, 2015). The successful 

applications of pharmacophore modeling in virtual screening, de novo design, and lead 

optimization have been reviewed (Langer and Hoffman, 2006; Yang, 2010). 

 

2.7.4 Molecular dynamics simulation 

 
X-ray crystallography has been the main experimental technique used over decades to 

elucidate the molecular structures of macromolecules. However, it can only provide a 

static snapshot of a protein functional state and thus NMR was increasingly used for 

protein structure determination in the past decades due to the relative flexibility 

revealing an ensemble of conformations. Still, NMR spectroscopy is time-consuming 

for a large protein complex and this prompts the search for a complementary tool that 

allows the study of dynamic behavior of biological targets and ligand binding. MD 

simulation has become a new major technique in the design of novel bioactive 

molecules by examining the stability of biomolecular complexes and ligand binding 

mode in time (Aqvist et al., 2002; Khandelwal and Balaz, 2007). 
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MD is a computational method that utilizes structural data obtained experimentally to 

extrapolate the possible conformations of molecular systems. In classical MD 

simulations, the potential energy function commonly denoted as the “force-field” 

describes the interactions between atoms. It consists of bonded terms between 

covalently bound atoms (bonds, angles, torsions) and non-bond terms (van der Waals 

interactions and electrostatic interactions). Traditional biomolecular force fields such as 

AMBER (Cornell et al., 1995), OPLS (Jorgensen and Tirado-Rives, 1988), CHARMM 

(MacKerell et al., 1998) and GROMOS (Oostenbrink et al., 2004) have proven to be 

promising in modeling these interactions. On the other hand, due to diversity of small 

organic molecules, ligands have to be modeled most commonly, using general AMBER 

force-field (GAFF) (Wang et al., 2004), the CHARMM general force-field (CGenFF) 

(Vanommeslaeghe and MacKerell, 2012), the GROMOS automatic topology builder 

(Malde et al., 2011) and the OPLS all-atom force-field (OPLS-AA) (Jorgensen et al., 

1996). Parameters for the bonded terms and the van der Waals interactions are typically 

taken from a generalized force-field, whereas that of partial atomic charges are derived 

from a Quantum Mechanical calculation.  

 

Molecular dynamics simulation consists of the step-by-step numerical solution of the 

classical equations of motion, which for a simple atomic system may be written as: 

 
where fi  is the force acting on the atoms and is usually derived from a potential energy 

U(rN), where rN = (r1; r2;………..rN).  

The part representing the bonded terms of potential energy function is written as: 

 

 
The bonds will typically involve the separation rij = between adjacent pairs of 

atoms in a molecular framework. The bend angles, ᶿijk are between successive bond 

(2.2) 

(2.3) 
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vectors such as ri - rj and rj - rk, and therefore involve three atom coordinates. The 

torsion angles, ᵠijkl are defined in terms of three connected bonds. 

 

The part of the potential energy representing the non-bond terms are divided into 2 

components: van der Waals forces; modeled using Lennard-Jones potential as below: 

 
where pair potential v(ri; rj) = v(rij), with two parameters: , the diameter, and , the 

well depth. 

The second part of the non-bond terms are Coulomb potentials in the presence of 

charges and is given by: 

 
where  are the charges and  is the permittivity of free space. 

Thus, the potential energy function (  is the sum of bonded and non-bond terms 

and is written as: 

 
These parameters were determined experimentally, or modeled theoretically (Maitland 

et al., 1987). 

MD trajectory of a macromolecule-ligand complex is analyzed to extract information 

such as distances and interactions between atoms or residues of interest. Root-mean-

squared deviations (RMSD) from a reference configuration, the root-mean-squared 

fluctuations (RMSF) and most importantly, in context of drug design, the free energy of 

binding (∆Gbind) which is the difference between the free energy of ligand free in 

(2.4a) 

(2.4b) 

(2.5) 
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solution (Gfree) and ligand bound to protein (Gcomplex) and is directly related to the 

binding constant, Ki as follows: 

 

                       (2.6) 

 

The application of molecular dynamics in drug design has been reported (Alonso, et al., 

2006; Durrant and McCammon, 2011; Zhao and Caflisch, 2014, 2015). With recent 

advances in the field due to an increase in computational power, the timescale of MD 

simulation could be extended to microsecond to enable relevant events to be observed 

(Maragakis et al., 2008). Considering this progress, Mortier et al. (2015) studied the 

impact of MD simulation on drug design by specifically characterizing ligand–

macromolecule complexes. 

 

Relevant to this dissertation, MD simulation studies have been successfully applied to 

examine the stabilities of HDAC-inhibitor complexes in search of selective HDAC 

inhibitors. To explore the release of the N-(2-aminophenyl)- benzamide from the active 

sites of HDACs 1 and 2, random acceleration MD (RAMD) simulations coupled with 

classical MD were conducted (Kalyaanamoorthy and Chen, 2012). MD simulation 

studies have been carried out to examine the stability of ligand binding modes over time 

and potential HDAC inhibitors were identified by approach (Thangapandian et al., 

2012; Tambunan et al., 2013; Noor et al., 2015). 

 

2.7.5 Scaffold hopping in medicinal chemistry 

 
Scaffold hopping is an approach aimed at identifying core structures of compounds 

responsible for the biological activity of those compounds containing them. It refers to 

the search for compounds sharing the same activity but having different core structures 

(Schneider et al., 1999), by core structure replacement. Scaffold hopping plays an 

essential role in the design of structurally novel active molecules (Böhm et al., 2004; 

Schuffenhauer, 2012). Scaffold hopping was used in combination with other 

computational methods such as virtual screening and molecular dynamics simulation for 

identification of novel potential inhibitors of different biological targets.  
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Major motivations for scaffold hopping include finding alternative starting points for 

lead generation. This concept has been linked to computational methods and virtual 

screening even though meaningful scaffold replacements can also be accomplished 

based on medicinal chemistry knowledge and intuition. Despite the intrinsic advantage 

of pharmacophore and shape methods used to facilitate scaffold hopping, many different 

computational approaches have been successfully applied including simple 2D 

similarity searching property principle. This could be attributed to small molecule 

binding promiscuity of many pharmaceutical targets rather than special algorithmic 

features (Hu et al., 2016). To date, there are no generally accepted standards for the 

assessment of scaffold hopping potential, in the computational community. Nonetheless, 

new computational approaches and protocols continue to be reported specifically for 

scaffold hopping applications, to further advance the field. 

 

Various approaches exist for scaffold hopping including fragment-based in which 

scaffolds are created by cutting bonds of existing compounds in a combinatorial fashion 

(Vainio et al., 2013); chemically advanced template search (CATS), which based on 

topological pharmacophore models (Schneider et al., 1999); inductive logic 

programming (ILP), which uses the observed spatial relationships between 

pharmacophore types in pre-tested active and inactive compounds and learns human-

readable rules describing the diverse structures of active compounds (Tsunoyama et al., 

2008); similarity searching using 2D fingerprints (Gardiner et al., 2011). 

 

2.7.6 ADMET prediction in drug design  

 

Absorption, Distribution, Metabolism, Elimination, and Toxicity (ADMET) properties 

are very important in current drug discovery and development. In addition to good 

efficacy, the success of drug candidate is also determined by good ADMET profile. 

Although in vitro ADMET screens are available, in silico prediction of ADMET 

properties proves to be valuable in current drug discovery.  In silico methods estimates 

ADMET properties using statistical approaches (Biswas et al., 2006; Rayan et al., 

2010), molecular descriptors (Li et al., 2007) and experimental data to model complex 
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biological processes (e.g. oral bioavailability, intestinal absorption, permeability and 

mutagenicity (van de Waterbeemd and Gifford, 2003; Norinder and Bergström, 2006; 

Dearden, 2007; Cheng et al., 2013). Structure-based ADMET profiling which makes 

use of the 3D structure of the ADMET protein was also studied and suggested to be the 

alternative method in the near future (Moroy et al., 2012). Various models have been 

successfully developed towards improvement of ADMET prediction goals and different 

opinions regarding their application suitability have been presented in several review 

articles (Ekins et al., 2000; Krejsa et al., 2003; Yamashita and Hashida, 2004; Hou and 

Wang, 2008; Cruciani et al., 2009; Egan, 2010; Madden, 2010; Tao et al., 2015; Hyun et 

al., 2016). The rules for drug-likeness or lead-likeness (Muegge, 2003) or metabolite-

likeness (Dobson et al., 2009) relying on simple physicochemical properties are 

implemented in ADMET prediction tools (Lagorce et al., 2008, 2011; Cheng et al., 

2012). 

 

There are strong regulations and guidelines for the toxicity testing of pharmaceutical 

substances established by Organization for Economic Co-operation and Development 

(OECD), the European Agency for the Evaluation of Medicinal Products (EMEA) the 

U.S. Food and Drug Administration (FDA), the National Institutes of Health (NIH). In 

these guidelines, the use of alternative in vitro or in silico methods for toxicity 

assessment that do not involve animals are strongly recommended (Benz, 2007; 

Parasuraman, 2011). However, the high cost and time consumption of in vitro method 

prompted the development of in silico prediction models of oral acute toxicity (Lei et 

al., 2016). Therefore, in silico model of structure-based ADMET prediction will be 

employed in the present study. 
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3. MATERIALS AND METHODS 
 
 

3.1 Protein Dataset and Setup 

 
The following crystal structures of human histone deacetylases were retrieved from the 

Protein Data Bank (PDB) (http://www.rcsb.org) (Berman et al., 2000): (1) 4BKX; (“The 

structure of HDAC1 in complex with the dimeric ELM2-SANT domain of MTA1 from 

the NuRD complex”, resolution: 3.00 Å) (Millard et al., 2013). (2) 4LXZ (“Structure of 

human HDAC2 in complex with SAHA”, resolution: 1.85 Å) (Lauffer et al., 2013). (3) 

4A69 (“Structure of HDAC3 bound to corepressor and inositol tetraphosphate”, 

resolution: 2.06 Å) (Watson et al., 2012). (4) 3C5K (“Crystal structure of human 

HDAC6 zinc finger domain”, resolution: 1.55 Å) (5) 5EDU (“Crystal structure of 

human histone deacetylase 6 catalytic domain 2 in complex with trichostatin A”,  

resolution: 2.79 Å) (Miyake et al., 2016). (6) 3C0Y (“Crystal structure of human 

HDAC7 catalytic domain in complex with SAHA”) (Schuetz et al., 2008). (7) 1T64 

(“HDAC8 in complex with the inhibitor TSA”, resolution: 1.9 Å) (Somoza et al., 2004).  

 

The co-crystallized ligands were subsequently removed from each protein structure. 

Missing loops were estimated and hydrogen atoms were added based on the protonation 

state of the titratable residues at a pH of 7.4 using Biovia Discovery Studio (DS) 4.5 

molecular modeling program (Dassault Systèmes BIOVIA, 2017).  These native ligands 

were then docked back into their respective crystal structures, and their RMSD with 

respect to the reference ligand were found to be < 2.0 Å. In addition, a series of known 

HDAC inhibitors were docked into these proteins to assesss the quality of the 3D 

structures, and their binding affinity was found to be consistent with their Ki (or IC50) 

from the literature. The detailed description of the protocols was given under molecular 

docking subsections. 
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3.1.1 Protein structure analysis (Ramachandran plot) 

 
Ramachandran analysis of Class I HDACs, HDACs 6 and 7 was carried out using 

Biovia DS 4.5 and the energetically allowed conformations were compared in Figure 

3.1. 

 

 

 

 

Figure 3. 1. Ramachandran plots of class I HDACs and HDAC6. 
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3.1.2 Sequence alignment and structural superimposition 

 
The amino acid sequences of class I HDACs were aligned using Biovia discovery studio 

software (Figures 3.2) and their corresponding three dimensional (3D) structures 

superimposed (Figure 3.3). The conserved amino acid residues in HDACs’catalytic 

channels that are components of the “charge relay system of HDAC catalysis were also 

aligned (Table 3.1). Moreover, to gain insight into the evolutionary relationship among 

these isoforms, a phylogenetic tree was constructed from multiple sequence alignment 

using Basic Local Alignment Search Tool (BLAST) available on the National Center 

for Biotechnology Information (NCBI) database (Figure 3.4). 

 

Table 3. 1. Superimposition of common residues among class I HDACs that are 

components of charge-relay system of HDAC catalysis. 

HDAC1 HDAC2 HDAC3 HDAC8 

HIS140 HIS145 HIS134 HIS142 

HIS141 HIS146 HIS135 HIS143 

HIS178 HIS183                                      HIS172 HIS180                                  

ASP176 ASP181 ASP170 ASP178 

PHE205 PHE210 PHE200 PHE208 

ASP264 ASP266 ASP259 ASP267 

TYR303 TYR308 TYR298 TYR306 
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Figure 3. 3. Structural superimposition and alignment of class I HDACs. Each isoform 
is indicated in its respective color. 

 
 

 
Figure 3. 4. Phylogenetic tress showing evolutionary relationship among Class I 

HDACs. The tree revealed that HDACs 1 and 2 are closely related, share ancestral 
origin with HDAC3 by 1 node and with HDAC8 by 2 nodes. 

 

3.2 The Design of Isoform-selective HDAC Inhibitors by Scaffold Hopping 

 

Virtual screening is a process of screening a large library of compounds to identify 

pharmacologically active compounds. It is automated to quickly evaluate a series of 
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“compounds based on their biological activity against a target protein. It is usually used 

to identify the initial compound (hit) for further optimization. In this study, our virtual 

screening of molecular fragment library on Otava database returned a fragment (Otava 

id; 5683342) with desirable activity against HDAC3. The library was screened against 

HDAC3 because our phylogenetic analysis of HDAC isoforms in question, using 

distance method, showed that HDAC3 share a sequence similarity with HDACs 1, 2 and 

8 (Figure 3.4). Based on the general pharmacophore features of HDAC inhibitors, 

structural modifications were made by scaffold hopping in which various synthetically 

feasible groups were added and fragments replaced to achieve particular polar, 

hydrophobic or steric interactions around the entrance and vicinity of the catalytic 

channels (Figure 3.6). These interactions might enhance the binding affinity and 

selectivity considering the subtle difference in the amino acids at the highly conserved 

active sites of HDAC isoforms. The geometries of the ligands were optimized using and 

the atom potential types and partial charges were assigned with the Momany and Rone 

CHARMm force field. 
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3.3 Identification of Isoform-selective HDAC Inhibitors via Structure-Based 

Virtual Screening  

 

3.3.1 Ligand setup 

 
A total of 2,703,000 compounds available for screening were retrieved from Otava 

database (http://www.otavachemicals.com). For those compounds that reached 

molecular docking stage, their 3D geometries were optimized by generating all of the 

tautomers, and making sure that all of the ionizable groups were properly protonated, 

using Biovia DS 4.5 (Dassault Systèmes BIOVIA, 2017).  

 

3.3.2 Pre-screening 

 
rDock is a tool for high-throughput docking and virtual screening. The platform 

supports structure-based drug design process (Ruiz-Carmona et al., 2014) 

(http://rdock.sourceforge.net). In rDock Genetic algorithm converges very quickly to 

allow virtual screening – the global minimum is reached by multiple docking runs in 

which poor ligands are discarded early on. In this study, 2,703,000 compounds were 

screened against HDACs 1, 2, 3, 6 and 8. The procedure involved 3 steps: system 

definition using the available “prm” script, cavity detection using the binding pocket 

coordinates generated from Autodock4 and docking (50 runs were allowed per each 

compound). Based on rDock prediction of the activity (ranking of compounds according 

to rDock score) (Li et al., 2003), this large compound library was reduced to a total of 

161,941 compounds (43,302 for HDAC1; 42,221 for HDAsC2; 37,414 for HDAC3, and 

39,004 for HDAC8). 

 

3.3.3 Structure-based virtual screening protocol 

 
Structure-based virtual screening is believed to be more effective at detecting novel 

chemical scaffolds and is more commonly used in the academic lab (Walters et al., 

1998). AutoDock Vina, is a program used for structure-based virtual screening due to its 
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relative higher speed. It automatically calculates the grid maps and clusters the results in 

a way transparent to the user (Trott and Olson, 2010) (http://vina.scripps.edu). Here, 

because of the high sequence conservation and structural similarity among class I 

HDACs (de Ruijter et al., 2003), the 161,941 compounds that showed activity against 

class I HDACs at pre-screening stage, were further screened against each individual 

member of the class using Autodock Vina with grid and docking parameters given in 

Table 3.2.  

 

3.3.4 Criteria for the selection of isoform-selective inhibitors 

 
The selection of the selective compounds in the current study was guided by Bieliauskas 

and Pflum, (2008). In this article, the authors provided a detailed review of isoform-

selectivity of HDAC inhibitors. PCI-34051 showed > 200-fold selectivity for HDAC8 

over other HDAC isoforms and is therefore considered HDAC8 selective 

(Balasubramanian et al., 2008). A cyclic peptide mimic displayed modest selectivity 

within class I, with a 4-fold preference for HDAC1 over HDAC8 (Liu et al., 2007). 

Here, the selection of the selective compounds was made based on selectivity index 

value calculated as the ratio of inhibition constant (Ki) of an inhibitor against one 

isoform to Ki of the same inhibitor against any other isoforms (eg. Selectivity index of 

compound 1 for HDAC1 over HDAC2 = Ki of compound 1 against HDAC1÷ Ki of 

compound 1 against HDAC2). Those compounds that showed ≥ 5-fold selectivity for 

one isoform over the other isoforms were considered moderately selective and those that 

displayed ≥ 100-fold selectivity for one isoform over the others were considered highly 

selective. Those compounds with high binding affinity but failed to satisfy these criteria 

were counted out. Employing this extreme filtering reduced the number of detected 

compounds to a total of 41 compounds (12 for HDAC1; 11 for HDAC2; 9 for HDAC3 

and 8 for HDAC8). 
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Table 3. 2. Grid mapping parameters used for virtual screening docking against 

respective enzymes. 

Centre (Å) HDAC1 HDAC2 HDAC3 HDAC8 

X -53.62 -53.553 42.753 39.175 

Y 12.044 12.169 52.139 37.193 

Z -6.977 -6.907 19.416 39.979 

Dimension (Å)    

X 53.056 52.196 53.665 55.227 

Y 57.977 54.181 52.998 55.981 

Z 58.976 59.827 55.674 55.274 

 

3.3.5 Further molecular docking assay 

 
To ascertain the selectivity of the total 45 compounds identified via structure-based 

virtual screening, each set of compounds was docked into the binding pocket of their 

respective isoform using Autodock 4.2 (Morris and Huey, 2009) 

(https://autodock.scripts.edu). The following energy grid box dimensions were used: 

55_55_55 Å for HDACs 1, 2, 8 and 65_65_65 Å for HDACs 3 and 6. These parameters 

were chosen according to the size of the binding pocket of each isoform, so as to cover 

the entire binding site and its neighboring residues. The Lamarckian genetic algorithm 

was used for ligand conformational search. For each compound, 20 independent runs 

were performed, and the distinct ligand conformers were generated and docked 

randomly into the binding pocket of these enzymes. The program randomly assigned 

torsion angles to rotatable bonds. Fifteen million energy evaluations were allowed for 

each ligand. Three independent dockings were run for each complex and average of free 

energy of binding was computed. According to the Autodock 4.2’s calculation of 

binding energy, a total of 36 compounds (10 for HDAC1; 10 for HDAC2; 8 for HDAC3 

and 8 for HDAC8) were found to show selectivity for their respective isoforms, whereas 

five compounds showed high binding affinity but failed to satisfy the criteria for 

selectivity despite repetitive docking runs. 
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3.3.6 Drug-likeness and ADMET prediction 

 
Absorption, Distribution, Metabolism, Elimination and Toxicity (ADMET) properties 

are very important in current drug discovery and development. Nowadays, 

computational modeling is complementing in vitro and in vivo estimation of ADMET 

properties. In silico techniques have been applied to predict ADMET properties of 

compounds over the past decade. Here, drug likeness was predicted using ADMET 

Predictor (Simulation Plus Model) (http://www.simulations-plus.com) — these models 

include S+logP (octanol-water partition coefficient, log P); S+logD (octanol-water 

distribution coefficient, log D; calculated from pKa and S+logP); MlogP (Moriguchi 

model of octanol-water partition coefficient, log P); Ruleof5 (‘computational filter for 

oral absorption in human identical to the Lipinski’s “Rule of Five”’) (Owens and 

Lipinski, 2003; Lipinski, 2004; Bhal et al., 2007); molecular weight (dalton), sum of H-

bond donors (S_HBD) and acceptors (S_NO), topological polar surface area (TPSA). 

Other ADMET properties were predicted using AdmetSAR server 

(http://lmmd.ecust.edu.cn/admetsar1). AdmetSAR program estimates properties based 

on substructure pattern recognition and then uses support vector machine algorithm to 

build a model (Shen et al., 2010). The chemical information of each of 1-36 compounds 

was input as “SMILE” and the corresponding ADMET properties estimated. 
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Figure 3. 6. Virtual screening workflow combined with molecular docking and 
dynamics simulation. 

 

3.3.7 Molecular dynamics simulation  

 
To study the structural dynamics and stability of HDAC-ligand complexes, both the free 

HDACs and their complexes with the respective best ligand identified via virtual 

screening were submitted to MD simulations using NAMD software (Phillips et al., 

2005) (http://www.ks.uiuc.edu/Research/namd/). Input files for NAMD were generated 

using CHARMM GUI (CHARMM36) (Lee et al., 2016) (http://www.charmm.org). 

Ligand parameterization was carried out using CHARMM General Force Field 

(CGenFF) server (https://cgenff.paramchem.org/). CGenFF server was used to perform 

ligand atom typing and assignment of parameters and charges by analogy in a fully 
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automated fashion. During the input preparation, all the systems were solvated using the 

TIP3 water model and neutralized with KCl (ionic concentration, 0.2 M). The systems’ 

energy was minimized for 1000 steps by steepest descent method (Bibi et al., 2013; 

Kausar et al., 2013). Following a 2 ns-equilibration run at constant number of particles, 

volume and temperature (NVT) ensemble, three parallel unrestrained 10 ns-production-

MD simulations with different initial velocities were performed for each system at 

constant temperature and pressure (NPT) ensemble. During the production run, the time 

step and collection interval were set to 2 fs and 1 ps respectively. Structural stability of 

the systems was compared by analyzing the average values of potential energy, root-

mean-squared deviation (RMSD) and root-mean-squared displacement (RMSF) profiles 

throughout the trajectories. 

 

3.4 Selective Inhibitor Design for HDAC6   

 

3.4.1 The search for HDAC6 relatives 

 
To design selective inhibitors of HDAC6, a comparison of the binding affinity of 

candidate compounds against HDAC6 and its closest relatives needs to be carried out. 

To identify these relatives, the FASTA sequence of HDAC6 was retrieved from the 

National Center for Biotechnology Information (NCBI) Entrez sequence search. 

Following protein Basic Local Alignment Search Tool (BLASTp) run against the 

Protein Data Bank database, multiple sequences were returned, among which the most 

similar proteins were HDAC4 (AAH39904.1) (Strausberg el al, 2002); HDAC5 (NCBI 

Reference Sequence number: NP_001015053.1) (Hendrick et al., 2017); HDAC6 

(GenBank accession number: AAH69243.1) (Strausberg el al, 2002); HDAC7 

(GenBank accession number: AAH06453.2 ) (Strausberg el al, 2002); and HDAC9 

(GenBank accession number: AAI11736.1) (Strausberg el al, 2002); HDAC10 

(GenBank accession number: AAI25083.1) (Strausberg el al, 2002). These HDAC 

isoforms were re-aligned and a phylogenetic tree was then constructed from this 

alignment to gain insight into their evolutionary relationship.  
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Figure 3. 7. A phylogenetic tree showing evolutionary relationship among Class II 
HDACs. The tree revealed that HDACs 6 and 10 are closely related, share ancestral 

origin with HDAC7 by 1 node. HDACs 5 and 9 are close relative and are distant from 
HDAC4 by 1 node (a). Structural superposition of HDACs 6 (in purple) and HDAC7 (in 
green) showed an RMSD of 1.003 Å (b). Sequence alignment between HDACs 6 and 7; 
identity and similarity, 41.1% and 55.8% respectively. Identity is indicated in dark bule, 

similarity in light blue and difference in white. Mostly, the indentical residues are 
located within the conserved active site of the two isoforms (c). Comparison of the two 

proteins’ net charges at different pH (d). 

 

3.4.2 Structure-based selective inhibitor design for HDAC6 

 
Approximately, a library of 200,000 compounds was developed out of the 2,703,000 

compounds studied above (see section 3.3). This library contains compounds with ∆G > 

7.00 kcal/mol against class I HDACs. The idea was that these compounds showed no 

preference for class I HDACs and thus, some of them may show potential selectivity for 

HDAC6. Using Biovia DS 4.5 program (Dassault Systèmes BIOVIA, 2017), the 

molecules were filtered based on the elements of drug-likeness guided by Lipinski’s 

rule of 5 (Lipinski, 2004): LogP < 5; S_HBD < 5; S_HBA < 10; and MW < 500 Da. A 

total of 72,461 were found to have satisfied these criteria. The geometries of these 

compounds were optimized by properly protonating all of the ionizable groups and by 
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energy minimization using CHARMM force filed, and then saved as PDB format for 

virtual screening (Dassault Systèmes BIOVIA, 2017). 

  

3.4.3 Structure-based virtual screening protocol 

 
Structure-based virtual screening is commonly used in the academic lab to identify 

novel drug candidates or scaffolds for lead optimization. Autodock Vina is a program 

used for structure-based virtual screening due to its relative higher speed than Autodock 

4 and many other structure-based virtual screening programs. Autodock Vina uses a 

hybrid scoring function (empirical + knowledge-based). The exhaustiveness, which is 

the time spent on the search is already varied heuristically depending on the number of 

atoms, flexibility (Trott and Olson, 2010). It was used to screen the library of ~ 72 461 

compounds against HDAC6 using the following grid box dimension:  60, 60, 60 Å; and 

grid box center: (X = -1.183), (Y = 8.752), (Z = 5.755) Å. First, the compounds were 

filtered based on their binding energy values (∆G > 10 kcal/mol), and a total of 9432 

satisfied this criterion. Second, the top 100 protein-ligand complexes were analyzed for 

orientation of ligands in a binding site. By visual inspection, 20 compounds showed 

reasonable binding modes and were therefore manually selected for further analysis. 

 

3.4.4 Molecular docking assay 

 
For in silico selectivity evaluation, these 20 compounds were docked into the catalytic 

channels of HDACs 6 and 7. AutoDockTool (ADT) was used to assign Gasteiger partial 

charges to each atom of the PDB file to generate a pdbqt file, which was subsequently 

used to generate grid parameter file (gpf) and a docking parameter file (dpf). These gpf 

and dpf files were then used as input files of Autodock 4.2 for grid mapping and 

docking respectively (Morris et al., 1998). Also, for the sake of comparison of in silico 

performance, a series of known HDAC6 inhibitors were docked into the catalytic 

pockets of these enzymes.  Energy grid boxes of the following dimension: 60, 60, 60 Å; 

and grid center near Zn2+ ion; (X = -1.183), (Y = 8.752), (Z = 5.755 Å) for HDAC6, and 

of dimension 60_60_60 Å and grid center near Zn2+ ion; (Z = -35.278) (Y = -27.984) (Z 

= -19.016) Å for HDAC7, were used to cover the entire active site of HDAC6 and 
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HDAC7. The search for ligand conformation in the active sites of these enzymes was 

carried out using the Lamarckian genetic algorithm. For each ligand, 20 independent 

runs were performed, and the distinct conformers generated were docked randomly into 

the catalytic pocket of the enzyme using 20,000,000 energy evaluation. 

 

3.4.5 Drug-likeness and ADMET prediction 

 
In silico techniques have been applied to predict Absorption, Distribution, Metabolism, 

Elimination, and Toxicity (ADMET) properties of compounds over the past decades. 

Herein, drug-likeness was predicted using ADMET Predictor (https://www.simulations-

plus.com/).  ADMET Predictor allows for the rapid and easy creation of high-quality 

Quantitative Structure-Activity Relationship (QSAR)/Quantitative Structure-Property 

Relationship (QSPR) models based on one’s data. Complementarily, the ADMET 

properties were predicted using ADMET Structure–Activity Relationship (AdmetSAR) 

server (http://lmmd.ecust.edu.cn/admetsar1) AdmetSAR program estimates properties 

based on substructure pattern recognition and then uses support vector machine 

algorithm to build a model. The models were built using annotated data point from a 

large set of unique compounds from the literature (Shen et al., 2010). 

 

3.4.6 Molecular dynamics simulation 

 
To examine the stability of ligand binding mode, molecular dynamics (MD) simulations 

were performed for the free form of HDAC6 and its complexes with the 4 potentially 

selective inhibitors, using NAMD software (Phillips et al., 2005) Input files for NAMD 

were generated using CHARMM GUI (http://www.charmm-gui.org/)(Lee et al., 2016). 

Ligand parameterization was carried out using CHARMM General Force Field 

(CGenFF) server (https://cgenff.paramchem.org/) which performed ligand atom typing 

and assignment of parameters and charges by analogy in a fully automated fashion. All 

the systems were solvated using the TIP3 water model and neutralized by addition of 

KCl to an ionic concentration of 0.2 M. Minimization for 1 ps was carried out by 

steepest descent method and the system equilibrated for 2 ns in NVT ensemble. 

Unrestrained 10 ns-production-MD simulations were performed at constant temperature 
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(310 K) and pressure (1 atm) in (NPT) ensemble at time step and collection interval of 2 

fs and 1 ps, respectively. The computational workflow is shown in Figure 3.8 below.  

 
 

Figure 3. 8. Virtual screening workflow for the identification of potential lead 
compounds for the design of HDAC6-selective inhibitors. 
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3.5 The Search for Selective Inhibitors of HDAC6 by Pharmacophore-Based  

Virtual Screening 

 

3.5.1 Selection of the training set molecules 

 
A total of 20 HDAC inhibitors with experimental activity (Ki) ranging from 4-400 nM, 

(Mann et al., 2007; A. et al., 2010; Bantscheff et al., 2011; Bertino and Otterson, 2011; 

Soragni et al., 2011; Tang et al., 2013; Salvador et al., 2013; Bjornsson et al., 2014; 

Bailey, Stenehjem and Sharma, 2015; Lee et al., 2015; Schölz et al., 2015; Vogl et al., 

2017) were retrieved from CHEMBL database (https://www.ebi.ac.uk/chembl/). These 

include the approved drugs: Vorinostat, Belinostat and Panobinostat, and those at 

various stages of clinical trials: Mocetinostat, Entinostat, Tacedinaline, Ricolinostat, 

Abexinostat, Valproic acid, Butyric acid, Phenyl butyric acid, Droxinostat, Tubacin, 

Scriptaid, Nexturastat A, M344, MC1568, RGFP966, TMP269, and the natural inhibitor 

TSA. These inhibitors are well-validated representatives of different classes of HDAC 

inhibitors with diverse structures, and were therefore used as the training set to develop 

common feature 3D-pharmacophore models. The training set compounds are used to 

determine the quality of the pharmacophore hypotheses. 

 

3.5.2 Pharmacophore model generation 

 
Pharmacophore is the spatial configuration of essential features that enable a ligand 

molecule to interact with a specific target protein. Pharmacophore modeling enables 

ligand-based virtual screening to be performed using structural information on the 

known ligand of that protein (Dror et al., 2009). The approach has been successfully 

applied towards the identification of lead compounds in drug development. HipHop 

module, a method applied to generate pharmacophore hypotheses in this study, is a part 

of the Catalyst software package of Biovia DS 4.5 (Barnum et al., 1996; Clement and 

Mehl, 2000; Guner et al., 2004). It allows for feature-based alignment of a collection of 

compounds without considering their activity. The algorithm matches the chemical 

features of a molecule against drug candidate molecules. It produces a series molecular 

alignments from a collection of conformational models. A Configuration consists of a 
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set of relative locations in 3D space, and associated feature types used to align 

chemically important functional groups common to the training set and subsequently 

develop  pharmacophoric hypotheses from these aligned structures. For a compound to 

match the configuration it should possess structural features that can be superimposed 

within a certain tolerance from the corresponding ideal locations (Clement and Mehl, 

2000). In the current study, the docked pose of the most active compound, Panobinostat 

was considered as a reference compound and its principal and MaxOmitFeat values 

were respective, set to  2 and 0 whereas the principal and MaxOmitFeat values for the 

remaining training set compounds were set to 1 and 2, respectively, based on the 

pharmacophore model generated in a recent study (Luo et al., 2016). The minimum 

interference distance was adjusted to 1.00 Å to ensure close proximity of 

pharmacophoric features; excluded volume, 0; minimum features, 1; maximum features, 

10; minimum feature point, 1; number of lead that may miss, 1; complete miss, 0 and 

superposition error, 1.0. Maximum number of conformers generated was  255, with the 

energy threshold of 20 kcal/mol from the global minimum. 

 

2.5.3 Pharmacophore model validation  

 
To evaluate the predictive ability of the pharmacophore models generated, another set 

of 20 known HDAC inhibitors including Resminostat, Pracinostat (SB939), Givinostat, 

CUDC-101, PCI-34051, Dacinostat, CHR-3996, BRD73954, Tubastatin A, AR-42, 

CAY10603,  4SC-202, BG45, LMK-235, Santacruzamate A (CAY10683), HPOB, 

Citarinostat (ACY-241),  TMP195, Tucidinostat (Chidamide),  and ACY-738 

(experimenal activity (Ki) ranging from 2-1500 nM), (Bantscheff et al., 2011; Soragni 

et al., 2011; Tang et al., 2013; Bjornsson et al., 2014; Schölz et al., 2015) were used as 

the active molecules in the test set. For each of these compounds, 20 inactive forms 

(decoys) were generated using a Directory of Useful Decoys, Enhanced (DUD-E). 

(Mysinger et al., 2012) Hence, a database containing 420 compounds was developed 

and the Güner-Henry scoring method was applied to validate the pharmacophore 

hypotheses generated. In a quantitative manner, this method evaluated the predictive 

ability of the generated model by retrieving the active compounds from a database 
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containing 20 active and 400 inactive compounds. The GH score was computed using 

equations 1-4 below: 

 

 

 

 

 

 
 

Where D is the total molecules in the database, A is the total number of active molecules 

in the database, Ht is the total hits in the database, Ha is the number of active hits, Y% is 

the percentage of active compounds obtained from the decoy set, A% is the percentage 

ratio of actives in the hits list, E is the enrichment factor, and GH is the goodness of hit 

score which is a measure of the quality of a model and is expected to range from 0.6 to 

1 for an optimal pharmacophore model. (Guner et al., 2004).  

 

3.5.4 Database search 
 
 
To search for the new lead compound as HDAC6 inhibitors, Hypo1 was run against 

“DruglikeDiverse” database in the Biovia DS 4.5 (Dassault Systèmes BIOVIA, 2017). 

The molecules were filtered based on Lipinski’s “Rule of 5” (Lipinski, 2004). This 

database was screened because, to the best of our knowledge, it has not been explored 

previously for the identification of HDAC6 inhibitors and it might contain novel 

scaffolds for HDAC6 inhibitor designs. The idea of screening this database of fewer 

than 10,000 compounds was to ascertain the robustness of the generated model through 

molecular docking and dynamics studies. Subsequently, a larger compound library such 

as National Cancer Institute and ZINC databases will be probed using the model for 

potential hit compounds. 

 

(1) 
 
 
(2) 
 
 
(3) 
 
(4) 
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3.5.5 Drug-likeness and ADMET prediction 

 
Drug-likeness was predicted using ADMET Predictor (Simulation Plus Model) 

(http://www.simulations-plus.com) — these models include S+logP, S+logD, MlogP, 

MWt, S_HBD, S_NO, TPSA. The ADMET properties such as P(BBB+), P(HIA+), 

aqueous solubility  Cacao-2 cell permeability, and rat acute toxicity, were predicted 

using AdmetSAR server (http://lmmd.ecust.edu.cn/admetsar1) (Shen et al., 2010). 

 

3.5.6 Molecular docking assay 

 
Docking input files were generated using AutoDockTools. (Morris and Huey, 2009) 

Gasteiger partial charges were assigned to each atom to generate gpf and dpf files. 

Energy grid boxes of dimensions 70, 70 and 70 Å for HDACs 3, 6 and 7; and of 

dimensions 60, 60 and 60 Å for HDACs 1, 2 and 8 were centered near Zn2+ ion, to cover 

the entire binding sites of the enzymes. The search for ligand conformation in the active 

sites of the enzymes was carried out using Lamarckian GA in Autodock4. For each 

ligand, 20 independent runs were performed, and the distinct conformers generated 

were docked randomly into the catalytic pocket of the enzyme using 20,000,000 energy 

evaluations. 

 

3.5.7 Molecular dynamics simulation 

 
To examine the stability of ligand binding modes MD simulations were performed for 

the free form of HDAC6 and its complexes with Panobinostat and the selective lead 

compounds (IBS399024 and ENA50196), using NAMD software (Phillips et al., 2005). 

Input files for NAMD were generated using CHARMM GUI (Lee et al., 2016). The 

energy of the systems was minimized for 1000 steps by steepest descent method and 

equilibrated for 2 ns in NVT ensemble. All the systems were submitted to 10 ns-

production run in NPT ensemble, was performed.  During this production run the time 

step and collection interval were set to 2 fs and 1 ps, respectively. The stability of ligand 

binding modes was assessed by comparative analyses of RMSD and RMSF throughout 

the trajectories, of the free form of HDAC6 and the complexes. 
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3.6 Homology Modeling of Human Histone Deacetylase 10  

 

3.6.1 Template selection  

 
Template selection is carried out by searching for homologous protein sequences and/or 

structures with tools such as BLAST (Basic Local Alignment Search Tool) and PSI-

BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Here, the recently-solved crystal 

structure of Danio rerio (zebrafish) HDAC10 (PDB ID; 5TD7, release date 24-05-2017) 

was retrieved from PDB and used as a template structure. 

 

3.6.2 Alignment of the target sequence with the template sequence 

 
Generally, when there is a minimum of 30% sequence identity between a target and a 

template, proteins are expected to have similar structures if the aligned region is long 

enough. When two proteins have more than 50% sequence identity the quality of the 

model is generally considered reliable (Pevsner, 2015).  The target sequence (fasta 

format) was retrieved from UniProt databank (NP_114408.3) (http://www.uniprot.org/). 

The template sequence was displayed from the protein structure in BIOVIA DS 4.5 

(http://accelrys.com/). The two sequences were aligned using “Align Sequences” toolkit 

of BIOVIA DS 4.5 (Figure 3.9). 

 

3.6.3 Model building 

 
The commonly used program, MODELLER (Webb and Sali, 2016) uses modeling by 

satisfaction of spatial restraints to translate sequence alignments into distance and 

chirality constraints, which are then used as input for distance geometry calculations. 

The model is calculated by an optimization method relying on conjugate gradients and 

molecular dynamics (Sali and Blundell, 1993). Generalized comparative modeling starts 

with predicting contacts and secondary structure for the template-aligned regions, and 

possibly for the unaligned regions and then searches the conformational space guided by 
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a distance geometry and clustering, to overcome alignment mistakes. (Kolinski et al., 

2001). Here, 20 models were built using “Homology Modeling” protocol of BIOVIA 

DS 4.5. They were then verified with MODELLER plug-in. The best model (M0017), 

with the DOPE score and Normalized DOPE score of -78039.35938 and -0.814028 

respectively, was then minimized using the “Clean Geometry” toolkit to avoid any 

further steric hindrance of amino acids side chains. Finally, the protein was prepared 

using “Prepare Protein” protocol and protonated at pH, 7.4. 

 

3.6.4 Model validation 

 

Assessment of the quality of protein structure (experimentally derived or homology 

model) based on general knowledge of protein structure principles (bond length, angle, 

peptide bonds, local environment for hydrophobic/hydrophilic residues, etc.) (Pevsner, 

2015) is of paramount importance. In the current study, the web-based version of 

ProSA, ProSA-web was used to assess the quality of the best model (M0017). The 

overall quality score calculated by ProSA for M0017 is displayed in a plot that showed 

the scores of all experimentally determined protein chains currently available in the 

PDB (Berman et al., 2000). 
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3.6.5 Molecular docking 
 

The protein was prepared using “Prepare Protein” protocol and protonated at pH, 7.4. 

The A series of HDAC10 inhibitors with known Ki (or IC50) values were retrieved 

from CHEMBL database. Their geometry was optimized, and prepared using “Prepare 

Ligand” protocol at pH, 7.4 (Dassault Systèmes BIOVIA, 2017). AutoDockTool 

(Morris et al., 1998) was used to assign Gasteiger partial charges to each atom of the 

protein in the PDB format to generate a pdbqt file, which was subsequently used to 

generate gpf and dpf files. These files were then used as input files for grid mapping and 

docking respectively. Energy grid box of dimension 60, 60, 60 Å was centered near 

Zn2+ metal ion, and covered the entire active site of HDAC6 and HDAC10. Autodock 

4.2’s Lamarckian Genetic Algorithm (Morris et al., 1998) with 10,000,000 energy 

evaluations were used for ligand conformational search. Twenty independent runs were 

performed for each ligand and the distinct conformers were generated and docked 

randomly into the binding pocket of these enzymes.  

 

3.6.6 Ligand-based virtual screning 
 

SwissSimilarity is a new web tool for rapid ligand-based virtual screening of small to 

unprecedented ultralarge libraries of small molecules (Zoete et al., 2016). Here, based 

on the Autodock 4.0’s calculation, Quisinostat was found to have the highest affinity for 

hHDAC10. Quisinostat was therefore submitted to SwissSimilarity (superpositional 3D 

similarity) search against ZINC database containing 10,639,400 drug-like compounds. 

The top 100 hits were docked in the catalytic channel of hHDAC10 using Autodck 4.2 

with the docking protocols described above  (see subsubsection  3.6.6 ) 

 

3.6.7 Molecular dynamics Simulations 

 

The built homology model, M0017 and its complexes with Quisinostat and 

ZINC19749069 were submitted to MD simulation. The protocol used here is different 

from the MD simulation protocol used in our previous studies described above in that 

the minimization and production time periods were extended to 10,000 steps (10 ps) and 
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20 ns respectively (see subsections 3.3.7, 3.4.6 and 3.5.7). Input files for NAMD were 

generated using CHARMM GUI (Lee et al., 2016). All the systems were solvated using 

the TIP3 water model and neutralized by addition of NaCl to an ionic concentration of 

0.2 M. NAMD (Phillips et al., 2005) was used for the simulation. The energy of the 

systems was minimized for 10000 steps (10 ps) by steepest descent method and 

equilibrated for 2 ns in NVT ensemble. Then, unrestrained production run was 

performed for 20 ns in NPT ensemble at time step and collection interval of 2 fs and 1 

ps, respectively. 
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4. RESULTS 
 

4.1 Sequence and Structural Analyses of Class I HDACs 

 
The whole sequence alignment revealed that amino acid residues in the catalytic 

channels of class I HDACs are similar. They share 33.1% sequence identity and 57.8% 

sequence similarity. The HDACs’ active site is conserved, especially among class I 

HDACs 1-3 — with sequence identity and similarity of 60.5% and 81.7% respectively. 

HDACs 1 and 2 share the highest sequence identity of 93.5% and similarity 97.8%. 

Structural superimposition of HDACs 1 and 2 showed the lowest RMSD  while that of 

HDACs 3 and 6 showed the highest RMSD value (Table 4.1). Phylogenetic tree 

revealed that HDACs 6 and 8 were relatively distant from HDACs 1 and 2. HDAC3 

shares sequence similarity with all the enzymes under study. These data implied that the 

subtle difference around their catalytic channel can be exploited to design selective 

inhibitors. 

 

Table 4. 1. Main-chain RMSD below the diagonal (in yellow) and Number of 
Overlapping Residues above the diagonal (in blue) of class I HDACs and HDAC6. 

 

 

, 

RMSD (Å) (YELLOW)/NUMBER OF OVERLAPPED RESIDUES (BLUE) 
PROTEIN HDAC1 HDAC2 HDAC3 HDAC8 HDAC6 
HDAC1  366 364 337 260 
HDAC2 0.892  364 337 260 
HDAC3 0.989 0.927  337 260 
HDAC8 1.192 1.179 1.114  260 
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Figure 4. 2. Molecular surface representations of the catalytic pocket of class I HDACs. 

 

Molecular surface representations of the catalytic channels of class I HDACs are 

juxtaposed in Figure 4.1. Class I HDACs share a long tunneled catalytic pocket 

containing polar residues deep inside near Zn2+ metal ion. Morphologically, they also 

share a surface entrance rich in hyrophobic residues. HDAC8 contains a unique acetate 

release channel (pointed by an arrow head) which presents a potential opportunity for 

achieving selectivity. 

 

4.2 Design of Isoform-selective HDAC Inhibitors by Scaffold Hopping. 

 

4.2.1 Binding affinity 

 
The estimated free energy of binding and inhibition constant of our designed 

compounds are shown in Table 4.2 below. KA_025, KA_026, and KA_027 showed fthe 

highest binding affinity and selectivity for HDACs 1 and 2; KA_029 and KA_036 

showed selectivity for HDAC1 and HDAC2 respectively. KA_028 showed selectivity 

 

Carbon 

Oxygen 

Nitrogen 

Sulfur 



65 
   

for class I HDACs. KA_030 through KA_035 and KA_037 were found to be 

nonselective. The selectivity fold values of the potential selective inhibitors are 

compared in Table 4.3. 

 

KA_025, KA_026, and KA_027 spanned the catalytic channels of HDACs 1 and 2 in a 

similar mode. The predominant interactions common to the complexes of these 

compounds were π-π stacked, π-π T-shaped, π-alkyl, van der Waals, conventional H-

bonds, and carbon-H-bonds (Figures 4.2-4). KA_029 formed an additional interaction 

(Metal-acceptor) between its sulfonyl oxygen and Zn2+ ion, coupled with π-sulfur 

interactions with HIS141 and HIS178 (Figure 4.5). However, such interactions were not 

observed with HDAC2 despite the catalytic channels similarity existing between 

HDACs 1 and 2. This is due to the conformational difference between the two isoforms 

that allowed the binding of this same compound to these homologous proteins with 

different modes. Interestingly, KA_036 bound to these isoforms with different 

orientations despite triplicate docking runs to ascertain its correct binding mode (Figure 

4.6). Consequently, the set of interactions, and the binding affinity were different, 

higher being against HDAC2. 
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Figure 4. 3. 3D (left) and 2D (right) representations of the interaction between HDAC1 
and KA_025 (a). 3D (left) and 2D (right) representations of the interaction between 

HDAC2 and KA_02; the types of non-bond interactions are indicated in their respective 
colors (b). 
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Figure 4. 4. 3D (left) and 2D (right) representations of the interaction between HDAC1 

and KA_026 (a). 3D (left) and 2D (right) representations of the interaction between 
HDAC2 and KA_026; the types of non-bond interactions are indicated in their 

respective colors (b). 

 

 

 



68 
   

 

 
Figure 4. 5. 3D (left) and 2D (right) representations of the interaction between HDAC1 

and KA_027 (a). 3D (left) and 2D (right) representations of the interaction between 
HDAC2 and KA_027; other types of non-bond interactions are indicated in their 

respective colors (b). 
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Figure 4. 6. 3D (upper) and 2D (lower) representations of the interaction between 
HDAC1 and KA_029; the types of non-bond interactions are indicated in their 

respective colors 
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Figure 4. 7. 3D (upper) and 2D (lower) representations of the interaction between 
HDAC2 and KA_036; the types of non-bond interactions are indicated in their 

respective colors in the 2D scheme. 
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Table 4. 2. Estimated free energy of binding of KAs against Class I HDACs and 
HDAC6 compared with known HDAC inhibitors. The compounds are color-coded: 

known HDAC inhibitors (grey); HDACs 1- and 2-selective (green); HDAC1-selective 
(yellow); HDAC2-selective (purple) and nonselective inhibitors (orange). 

 

 ∆G (kcal/mol) 
Compound HDAC1 HDAC2 HDAC3 HDAC8 HDAC6 
Vorinostat -8.45 -8.64 -8.32 -8.42 -8.55 

Belinostat -9.62 -8.89 -9.44 -8.68 -8.02 

Romidepsin -8.22 -8.76 -8.44 -7.99 -7.34 

Entinostat -9.82 -9.86 -10.62 -7.16 -7.65 

Tacedinaline -8.62 -8.10 -9.08 -7.36 -7.82 

Mocetinostat -9.89 -9.44 -9.76 -6.44 -7.32 

KA_025 -10.45 -10.31 -8.99 -8.53 -8.46 

KA_026 -10.20 -9.82 -8.88 -8.64 -8.62 

KA_027 -10.34 -10.21 -9.01 -8.93 -8.93 

KA_028 -9.72 -9.52    -8.87 -8.39 -7.94 

KA_029 -9.95 -8.02 -8.1 -7.71 -8.00 

KA_030 -9.18 -8.41 -8.29 -7.90 -7.94 

KA_031 -9.41 -8.98 -9.09 -8.43 -8.6 

KA_032 -9.05 -8.35 -8.82 -7.66 -8.29 

KA_033 -8.23 -8.14 -8.15 -7.70 -7.72 

KA_034 -8.60 -7.79 -8.01 -8.22 -7.56 

KA_035 -8.12 -7.33 -7.60 -7.72 -7.22 

KA_036 -7.60 -9.03 -7.9 -7.81 -7.73 

KA_037 -7.92 -8.11 -8.13 -7.81 -8.08 
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Table 4. 3. Selectivity index of HDAC1 compared with HDACs 2, 3, 6, 8; and HDAC2 
compared with HDACs 1, 3, 6 and 8. 

 

Compounds 

HDAC1 HDAC2 HDAC3 HDAC8 HDAC6 Selectivity Index Selectivity 

Ki₁ 

(nM) 

Ki₂ 

(nM) 

Ki₃ 

(nM) 

Ki₈ 

(nM) 

Ki₆ 

 (nM) 
Ki₂/Ki₁ Ki₃/Ki₁ Ki₈/Ki₁ Ki₆/Ki₁ 

 

KA_025 21.85 27.49 384 678 689 1.26 17.57 31.03 31.53 HDAC1&2 

KA_026 33.28 63.43 396 465.02 483.53 1.91 11 13.97 14.53 HDAC1&2 

KA_027 26.25 32.82 246.21 282.7 284.26 1.25 9.34 10.77 10.83 HDAC1&2 

KA_029 51.13 1271 1240 2220 1286 24.9 24.25 43.42 25.15 HDAC1 

      
Ki₁/Ki₂ Ki₃/Ki₂ Ki₈/Ki₂ Ki₆/Ki₂ 

 
KA_036 2680 238.67 1619 1890 2160 11.23 6.78 7.92 9.05 HDAC2 

 
 

4.2.2 ADMET analysis 

 
The designed compounds were drug-like having passed the rule of 5 and other 

pharmacokinetic tests (Table 4.4). All the physicochemical parameters were found to be 

within the acceptable range for drug candidacy. An important measure of drug-likeness, 

topological polar surface (TPSA) area is an index which shows the likelihood of 

transporting a molecule through cell membranes – allows for the prediction of human 

intestinal absorption and blood-brain barrier penetration among others. The Descriptor 

sensitivity analysis of S+logP in response (TPSA) is shown in Figure 4.7. The slope of 

the curve corresponded to the value reflecting the hydrophilicity/hydrophobicity of the 

compounds. These compounds were predicted to have TPSA < 100, indicating their 

tendency for crossing the lipid bilayer. Caco-2 

(human epithelial colorectal adenocarcinoma) permeability is another crucial property 

reflecting gastrointestinal permeability by measuring the rate of transport of a drug 

molecule across the Caco-2 cell line. It was studied in vitro (The et al., 2011) and in 

silico — QSAR model was applied to study Caco-2 permeability of dataset of 674 

established compounds (Wang et al., 2000). The aqueous solubility is an important 

ADMET property influencing absorption and transport of a drug molecule in the body. 

Quantitative Structure-Property Relationship (QSPR) was applied to relate 150 drug and 
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organic molecules to their respective aqueous solubility (Ghasemi and Saaidpour, 

2007).  

Table 4. 4. Predicted Drug-like and ADMET properties of KA_025 through KA_037 
using ADMET Predictor™ and AdmetSAR modeling programs. 

Name MlogP S+logP S+logD MWt 
(Da) M_NO HBDH T_PSA 

(Å2) P(BBB+) P(HIA+) Aq. Sol. 
(LogS) 

Caco-2 
Perm. 
(cm/s) 

KA_025 3.33 4.056 4.06 329 3 0 39.07 0.9935 0.9784 -3.6906 1.4943 

KA_026 2.51 2.471 2.47 332 4 0 42.31 0.9882 0.9784 -3.2093 1.4537 

KA_027 2.96 2.957 2.02 368 5 0 59.38 0.9031 1 -3.4582 0.9243 

KA_028 2.2 3.943 3.94 340 4 1 53.17 0.9791 1 -3.4364 0.8404 

KA_029 3.21 3.206 1.58 342 5 1 62.4 0.9575 1 -3.6458 1.0199 

KA_030 1.68 3.449 3.45 356 5 0 51.54 0.9159 1 -3.7513 1.0197 

KA_031 2.946 3.755 3.755 323.4 3 0 29.54 0.9943 1 -3.6109 1.505 

KA_032 1.981 2.694 2.694 326.4 4 1 41.57 0.9824 0.965 -3.5817 1.3993 

KA_033 0.62 0.929 0.929 262.3 4 1 49.41 0.9443 0.9272 -2.4127 1.4715 

KA_034 0.589 2.105 2.105 277.3 4 1 59.16 0.9758 1 -2.6094 1.0467 

KA_035 0.97 3.564 3.564 331.3 4 1 59.16 0.9758 1 -2.6094 1.0467 

KA_036 3.99 3.989 2.81 322 3 2 37.05 0.7739 0.9225 -3.1637 1.0026 

KA_037 2.323 2.719 2.7 322.4 5 2 67.25 0.8496 0.9682 -2.5174 0.9262 

 
Note: The drug-like molecules should violate no more than one of the following 1-4 properties (Lipinski, 
2004); 5-8 are other crucial ADMET properties: 
1. MlogP (Moriguchi model of octanol–water partition coefficient, log P) (≤ 5). 
    Or S + LogP (Simulation Plus Model of octanol–water distribution coefficient) ≤ 5. 
    Or S + logD (Simulation Plus Model of octanol–water distribution coefficient, log D) ≤ 5. 
2. MWt (Molecular weight) ≤ 500 Da. 
3. S_HBD (Sum of H-bond donors, NH- and OH) ≤ 5 
4. S_NO (Sum H-bond acceptors, N and O) ≤ 10. 
5. T_PSA (Topological polar surface area) ≤ 140Å2.   
6. P(HIA+) (Probability for human intestinal absorption) > 0.6. 
7. Aqueous Solubility (LogS > -5.7). 
8. Caco-2 permeability (LogPapp, cm/s) (faster than 22 nm/s). 
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Figure 4. 8. Sensitivity curve of exponential of S+LogP versus topological polar surface 

area of compounds KA_025 (A), KA_029 (B) and KA_036 (C). 
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4.3. Identification of Potential Isoform-Selective Histone Deacetylase Inhibitors via 

Structure-Based Virtual Screening  

 

4.3.1 Binding affinity  

 
The calculated inhibition constant of the best-ranked compounds with remarkable 

isoform selectivity for their respective HDAC isoforms are given in Table 4.5.  

Compound 1 (Otava id; 3368838) was found to show ~ 25- to 200-fold moderate 

selectivity for HDAC1 compared with HDACs 2, 3 and 8. Similarly, compound 11 

(otava id; P7020400743) was ~ 124- to 3630-fold highly selective for HDAC2 over rest 

of the class members. Compound 21 (Otava id; P7020350446) showed ~ 5- to 56-fold 

moderate selectivity for HDAC3 over the rest of the isoforms. Compound 29 (Otava id; 

P7019081225) showed ~ 180- to 680-fold high selectivity for HDAC8 over the rest of 

the class members. 
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Table 4. 5. Structures, calculated inhibition constant (Ki) of the best-ranked selective 
inhibitors of class I HDACs identified via structure-based virtual screening. 

 
   HDAC1 HDAC2 HDAC3 HDAC6 HDAC8  

Ligand Otava id Structure Ki (nM) Ki(nM) Ki(nM) Ki(nM) Ki(nM) Selectivity 

Compound 1 3368838 

 

6.77 178.80 373.10 1088.5 1347.31 HDAC1 

Compound 11 P7020400743 

 

68.43 0.55 595.32 1997.50 847.82 HDAC2 

Compound 21 P7020350446 

 

189.97 154.80 31.05 1744.74 897.26 HDAC3 

Compound 29 P7019081225 

 

18.30 22.67 68.95 38.64 0.10 HDAC8 

 

4.3.2 Drug-likeness and ADMET analysis 

 
The drug-like and ADMET properties predicted are shown in Table 4.6. All the 36 

compounds were found to be drug-like having obeyed the “Rule of 5” and displayed 

good physicochemical chemical properties. AdmetSAR, a program used in this study, 

estimates ADMET properties based on substructure pattern recognition and then uses 

support vector machine algorithm to build a model (Cheng et al., 2012). ADMET 

properties estimated including aqueous solubility (LogSw) and Caco-2 permeability 

were within the normal range of drug candidacy. 
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Table 4. 6. Predicted drug-like and ADMET properties of compounds 1 through 36. 

S/N Otava code MlogP S+logP S+logD Ruleof5 Mwt 
(Da) S_NO S_HBD TPSA 

(Å2) 
Aq. Sol. 
(logsw) 

Caco-2 
perm. 
(cm/s) 

1 3368838 2.743 3.567 3.567 0 387.501 5 0 63.68 -3.6674 0.7903 

2 P1167483 2.328 2.595 0.347 0 340.403 5 3 85.44 -3.9247 0.908 

3 4562316 3.006 3.039 3.039 0 305.335 4 0 50.52 -3.588 0.7903 

4 P0105480004 2.9 0.117 0.115 0 294.294 7 2 87.69 -3.1743 0.7726 

5 P7012340203 1.358 4.409 1.07 0 339.418 5 2 75.11 -3.9352 0.906 

6 P7016000027 0.815 1.051 0.172 0 360.418 8 2 117.28 -31015 1.2241 

7 4562295 2.729 2.657 2.657 0 321.335 5 1 68.54 -2.9611 0.9342 

8 P0217690002 2.182 1.562 1.497 0 282.304 6 3 90.9 -3.2046 0.7418 

9 4562397 3.134 3.153 3.153 0 281.357 3 0 29.54 -2.7639 1.7487 

10 P7013831126 2.593 3.465 0.085 0 376.436 5 1 72.19 -3.465 1.1189 

11 P7020400743 2.108 2.419 -0.012 0 271.318 4 2 66.4 -4.1709 0.8802 

12 P2194599 1.04 1.287 -1.451 0 303.32 7 2 105.32 -2.6568 -0.2524 

13 P1146482 1.825 3.148 -0.266 0 220.204 4 2 65.98 -2.9419 0.8747 

14 P7020090764 1.054 2.929 0.239 0 307.311 6 3 95.34 -2.9757 1.0673 

15 P7020350445 0.831 0.569 -2.038 0 246.227 7 3 107.97 -2.1965 0.2993 

16 1.25E+08 3.189 3.509 3.5 0 348.382 5 1 72.2 -4.5638 0.3963 

17 4562375 2.916 2.984 0.882 0 340.425 5 1 62.55 -3.3815 1.1657 

18 P1357221 1.99 3.164 -0.148 0 257.222 4 1 63.33 -4.4561 1.3197 

19 P1688898 2.201 2.809 2.779 0 329.382 7 3 103.79 -2.8164 0.9713 

20 4562294 2.901 3.435 3.435 0 318.378 4 1 43.26 -3.9688 1.5988 

21 P7020350446 1.112 0.807 -2.047 0 260.254 7 3 107.97 -3.1165 0.4911 

22 4562273 1.178 1.73 1.729 0 335.365 6 2 84.08 -3.6675 1.6083 

23 4562274 1.618 2.284 2.284 0 319.365 5 1 64.11 -3.3149 0.8019 

24 7.21E+09 3.805 4.161 4.155 0 312.368 3 1 41.99 -4.26 1.5715 

25 1.15E+08 4.144 4.286 4.286 0 281.143 3 2 41.13 -5.3771 1.7059 

26 P7016361082 1.595 1.924 1.414 0 324.791 6 2 87.74 -3.8428 1.221 

27 1.06E+08 3.336 4 4 0 276.724 4 2 50.36 -4.7511 1.4481 

28 1.27E+08 4.369 4.578 4.578 1 288.779 3 2 41.13 -5.5755 1.7277 

29 P7019081225 1.305 3.4 -0.536 0 372.383 6 3 99.52 -3.945 0.129 

30 P1364003 3.258 4.639 1.229 0 284.357 3 1 46.53 -4.0695 0.8467 

31 P7017470060 1.342 2.754 0.141 0 296.281 5 1 76.74 -3.1626 0.0181 

32 P0127442890 0.059 1.535 -0.766 0 331.349 6 1 89.63 -3.6986 0.5452 

33 P7020420366 0.809 1.598 -1.029 0 231.253 4 2 70.16 -3.6044 0.3752 

34 P1365606 1.983 3.912 0.701 0 237.26 3 2 53.09 -3.8013 0.6419 
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Note: The drug-like molecules should violate no more than one of the following 1-4 properties (Lipinski, 
2004); 5-7 are other crucial ADMET properties: 
1. MlogP (Moriguchi model of octanol–water partition coefficient, log P) (≤ 5). 
    Or S + LogP (Simulation Plus Model of octanol–water distribution coefficient) ≤ 5. 
    Or S + logD (Simulation Plus Model of octanol–water distribution coefficient, log D) ≤ 5. 
2. MWt (Molecular weight) ≤ 500 Da. 
3. S_HBD (Sum of H-bond donors, NH- and OH) ≤ 5 
4. S_NO (Sum H-bond acceptors, N and O) ≤ 10. 
5. T_PSA (Topological polar surface area) ≤ 140Å2 

6. Aqueous Solubility (LogS > -5.7)  
7. Caco-2 permeability (LogPapp, cm/s) (faster than 22 nm/s) 

              

4.3.3 Molecular dynamics simulation analysis  

 
RMSD: The stabilities of each free isoform and its complex with the respective best-

ranked ligand were examined by analyzing simulation parameters.  In drug design, 

RMSD can be used to measure the stability of a docked protein-ligand complex. For 

HDACs 1 and 2, the backbone RMSD profiles of both free and complexes were within 

the range of 0.6-1.6Å (Figures 4.8 (a) and (b)), with the complexes showing higher 

stabilities until the end of the simulation. In addition, the RMSD of the free form of 

HDAC2 was in synchrony with that of the complex between 3-6 ns. Similar trend (0.6-

1.4Å) was observed with RMSD of the free and complex forms of HDAC3 until 9 ns — 

as the simulation progressed, the complex showed higher stability than the free enzyme 

(Figure 4.8 (c)). In the same manner, bound HDAC8 showed lower RMSD than its free 

form (Figures 4.8 (d)).  

35 P0108480094 3.576 3.478 3.478 0 415.517 5 1 61.77 -3.8614 1.1606 

36 P7114490082 1.598 1.734 -0.757 0 245.236 5 3 86.63 -3.6044 0.3752 
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Figure 4. 9. 10 ns-MD simulation RMSD profiles of free and bound enzymes. HDAC1 
without ligand (blue) and HDAC1-compound 1 (Otava id; 3368838) complex (orange) 
(a). HDAC2 without ligand (blue) and HDAC2-compound 11 (Otava id; P7020400743) 
complex (orange) (b). HDAC3 without ligand (blue) and HDAC3-compound 21 (Otava 

id; P7020350446) complex (orange) (c). HDAC8 without ligand and HDAC8-
compound 29 (Otava id; P7019081225) complex (orange) (d). 

 
Potential energy is another measure of protein-ligand complex stability. The potential 

energy of the complexes was lower and remained stable throughout the simulation time 

(Figure 4.9).  
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Figure 4. 10. 10 ns-MD simulation energy profiles of the free and bound enzymes. 
HDAC1 without ligand (blue) and HDAC1-compound 1 (Otava id; 3368838) complex 

(orange) (a). HDAC2 without ligand (blue) and HDAC2-compound 11 (Otava id; 
P7020400743) complex (orange) (b). HDAC2 without ligand (blue) and HDAC3-

compound 21 (Otava id; P7020350446) (orange) (c). HDAC8 without ligand (blue) and 
HDAC8-compound 29 (Otava id; P7019081225) complex (orange) (d). 

 
RMSF profile of a dynamic system shows residue fluctuation over time. Fewer residues 

in the complexes showed increased RMSFs compared with the free isoforms. In other 

words, those residues involved in interaction with inhibitors showed lower fluctuation, 

indicating the stability of the complexes (Figure 4.10).  
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Figure 4. 11. RMSF profiles of the free and bound enzymes. HDAC1 without ligand 
(blue) and HDAC1-compound 1 (Otava id; 3368838) complex (orange) (a). HDAC2 
without ligand (blue) and HDAC2-compound 11 (Otava id; P7020400743) complex 
(orange) (b). HDAC3 without ligand (blue) and HDAC3-compound 21 (Otava id; 

P7020350446) (orange) (c). HDAC8 without ligand (blue) and HDAC8-compound 29 
(Otava id; P7019081225) complex (orange) (d). HDACs 1, 2 and 3 have their crystal 

structures starting with residues 8, 12 and 2 respectively. 

 
 

4.4 The Design of  Potential Selective Inhibitors of HDAC6  

 

4.4.1 Interaction of known HDAC inhibitors with HDAC6 catalytic domain 2 

 
The self-docking of TSA reproduced similar conformation to the experimental pose in 

the catalytic channel of HDAC6. TSA bound to the enzyme with its cap-linker-chelator 

pharmacophore feature; the hydroxamic acid group chelated Zn2+ and formed H-bond 



82 
   

interactions with HIS610 and GLY619, the carbonyl oxygen of the linker group also 

formed additional H-bond interaction with HIS651 along the tunnel, and van der Waals 

interaction were formed all over the channel (Figure 4.10 (a)). In a similar manner, 

Panobinostat bound with its cap-linker-chelator pharmacophore features with which 

Zn2+ ion was chelated via hydroxamic acid group and H-bond interactions were formed 

with HIS610 and GLY19. In contrast, the pyrrole moiety of indole ring (cap) engaged 

THR678 and MET682 via H-bond interactions and additional π-sulfur interaction 

(Figure 4.10 (b)). These additional interactions might account for the increased binding 

affinity observed with Panobinostat compared with the native ligand, TSA.  

 

The binding modes of the remaining known HDAC inhibitors in the catalytic channel of 

HDAC6 are shown in Figures 4.12-19. All the hydroxamates showed similar binding 

mode — engaging Zn2+ ion via the hydroxamic acid group, spanning the enzyme’s long 

tunnel with their aliphatic/aromatic linker, making various interactions via their capping 

group.   
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Figure 4. 12. 3D (left) and 2D (right) interaction diagrams between HDAC6 catalytic 
domain 2 and Trichostatin A (a), and Panobinostat (b). Panobinostat was found to 
have the highest binding affinity among the known HDAC inhibitors docked into the 

catalytic channel of the enzymes. 
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Figure 4. 13. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 

2 and Belinostat (ΔG = 9.22 kcal/mol; Ki = 175.22 nM). 
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Figure 4. 14. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 
2 and Abexinostat (ΔG = -8.42 kcal/mol; Ki = 678.28 nM). 
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Figure 4. 15. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 
2 and Vorinostat (ΔG = -8.40 kcal/mol; Ki = 691.30 nM). 
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Figure 4. 16. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 
2 and Tacedinaline (ΔG = -8.19 kcal/mol; Ki = 1.00 µM). 
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Figure 4. 17. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 
2 and Mocetinostat (ΔG = -7.99 Kcal/mol; K i= 1.39 µM). 
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Figure 4. 18. 3D (a) and 2D (b) interaction diagrams between HDAC6 catalytic domain 
2 and Entinostat (ΔG = -7.71 kcal/mol; Ki = 3.44 µM). 
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Figure 4. 19. 3D (a) and 2D () interaction diagrams between HDAC6 catalytic domain 2 
and Ricolinostat (ΔG = -7.71 kcal/mol; Ki = 2.24 µM). 
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Figure 4. 20. 3D (upper) and 2D (lower) interaction diagrams between HDAC6 catalytic 
domain 2 and (ΔG= -5.84 kcal/mol; Ki = 52.73 µM). 
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4.4.2 Identification of Potential Lead Compounds as HDAC6-Selective Inhibitors 

 
The predicted HDAC6 inhibitors, P7020527347, P2194879, P3823745, and 

P7715560117 showed ~ 60- to 400-fold selectivity for HDAC6 over HDAC7. 

P7020527347, P2194879 showed increased binding affinity for HDAC6 compared with 

all the known HDAC inhibitors studied here.  Except for Citarinostat, the predicted 

inhibitors showed improved in silico performance which might be attributed to their 

ionizable carboxylic fragment (absent in the known HDAC6-selective inhibitors) (Table 

2). The experimental values of these known inhibitors vary depending on the assay 

conditions, making their comparison with these in silico values difficult. Nonetheless, 

the range of this values have been provided here in the introduction section and the 

appropriate literature was cited. 

 

These known inhibitors bound to HDAC6 with their pharmacophore model containing 3 

features: heterocyclic aromatic ring as a capping group for the enzyme’s surface 

recognition, aliphatic/aromatic linker group that spanned the long tunnel, and the 

hydroxamic acid moiety as a zinc-binding domain (Appendix B.3).   

 

Like the above-described interaction pattern, the best-ranked compound, P7020527347 

formed 2 H-bonds formed between carboxyl group (zinc-binding group) and HIS610, 

TRY782; and 1 H-bond between oxygen of the hydoxyphenyl group (linker) and 

HIS611 deep inside the channel; and 1 H-bond between the oxo group of the N-

containing heterocyclic fused ring and HIS680. Other contributing forces include 5 Van 

der Waals interactions in the deep active site, and π-π stacked, π-π T-shaped and π-alkyl 

interactions at the entrance and along the tunnel (Figure 4.20 (a)). The binding of the 

same compound at the end of 10 ns-MD simulation was also analyzed. Its orientation 

remained the same in the 3D space, but the carboxyl group ionized and interacted with 

seemingly ionized ASP742 via H-bond in the deep channel as shown in 2D scheme 

(Figure 4.20 (b)). 
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Table 4. 7. Calculated binding energy (∆G) and inhibition constant (Ki) of the 5-
selected known selective inhibitors of HDAC6 compared with the 4 potential selective 
lead compounds (highlighted in bold) identified via structure-based virtual screening. 

  HDAC6 HDAC7 

Structures Compound 
∆G 

(kcal/mol) 

Ki 

(nM) 

∆G 

(kcal/mol) 

Ki 

(nM) 

 

Tubacin -10.50 37.85 -9.08 220.31 

 

Tubastatin A -10.19 34.12 -8.62 484.16 

 

Ricolinostat -10.22 32.21 -9.11 209.95 

 

Citarinostat -11.17 6.49 -8.08 1190 

 

Nexturastat A -10.61 16.78 -9.53 103.09 

 

P7020527347 -13.16 0.23 -9.55 90.65 
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P2194879 -11.79 2.29 -9.01 251.23 

 

P3823745 -10.62 16.52 -8.17 1110 

 

P7715560117 -10.56 18.21 -8.23 1094 

 

 

The second 2nd-ranked compound is P2194879, with bulky aromatic cap group stacked 

at the entrance to the channel by forming π-π T-shaped with HIS500, and 2 π-alkyl 

interactions with PRO501 and LEU749. Deep inside the active site, 2 H-bonds were 

formed between the carboxyl group and HIS610, TRY782. The carbonyl oxygen also 

engaged Zn2+ ion via metal-acceptor interactions. Other types of non-bond interactions 

include 10 van der Waals interactions all over the channel (Figure 4.21 (a)). The binding 

mode of the same compound at the end of 10 ns-MD simulation showed that its 

orientation remained the same in the 3D space, but the carboxyl group ionized, and the 

H-bonds were retained but the set of van der Waals attraction were altered as shown in 

the 2D scheme (Figure 4.21 (b)). 

 

P3823745 is the 3rd-ranked compound with similar binding mode to that of P2194879 

described above. HIS500 and PRO501 were involved in π-sigma and π-π stacked 

interactions respectively, with the cap group. At the bottom of the pocket, 2 H-bonds 

were formed between the carboxyl group and HIS610, TRY782; with Zn2+ ion engaged 

via metal-acceptor interaction. Several van der Waals interactions were formed all over 

the active site (Figure 4.22 (a)). The binding of the same compound at the end of 10 ns-
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MD simulation showed that its orientation remained the same in the 3D space but the 

carboxyl group ionized and formed H-bond with TYR782 instead of the seemingly 

ionized ASP742 in the docking complex, the carbonyl group of the cap moiety also 

formed H-bond with SER568 as shown in 2D scheme (Figure 4.22 (b)). 

 

The 4th -ranked compound, P7715560117 apparently made no physical interaction with 

any amino acid residues at the entrance to the channel. Instead, van der Waals 

interactions were formed along the entire length of the tunnel. In a similar manner to the 

rest of the compounds, 2 H-bonds were formed between the carboxyl group and 

HIS610, TRY782; with Zn2+ ion engaged via metal-acceptor interaction (Figure 4.23 

(a)). The binding of the same compound at the end of 10 ns-MD simulation revealed 

that its orientation remained the same in the 3D space, but the carboxyl group ionized 

and formed H-bond with TYR782 instead of the seemingly ionized ASP742 in the 

docking complex, as shown in 2D scheme (Figure 4.23 (b)). 
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Figure 4. 21. Binding mode of P7020527347 to HDAC6; the compound engaged zinc 
metal ion deep inside the pocket via a strong metallic interaction with carboxylic group 
— the same carboxylic group formed 4 H-bonds with HIS610, 611 and ASP742, 782 in 
3D space and the key for the non-bond interactions is given in the 2D scheme (a). The 

binding of the same compound at the end of 10 ns-MD simulation; its orientation 
remained the same in the 3D space, but the carboxyl group ionized and interacted with 
seemingly ionized ASP742 via H-bond in the deep channel as shown in 2D scheme (b). 
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Figure 4. 22. P2194879 bound to HDAC6 with its bulky capping group stuck at the 
entrance to the channel and engaged zinc metal ion in the deep pocket via a strong 
metallic interaction with carboxylic group — the same carboxylic group formed H-

bonds with HIS610 and TYR782 in 3D space and the key for the non-bond interactions 
is given in the 2D scheme (a). The binding of the same compound at the end of 10 ns-
MD simulation; its mode remained the same in the 3D space, but the carboxyl group 
ionized, and the H-bonds were retained but the set of Van der Waals attraction were 

altered as shown in the 2D scheme (b). 
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Figure 4. 23. P3823745 binding mode to HDAC6; the compound engaged zinc ion deep 
inside the pocket via a strong metallic interaction with carboxylic group — the same 

carboxylic group formed H-bonds with HIS610 and ASP742 in 3D in 3D space and the 
key for the non-bond interactions is given in the 2D scheme (a). The binding of the 

same compound at the end of 10 ns-MD simulation; its orientation remain the same in 
the 3D space but the carboxyl group ionized and formed H-bond with TYR782 instead 

of the seemingly ionized ASP742 in the docking complex, the carbonyl group of the cap 
moiety also formed H-bond with SER568 as shown in 2D scheme (b). 
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Figure 4. 24. Binding mode of P7715560117 to HDAC6; the compound engaged zinc 
ion deep inside the pocket via strong metallic interaction with carboxylic group — the 
same carboxylic group formed H-bonds with HIS610 and ASP742 in 3D space and the 

key for the non-bond interactions is given in the 2D scheme (a). The binding of the 
same compound at the end of 10 ns-MD simulation; its orientation remained the same in 
the 3D space, but the carboxyl group ionized and formed H-bond with TYR782 instead 
of the seemingly ionized ASP742 in the docking complex, as shown in 2D scheme (b). 

 

The predicted drug-like and ADMET properties of the 4 potentially selective inhibitors 

of HDAC6 are given in Table 1. These descriptors are: S + logP; S + log D; MlogP; 

MWt; S_HBD and S_NO. Any compound violating more than 1 of these properties is 

likely to have poor absorption and oral bioavailability (Lipinski, 2004). Other 
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physicochemical properties including probability for human Intestinal absorption and 

Cacao-2 permeability, aqueous solubility and rat acute toxicity values were also found 

to be within the normal range of drug molecule.  

 

Table 4. 8. Drug-like and ADMET properties of the 4 potentially selective inhibitors of 
HDAC6 predicted using ADMET PredictorTM and admetSAR. 

Otava id MlogP S+logP S+logD MWt 
(Da) 

S_NO T_PSA 
(Å2) 

S_HBD P(HIA+) Aqueous 
Solubility 

(LogS) 

Caco-2 
permeability 
(LogPapp, 

cm/s) 

R.A.T.    
(LD50, 
mol/kg) 

Tubastatin A 2.39 1.996 1.326 335.408 5 57.5 2 0.9953 -2.8888 0.5832 2.6938 

Ricolinostat 3.259 3.288 3.285 433.513 8 107.45 3 0.9509 -3.2847 0.3808 2.5013 

Citarinostat 3.467 3.92 3.916 467.958 8 107.45 3 0.9545 -3.9177 0.5666 2.5652 

Nexturastat 3.344 2.513 2.501 341.413 6 81.67 3 0.9914 -3.8825 0.7331 2.3276 

P7020527347 0.614 1.732 -1.245 297.272 7 115.31 4 0.8 -3.8034 0.681 2.4787 

P2194879 1.95 2.413 -0.482 320.35 5 79.29 2 0.97 -3.0952 0.2519 2.0093 

P3823745 2.443 2.025 -1.038 322.325 7 107.97 3 0.98 -3.2017 0.4935 2.38 

P7715560117 2.13 3.893 0.546 280.282 4 67.51 1 1 -3.3279 0.7413 2.9342 

 

Note: The drug-like molecules should violate no more than one of the following 1-4 properties (Lipinski, 
2004); 5-8 are other crucial ADMET properties: 
1. MlogP (Moriguchi model of octanol–water partition coefficient, log P) (≤ 5). 
    Or S + LogP (Simulation Plus Model of octanol–water distribution coefficient) ≤ 5. 
    Or S + logD (Simulation Plus Model of octanol–water distribution coefficient, log D) ≤ 5. 
2. MWt (Molecular weight) ≤ 500 Da. 
3. S_HBD (Sum of H-bond donors, NH- and OH) ≤ 5. 
4. S_NO (Sum H-bond acceptors, N and O) ≤ 10. 
5. T_PSA (Topological polar surface area) ≤ 140Å2. 
6. P(HIA+) (Probability for human intestinal absorption) > 0.6. 
7. Aqueous Solubility (LogS > -5.7).  
8. Caco-2 permeability (LogPapp, cm/s) (faster than 22 nm/s). 
 

Comparative analysis of the MD simulation results showed that the RMSD of both the 

free enzyme and the 4 complexes started out slightly in synch until around 0.2 ns, 

beyond which each system behaved differently until the end of the simulation. HDAC6-

P3823745 complex deviated from 0.6-1.3 Å until around 4 ns, beyond which it 

stabilized (between 0.80-1.00 Å) until the end of the simulation. The complexes with of 

HDAC6 with P7715560117, P2194879 and P7020527347 showed a similar trend but 

slightly higher deviation (between 0.90-1.40 Å) towards the end of the simulation. 

Overall, all the complexes showed slightly higher stability compared with the free 

enzyme (Figure 4.24 (a)). In agreement with the RMSD distribution, the non-bond 
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distance between HDAC6 and P3823745 was found to be the shortest throughout the 

simulation time. Except for HDAC6-P7715560117, all the non-bond distances varied by 

< 1 Å over the entire trajectory (Figure 4.24 (b)) Radius of gyration (Rg) is another 

important parameter used to examine the structural stability of proteins and protein-

ligand complexes over time. Here, the Rg profiles of the free HDAC6 and complexes 

were found to be within the range of 1.33-1.42 Å, indicating the potential stability of the 

complexes over time of the simulation (Figure 4.24 (c)).  
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Figure 4. 25. Root-Mean-Squared Deviation (RMSD) profiles of HDAC6-CD2 without 
ligand (green) and the complexes of HDAC6-CD2 with P7020527347 (red), P2194879 
(purple), P3823745 (yellow), and P7715560117 (blue). The complex of HDAC6-CD2 

with P3823745 (yellow) displayed the highest stability over time of the simulation. 

 

4.4.3 Pharmacophore hypotheses generated 

 
Even though the 10 hypotheses generated contain the same features; 1 H-bond donor, 1 

H-bond acceptor, 2 hydrophobic (aliphatic/aromatic) groups (Figure A1.1), Hypo1 was 

found to be most statistically valuable, having the highest rank value (Table 4.6), 

enrichment factor (16.23), and GH score (0.78) (Table 4.7). The 4 pharmacophore 

features mapped very well onto the following known HDAC inhibitors: Belinostat, 

Abexinostat, Panobinostat, Vorinostat and Entinostat, among the training set 

compounds. The hydrophobic (aromatic) feature mapped onto different cap groups; the 

H-bond donor feature also mapped onto cap groups in Panobinostat, and Entinostat, and 

onto the linker regions in Belinostat, Abexinostat and Vorinostat; the H-bond acceptor 

feature mapped mainly, onto carbonyl oxygen of the hydroxamic acid and amide groups 
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(Figure 4.25). Interestingly, although diverse in stuctures, the 10 best-fitting compounds 

retrieved by hypo1 satisfied the geometric constraints of the hypothesis — they all 

showed fit value > 3, and mapped onto hypo1 well with their distinct scaffolds (Figure 

4.26). 

Table 4. 9. Characteristic features of the 10 pharmacophore hypotheses generated by 
HipHop approach. 

Hypotheses Featurea Rank Max. Fit 
1 HHDA 89.275 4 
2 HHDA 86.538 4 
3 HHDA 84.688 4 
4 HHDA 83.972 4 
5 HHDA 83.848 4 
6 HHDA 83.755 4 
7 HHDA 82.540 4 
8 HHDA 81.143 4 
9 HHDA 81.116 4 
10 HHDA 76.878 4 

 
a Feature: A: H-bond acceptor; D: H-bond donor: H: Hydrophobic (aliphatic/aromatic) group. 
 
Table 4. 10. Pharmacophore hypotheses validation using Guner-Henry scoring method. 

Hypotheses Ha A D Ht %Y %A E GH 

1 17 20 420 22 77.27 85.00 16.23 0.7821 

2 16 20 420 25 64.00 80.00 13.44 0.6647 

3 15 20 420 22 68.18 75.00 14.32 0.6866 

4 16 20 420 22 72.73 80.00 15.27 0.7343 

5 16 20 420 25 64.00 80.00 13.44 0.6647 

6 15 20 420 26 57.69 75.00 12.12 0.6031 

7 14 20 420 20 70.00 70.00 14.70 0.6895 

8 15 20 420 26 57.69 75.00 12.12 0.6031 

9 15 20 420 25 60.00 75.00 12.60 0.6216 

10 14 20 420 21 66.67 70.00 14.00 0.6632 
 
D is the total molecules in the database 
A is the total number of active molecules in the database 
Ht is the total hits in the database,  
Ha is the number of active hits 
Y% is the percentage of active compounds obtained from the decoy set 
A% is the percentage ratio of actives in the hits list, E is the enrichment factor 
 GH is the goodness of hit (Güner-Henry) score 
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Figure 4. 26. Mapping of pharmacophore hypothesis 1 (Hypo1) to some selected 
compounds among the training set molecules. 
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Figure 4. 27. 10 best-fitting lead compounds that satisfied the geometric constraints of 
Hypo1 identified by 3D query against “DruglikeDiverse” Database in Biovia DS 4.5. 

 

ADMET Analysis: The ADMET properties of the top 10 lead compounds are presented 

in Table 4.8.  These properties were found to be within the normal range of drug 

candidacy. According to the “rule of 5”, poor passive absorption or permeability is more 

likely if the compound violates two or more of the following conditions: LogP ≤ 5, 

MWt ≤ 500 Da, S_HBD ≤ 5, S_HBA ≤ 10. Other ADMET properties such as blood 

brain barrier crossing and human intestinal absorption were given as probability; caco-2 

permeability and aqueous solubility of our designed compounds were in agreement with 

the widely-followed “Jorgensen Rule-of-Three” which states that “the aqueous 

solubility measured as logS should be greater than -5.7, the apparent caco-2 cell 

permeability should be faster than 22 nm/s and the number of primary metabolites 
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should be less than 7; these limits are based on the properties of 90% of 1700 oral 

drugs” (Di and Kerns, 2016). 

 
Table 4. 11. Drug-like and ADMET properties of the top 10 hit compounds predicted 

using ADMET PredictorTM and admetSAR programs. 

 

  
Note: The drug-like molecules should violate no more than one of the following 1-4 properties (Lipinski, 
2004); 5-8 are other crucial ADMET properties: 
1. S + LogP (Simulation Plus Model of octanol–water distribution coefficient) ≤ 5. 
    Or S + logD (Simulation Plus Model of octanol–water distribution coefficient, log D) ≤ 5. 
2. MWt (Molecular weight) ≤ 500 Da. 
3. S_HBD (Sum of H-bond donors, NH- and OH) ≤ 5 
4. S_NO (Sum H-bond acceptors, N and O) ≤ 10. 
5. T_PSA (Topological polar surface area) ≤ 140 Å2 
6. P(HIA+) (Probability for human intestinal absorption) > 0.6 
7. Aqueous Solubility (LogS > -5.7)  
8. Caco-2 permeability (LogPapp, cm/s) (faster than 22 nm/s) 
 

Binding Affinity of the 10 Best-fitting Lead Compounds Retrieved by Hypothesis 1: The 

pharmacophore fit values and calculated binding energy of the best-fitting compounds 

against HDAC6 in comparison with class I HDACs and HDAC7 are given in Table 4.9. 

ENA501965 and IBS399024 displayed the highest binding affinity and selectivity for 

HDAC6 CD2 over class I HDACs and HDAC7. In addition, these two potentially 

Compound id S+logP S+logD Mw(Da)  S_HBD S_NO TPSA (Å2) P(HIA+) 
Aq sol 

(LogS) 

Caco-2 perm 

(LogPapp, 

cm/s) 

ENA765329 1.802 1.798 426.54 3 7 90.54 0.8938 -3.4892 0.3097 

ENA322157 -3.035 -3.044 475.61 4 9 117.5 0.9034 -3.6409 -0.4585 

IBS399024 3.687 3.686 453.95 1 7 81.93 0.9887 -4.0501 1.3814 

ENA501965 4.717 4.717 434.54 0 7 74.57 0.8812 -3.6258 0.7037 

UKR389696 2.629 2.62 470.55 2 9 115.89 0.9215 -3.4524 0.4228 

IBS407449 0.828 0.828 450.95 2 8 
                                                                              

108.47 
0.9647 -3.7963 0.1817 

PHA21654 2.645 2.645 376.48 2 7 75.19 0.9421 -3.3819 0.6714 

CBG522815 3.415 3.415 409.44 1 7 94.84 0.8796 -3.5931 0.768 

ENA752233 3.134 3.1 406.51 2 8 93.89 0.8398 -3.3346 0.7087 

EN111911 2.952 2.952 395.42 1 7 94.84 0.9701 -3.2998 0.4732 
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selective lead compounds were found to have lower binding energy compared to 

Panobinostat — the lowest-energy-binding compound among the training set. 

 

Table 4. 12. Structures, fit values and calculated binding energy of the top 10 lead 
compouds against HDAC6 compared with class I HDACs and HDAC7. 

 

Rank DruglikeDiverse 
id 

Fit 
values 

 
 

∆G (kcal/mol) 
 

HDAC6 HDAC1 HDAC2 HDAC3 HDAC8 HDAC7 

1 ENA765329 3.64833 -9.43 -8.22 -8.54 -7.88 -8.67 -8.34 

2 ENA322157 3.57888 -8.97 -7.36 -7.75 -8.11 -6.99 -8.44 

3 IBS399024 3.57652 -10.86 -7.24 -7.56 -6.78 -7.67 -8.01 

4 ENA501965 3.51523 -11.64 -6.85 -7.32 -7.43 -8.09 -8.34 

5 UKR389696 3.51467 -8.16 -8.51 -7.87 -8.42 -8.67 -8.21 

6 IBS407449 3.47151 -8.08 -7.49 -7.81 -8.11 -7.89 -7.44 

7 PHA21654 3.46511 -8.66 -8.28 -8.27 -7.31 -7.44 -7.89 

8 CBG522815 3.43677 -8.76 -8.41 -7.96 -8.23 -8.41 -8.16 

9 ENA752233 3.43067 -9.5 -7.87 -8.31 -8.25 -8.67 -8.44 

10 EN111911 3.36412 -9.11 -8.02 -8.24 -7.77 -7.86 -8.09 

                   

Binding Mode of ENA501965 and IBS399024 

The binding modes and interaction patterns of ENA501965 and IBS399024 with 

HDAC6 were analyzed using Biovia DS 4.5 visualizer. ENA501965 fitted well in the 

catalytic channel of HDAC6 with its fused heterocyclic ring serving as a capping group 

for surface recognition, which formed 2 H-bond interaction with ionized OH group of 

SER568; 1 H-bond interaction with HIS500; and 1 H-bond interaction with HIS651; 

alkyl interactions with PRO501, PHE620 and LEU749 at the entrance to the channel. 

The amide-containing linker of ENA501965, via its dimethylaminophenyl substituent, 

filled a small cavity along the middle of the tunnel by apparent steric clashes and 1 π-

alkyl interaction with PHE679. Interestingly, contrary to the traditional hydroxamic acid 

group as zinc-binding moiety, the methoxyphenyl group chelated Zn2+ ion via methoxyl 

oxygen and induced van der Waals attraction with HIS611, ASP742, TYR782, and 

GLY780 deep inside the channel (Figure 4.27 (a)); where “charge relay” mechanism of 

histone deacetylation takes place (Hai and Christianson, 2016). 
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Intriguingly, IBS399024 bound HDAC6 with different mode from those of the known 

HDAC inhibitors and ENA501965. IBS399024 did not obey the cap-linker-chelator 

feature of zinc-binding HDAC inhibitors. Instead, it bound with the conformation that 

enabled it to fit into the enzyme’s catalytic channel. The chlorophenyl group serving as 

a capping group, was buried in the interior of the tunnel and formed a halogen 

interaction with SER568 in addition to the other types of interaction. The linker group 

of IBS399024 formed 2 H-bond interactions with HIS500 and ASN494. Deep inside the 

channel, Zn2+ ion engaged in van der Waals interaction with N-containing heterocyclic 

ring, HIS651 via H-bond, while HIS61 & 611, LEU749, TYR782 interacted via π-alkyl; 

PHE620 via π-π stacked, PHE680 via π-π T-shaped interaction (Figure 4.27 (b)). 

 

Intriguingly, IBS399024 bound HDAC6 with different mode from those of the known 

HDAC inhibitors and ENA501965. IBS399024 did not obey the cap-linker-chelator 

feature of zinc-binding HDAC inhibitors. Instead, it bound with the conformation that 

enabled it to fit into the enzyme’s catalytic channel. The chlorophenyl group, thought to 

serve as a linker group, was buried in the interior of the tunnel. HIS500, PRO501 and 

SER568, residues found to interact with the cap group of ENA501965, interacted with 

the perceived linker group of IBS399024 near the entrance to the channel. Deep inside 

the channel, HIS610 611 & 651, PHE680, TYR782 interacted via π-alkyl, π-sigma, and 

π-π T-shaped interactions — instead of which van der Waals interactions were observed 

with ENA501965. Nevertheless, Zn2+ ion was involved via van der Waals interaction by 

N-containing heterocyclic ring (Figure 4.27 (b)). 
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Figure 4. 28. 3D (left) and 2D (right) interaction diagram between HDAC6 catalytic 
domain 2 and compounds 4 (DruglikeDiverse id; ENA50196) (a) and compounds 3 

(DruglikeDiverse id; IBS399024) (b). 

  

Molecular Dynamics Simulation Analysis: Structural stability of docking complexes of 

HDAC6 with panobionstat, IBS399024 and ENA50196 was examined  by 10 ns-MD 

simulation. All the systems showed similar behavior until around 1 ns, beyond which 

the backbone RMSD of the free enzyme started to increase higher than those of the 

complexes until the end of the simulation. RMSD profiles of the complexes remained in 

synchrony until around 1.3 ns, after which HDAC6-IBS399024 complex started to 

increase higher than those of the other two complexes and then stabilized until the end 

of the simulation. The complexes of HDAC6 with Panobinostat and ENA501965 

showed similar trend until around 3.3 ns, then each complex continued to deviate and 

later stabilized until the end of the simulation. Of the 4 systems simulated, HDAC6-
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ENA501965 complex showed the lowest RMSD profile and thus highest stability over 

time of the simulation (Figure 4.28 (a)).  

 

Similarly, HDAC6-Panobinostat and HDAC6-ENA501965 complexes showed 

relatively lower residue fluctuations compared with HDAC6-IBS399024 complex, and 

to the free enzyme. Nevertheless, few residues in both the free enzyme and the 

complexes fluctuated above 1.7 Å, indicating the structural stability of the systems over 

time of the simualation (Figure 4.28 (b)). These parameters were in agreement with one 

another, and were consistent with the MD results of our recent study examining the 

stability of ligand mode to HDAC6 CD2 (Uba and Yelekçi, 2018). 
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Figure 4. 29. RMSD profiles of the free form of HDAC6  and its docking complexes 
with, Panobinostat, ENA501965 and IBS399024; HDAC6-ENA501965 complex 

showed the lowest RMSD and thus highest stability over time of the simulation (a). 
RMSF profiles of HDAC6 and its docking complexes with, panobinostat, ENA501965 
and IBS399024; HDAC6-ENA501965 and HDAC6-Panobinostat complexes showed 

lower fluctuation compared to the free enzyme and HDAC6-IBS399024 complex. 
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4.5. Homology Modeling of Human Histone Deacetylase 10 

 

4.5.1 Built homology models 

 
The 20 built models of human HDAC10 were shown in Figure 4.24 (a). The models 

differed slightly in their loop region — this region appeared to be of higher energy 

compared with the rest of the structure. The variable regions usually come from loops 

and turns located further away from the binding site. Model 17 (M0017) found to be the 

best having the lowest normalized DOPE score (Table 13). The catalytic domain of 

M0017 was therefore extracted (Figure 4.24 (b)) and aligned to the experimental crystal 

structure of Danio rerio HDAC10. The two structures were perfectly aligned with very 

low RMSD value (0.23 Å) (Figure 4.24 (c)). This is as a result of the high sequence 

identity (58.6%) and similarity (76.6%) between Danio rerio HDAC10 and human 

HDAC10.   

 

4.5.2. Model Structure Validation 

 
M0017 was found to have z-score value -5.00, which is within the range of native 

conformation (Figure 4.30 (a)). The energy plot shows the local model quality by 

plotting energies as a function of amino acid residue position i – positive  values 

correspond to erroneous parts of a model (Figure 4.30 (b)). In addition, Ramachandran 

plot was generated which showed the energetically allowed regions of the protein 

backbone. These are the regions of alpha-helical and beta-sheet conformations with no 

steric clashes upon rotation around torsion angles phi and psi (Figure 4.30 (c)).                     
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 Figure 4. 30. Twenty models of human histone deacetylase 10 built using Danio rerio 
(zebrafish) histone deacetylase-10 X-ray crystal structure (5TD7) as a template (a). The 

3D structure of the cataltytic domain of the best  model  (M0017)                                        
(Normalized DOPE Score:-0.814028) (b). The alignment of M0017 (red) to zebrafish 

HDAC10 (blue) (c). 
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Table 4. 13. DOPE Score and Normalized DOPE Score (from modeler) of the 20 built 
models. The best model (M0017) is highlighted in yellow. 

Model DOPE Score Normalized DOPE Score 

M0009 -77825.51563 -0.791391 

M0001 -77740.39844 -0.78238 

M0020 -77405.42188 -0.746919 

M0013 -77796.80469 -0.788351 

M0019 -77845.39063 -0.793495 

M0002 -77654.78125 -0.773316 

M0004 -77812.5625 -0.790019 

M0003 -77808.5625 -0.789596 

M0018 -77785.17188 -0.78712 

M0015 -77799.80469 -0.788669 

M0014 -77005.67969 -0.704601 

M0017 -78039.35938 -0.814028 

M0005 -77874.83594 -0.796612 

M0006 -77968.65625 -0.806544 

M0008 -77377.20313 -0.743931 

M0007 -77369.35156 -0.7431 

M0011 -76650.96094 -0.66705 

M0012 -76912.98438 -0.694788 

M0010 -77877.89844 -0.796936 

M0016 -77678.02344 -0.775777 
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Figure 4. 31. Structural validation of the best model (M0017). ProSA-web z-scores of 
all protein chains in PDB determined by X-ray crystallography (light blue) or NMR 
spectroscopy (dark blue) with respect to their length. The plot showed that M0017 
(black spot) with z-score value -5.00 is within the range of native conformation (a). 

Energy plot showing the local model quality by plotting energies as a function of amino 
acid sequence position i; positive values correspond to erroneous parts of the model (b). 

Ramachandran plot showing the energetically allowed region the model structure (c). 
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4.5.3 Molecular docking results 
 
The docking calculation results of the known HDAC10 inhibitors are compared with 

their respective Ki (or IC50) values from the literature (Hutt et al., 2010; Wang et al., 

2011; Rajak et al., 2012) in Table 4.14. Although these experimental values were not 

exactly reproduced in silico, the docking calculation accurately predicted the activity of 

these compounds against HDAC10. The difference might have resulted from the 

difference between protocols used to assay the experimental activity and Autodock’s 

binding energy calculation. Among the promising compounds retrieved from ZINC 

database, ZINC37433253 was found to show preference for HDAC6 over HDAC10 

despite the fact that the same compound bound to the two isoforms with similar binding 

mode and similar set of interactions deep inside the channels. The binding mode is 

shown in the 3D scheme, and the key for the non-bond interaction is shown in the 2D 

schemes (Figure 4.32). Fitting ZINC37433253 into the general pharmacophore features 

of the typical HDAC inhibitor, the N-methyl-indole ring could serve as a capping group 

channeling the ionized carboxyl group, via a short amide-containing linker group, into 

the deep channels of both the isoforms forming a strong electrostatic interaction with 

Zn2+ ion. Other interactions formed in the deep channels of both isoforms include 

electrostatic attraction, H-bond, alkyl, π-alkyl, and van der Waals interactions. The 

unique π-sigma interaction formed between the cap group and LEU749 of HDAC6 and 

π-lone pair interaction between the linker’s carbonyl oxygen and PHE680 might have 

aided in the potential selectivity of ZINC37433253 for HDAC6 (-11.96 kcal/mol) over 

HDAC10 (-8.85 kcal/mol) (Table C.1) 

 

Another potential lead compound, ZINC19749069 preferentially bound to HDAC10     

(-9.68 kcal/mol) over HDAC6 (-7.91 kcal/mol) (Table C.1).  ZINC19749069 formed 2 

H-bonds (along the tunnel with GLU272, and deep inside with HIS174), π-cation 

interaction with GLU272 along the tunnel, a π-anion interaction with HIS135 in the 

deep channel, an alkyl and a π-alkyl interactions near the entrance and middle of the 

channel respectively, a π-π T-shaped interaction deep inside, and van der Waals 

interactions all over the channel (Figure 4.33). 
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Table 4. 14. Calculated binding affinity of the known HDAC inhibitors in comparison 
with their experimental (Exptl.) Ki or IC50 values. 

 

Compound Structure 
Calculated  

∆G 
(kcal/mol) 

Calculated 
Ki (nM) 

Exptl. 
Ki 

(nM) 

Exptl. 
IC50 
(nM) 

Quisinostat 

 

-11.73 2.54 0.50 - 

Pracinostat 

 

-10.46 21.53 23.00 - 

Panobinostat 

 

-10.05 42.91 31 - 

Abexinostat 

 

-10.24 31.15 24 - 

Entinostat 

 

-9.40 129.40 - 11100 

Belinostat 

 

-9.72 74.64 59 - 
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Tubacin 

 

-9.76 69.76 373.7 - 

PCI34051 

 

-10.6 17.02 - 13 

CUDC-101 

 

-10.2 33.64 - 26.1 

Vorinostat 

 

-9.74 72.38 60 - 
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Figure 4. 32.  Binding modes of known HDAC10 inhibitors to human HDAC10 model 
(M0017); Quisinostat (a), Practinostat (b), Panobinostat (c), Abexinostat (d), Entinostat 

(e), Belinostat (f). 
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Figure 4. 33. Binding mode of ZINC37433253 to HDAC10 (a) and HDAC6 (b). 
Although the compound bound to the two isoforms with similar binding mode and 

similar set of interactions deep inside the channels preferential binding to HDAC6 was 
observed. The key for the non-bond interaction is shown in the 2D scheme.  
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Figure 4. 34. Binding mode of ZINC19749069 to HDAC10 in the 3D space (a), and the 

interaction pattern shown in the 2D scheme (b). 
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4.5.4 Molecular dynamics simulation Results Analysis 
 
The RMSD of the free HDAC10 rose to 5.3 Å at round 4 ns, and then fell down to 3 Å 

and stabilized at around 12 ns (between 2.9 Å and 3.3 Å) until the end of the 20 ns-MD 

simulation. Similarly, the RMSD of HDAC10-Quisinostat complex increased to about 

5.8 Å from the starting configuration until around 10 ns, and then fell down to about 4.1 

Å, and stabilized (between 3.8 Å and 4.4 Å) until the end of the 20 ns-MD simulation 

(Figure 4.33 (a)) The RMSD of HDAC10-ZINC19749069 started to stabilize at round 4 

ns and converged around 7 ns until the end of the simulation.  

 

RMSF analysis showed that the amino acid residues in both the free HDAC10 and the 

complexes fluctuated low. However, residues 361-386 were within the loop region 

outside the active site, and thus showed higher fluctuation (between 3.9 Å and 16 Å) in 

all the 3 systems. Loops are generally hard to model because of their flexibility (Figure 

4.33 (b)).    

 

The radius of gyration (Rg) of a protein is a measure of its compactness. If a protein is 

stably folded, it will likely maintain a relatively steady value of Rg. If a protein unfolds, 

its Rg will change over time. The Rg of free HDAC10 and the complexes remained 

stabilized between 1.30 Å and 1.48 Å, suggesting stability over time (Figure 4.33 (c)). 

 

Another parameter evaluated is the total energy of the system which is not useful for 

much of anything aside from proving that the simulation was physically valid. Here, the 

total energy refers to the potential energy, and was found to be consistent with the 

RMSD, RMSF and Rg profiles throughout the simulation in all the 3 systems (Figure 

4.33 (d)). 

 

Thus, ZINC19749069 displayed the highest binding mode stability over time, 

suggesting its potential selectivity for HDAC10. 
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Figure 4. 35. Root-mean-squared deviation (RMSD) (a), Root-mean-squared fluctuation 
(RMSF) (b), Radius of gyration of free HDAC10 (blue), HDAC10-Quisinostat (orange), 
and HDAC10-ZINC19749069 (grey) complexes. HDAC10-ZINC19749069 displayed 
the highest stability over time. 
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5. DISCUSSION 
 

5.1 Design of Isoform-Selective HDAC Inhibitors by Scaffold Hopping  

 
Compared with the approved HDAC inhibitors (Vorinostat, Belinostat and Romidepsin) 

and well-studied HDAC inhibitors in clinical trials (Entinostat, Tacedinaline and 

Mocetinostat), KA_025, KA_026 and KA_027 displayed increased potency and 

selectivity (with the exception of Entinostat which showed higher binding affinity for 

HDAC3; ∆G = -10.62 Kcal/mol) (Table 4.2). Entinostat binds selectively to the class I 

HDACs 1-3 and modestly, to HDAC8, currently in clinical development for the 

treatment of human colorectal cancer lines (Bracker et al., 2009). Similarly, 

Tacedinaline show preference for class I HDACs 1-3 with modest activity against 

HDAC8, inhibits the growth of lung and breast cancers, lymphoblastic leukemia and 

more (Mottamal et al., 2015). Mocetinostat displays 2-10 folds higher selectivity for 

HDAC1 over HDACs 2, 3 and 11 (Boumber et al., 2011). Therefore, these known 

inhibitors were used as reference compounds to guide the selection of potent and 

selective inhibitors in the current study. The thresholds for potency and selectivity index 

were > 9.00 Kcal/mol and ≥ 7 respectively.  

 

Generally, the removal of the acetyl group from a substrate occurs through a “charge-

relay system” consisting of two adjacent histidine residues, two aspartic residues, and 

one tyrosine residue deep inside HDACs catalytic pocket. A cation binds near the 

bottom of the pocket to be coordinated by two additional aspartates, one histidine and a 

water molecule (Finnin et al., 1999). HDAC inhibitors function by chelating the Zn2+, 

making the charge-relay system dysfunctional. In the complexes of HDAC1 with 

KA_025, KA_026, and KA_027, zinc was involved in metal-acceptor interaction via 

carbonyl oxygen of the linker group, however, such interaction was not observed in the 

complexes of HDAC2 with these compounds, rather, van der Waals interaction. 

Moreover, the two adjacent histidine residues (HIS140 and HIS141 for HDAC1 and 

HIS145 and HIS146 for HDAC2) and two aspartic acid residues (ASP176 and ASP264 
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for HDAC1) and one (ASP183 in HDAC2) interacted with KA_025, KA_026, and 

KA_027. These findings were consistent with a study by Fournel et al. (2002), in which 

sulfonamide anilides exhibited antiproliferative activity against human tumor without 

chelating zinc from the active site of HDACs. Here, although it is not clear what exactly 

brought about the selectivity of KA_025, KA_026, and KA_027 for HDACs 1 and 2 

given their similarity in structure with the other nonselective inhibitors, we speculate 

that their unique carbonyl group near the cap  might have changed the set of interactions 

in the deep active site, and consequently led to their selectivity for HDACs 1 and 2. 

 

Interestingly, KA_029 interacted with HDAC1 in the typical way HDAC inhibitors bind 

zinc-containing HDACs. Zinc ion was chelated by one sulfonyl oxygen via metal-

acceptor interaction and the catalytically essential amino acid residues, HIS140, 

HIS141, HIS178, ASP176, ASP264, and TR303 also interacted mainly with sulfonyl 

group. This result is partly in agreement with findings by Noor et al. (2015), in which 

Zn2+ ion was chelated by sulfonyl oxygen of class I selective inhibitor.  

 

 In case of HDAC2-KA_036 complex, various non-covalent interactions including van 

der Waals, π-sulfur, π-alkyl, π-π stacked and 4 H-bonds were formed.  Interestingly, the 

oxygen bridge of the linker group engaged TRY308 via one H-bond. TRY308 is a 

component of charge-relay system of HDAC2 catalysis. These interactions added up to 

contribute to the overall stability of the complex. 

 

These findings are especially important given the lack of specificity of the many HDAC 

inhibitors in clinical use and trials. It is particularly challenging to achieve isoform 

selectivity among class I HDACs due to their highly conserved active site. It is believed 

that, the continued identification of isoform-selective inhibitors will remain a major 

challenge to HDAC inhibitor development. Theoretically, the isoform-selective HDAC 

inhibitors might be more effective if the specific HDAC is a component of a repressive 

complex that is crucial for tumorigenesis (Lane and Chabner, 2009). In this study, class 

I HDACs and HDAC6 were targeted considering findings that histone acetylation is 

thought to be primarily regulated by HDACs 1-3, whereas the acetylation of tubulin and 

Hsp90 is specifically regulated through HDAC6 (Newbold et al., 2013). That, HDACs 
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1-3 are frequently upregulated in a variety of human cancers including breast, colon, 

lung cancers and more and thus their individual pharmacological blockade induces 

apoptosis and cell cycle arrest. That, HDACs 1, 2 are key components of CoREST, 

NuRD, and Sin3  corepressor complexes while HDAC3 is a component of N-CoR 

complex (Ahringer, 2000). That, the aberrant recruitment of these complexes to the 

promoter of the tumor suppressor, p53 epigenetically represses transcriptional activity 

of the gene (Luo et al., 2000). That, the antitumor effect of HDAC inhibitors is widely 

linked to class I inhibition (Dejligbjerg et al., 2008). These provide strong rationales for 

selective inhibition of these individual isoforms in cancer. The search for isoform-

selective HDAC inhibitors is being carried out using both computational and 

experimental approaches. Computational procedures are indispensable components of 

rational drug design. Therefore, these predicted HDAC inhibitors can be potentially 

isoform-selective, warranting further modeling-based and experimental studies towards 

validation of their bioactivity. 

 

5.2. Isoform-selective Histone Deacetylase Inhibitors Identified via Structure-

Based Virtual Screening and Molecular Dynamics Simulation  

 
In the present study, exhaustive structure-based virtual screening of a chemical database 

containing ~ 2.7 million compounds, against class I HDACs, was carried out. This is in 

line with the fact that, the emerging trend suggests that, subtle differences in the 

catalytic channels of HDAC isoforms can be explored to achieve selectivity 

(Bieliauskas and Pflum, 2008). 

 

Compound 1 (a sulfonamide derivative) displayed many folds selectivity for HDAC1 

over the reported compounds of the same class (Fournel et al., 2002; Bouchain and 

Delorme, 2003). Compound 1 spanned the catalytic channel of HDAC1 by forming 

various interactions along the pocket entrance with PHE205, PHE150, and ASP99 and 

more amino acid residues.  

 

At the bottom of the pocket near Zn2+ metal ion, the sulfonyl and other polar groups on 

the compound interacted with HIS140, HIS141, ASP176, TRY303 (Figure 5.1). 
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Together with ASP264 (not found to be involved in the interaction here), ASP176, 

HIS140, and HIS141 act as general acid-base catalytic pairs – coupled with  Zn2+ metal 

ion coordination, TRY303 stabilizes the oxyanion of the tetrahedral intermediate 

formed in the “charge relay system” of HDAC1 catalysis (Lombardi et al., 2011). 

Hence, disrupting this system of catalysis may lead to the blockade of the enzymatic 

activity. Other top-ranking inhibitors of HD AC1 identified were amide and carboxylic 

acid derivatives (Table A 1.1-5).  

 

 

Figure 5. 1. 3D representation of a complex of HDAC1 with compound 1 (Otava code; 
3368838). 
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In HDAC2-compound 11 complex, the naphthalenyl moiety served as surface 

recognition group channeling the carboxyl group, via amide linker, to the bottom of the 

pocket towards zinc coordinate.  

 

 

 

Figure 5. 2. 3D representation of a complex of HDAC2 with compound 11               
(Otava id; P7020400743). 
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Compound 11 interacted with HIS145, HIS146, ASP266, TRY308 and more residues 

deep inside HDAC2 catalytic pocket via mainly, carbonyl oxygen (Figure 5.2).  

 

 

Figure 5. 3. 3D representation of a complex of HDAC3 with compound 21                   
(Otava id; P7020350446). 
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Interestingly, of all the 36 compounds identified, compound 29 was found to have the 

highest binding affinity and showed high selectivity for HDAC8 (Table 5.1). Compound 

29 is a carboxylic acid derivative with a bulky cap (substituted phenanthrenyl moiety) 

and an amine-containing aromatic linker involved mainly, in π interactions with 

aromatic groups of different side chains. The zinc binding moiety, carboxyl group 

chelated Zn2+ ion via carbonyl oxygen and formed 3 H-bond interactions with HIS129, 

HIS130, and TYR293 (Figure 5.4). In addition, various more interactions formed along 

the entrance and the interior of the channel resulted in the complete burial of compound 

29 in HDAC8 active site. HDAC8 exhibits an acetate release channel different from that 

of HDACs 1–3, and a unique lateral internal channel — these features could be 

exploited to achieve isoform selectivity (Micelli and Rastelli, 2015). Whitehead et al. 

(2011) achieved selectivity for HDAC8 by exploiting acetate release channel with a 

small molecule.  

 

 
 

Figure 5. 4. 3D representation of a complexes of HDAC8 with compound 29               
(Otava code; P7019081225). 
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Overall, although the detected compounds were structurally diverse, most of them 

contain carboxyl groups. Abdel-Atty et al. (2014) reported carboxylic acid derivatives 

to have HDAC inhibition and cytotoxic activities against HepG2 human cancer cell 

lines by in vitro, 3D pharmacophore QSAR, and molecular docking studies — however, 

no isoform selectivity was shown. In another activity and docking studies, carboxylic 

acid derivatives were modified yielding potent and selective inhibitors of HDAC8 

(Bora-Tatar et al., 2009).  

 

The structurally-related short-chain fatty acids, such as Valproic acid, butyric acid, and 

phenylbutyric acid possess weak inhibition against classes I and II HDACs. Valproic 

acid, already in clinical use for the treatment of epilepsy (Phiel et al., 2001), causes 

hyperacetylation of histones in cultured cells and in vivo – most probably, by inhibiting 

HDACs, which induces differentiation of carcinoma cells, transformed hematopoietic 

progenitor cells and leukemic blasts (Göttlicher et al., 2001). 

 

In the context of pharmacophore features of the compounds identified in the present 

study, their capping groups might have aided in their isoform selectivity. Compounds 1 

and 11 contain an aromatic and a fused aromatic ring respectively. Compounds 21 and 

29 harbor heterocyclic and fused heterocyclic 3-membered rings respectively. These 

bulky capping groups formed various interactions, in addition to the steric clashes, with 

the amino acid residues the entrance to the channel of their respective target. Although 

it is difficult to precisely predict the specific features of the capping group required for 

selectivity (Bieliauskas and Pflum, (2008), the cap have been explored to achieve 

selectivity in HDAC inhibitors due to the subtle differences in the amino acid residues 

around the entrance to the HDACs catalytic channels. Whitehead et al. (2011) achieved 

selectivity within class I HDACs with a non-hydroxamate compounds bearing aromatic 

heterocyclic indole ring as the capping group. Butler et al. (2010) investigated the 

structural basis of HDACs selectivity by incorporating steric bulk into the capping 

group of their designed HDAC inhibitors. High plasticity of the HDAC8 catalytic 

channel is thought to enable binding of an inhibitor otherwise unable to fit the more 

rigid channel of other HDACs (Micelli and Rastelli, 2015). This might be why 
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compound 29 bearing a bulky capping group, selectively fitted in the flexible channel of 

HDAC8 compared over rest of the class members. 

 

Furthermore, the binding mode stability of the best-ranked ligands was examined by 

MD simulation. At physiological condition, the inhibitors remained bound to their 

respective target enzymes throughout the simulation. MD simulation has been 

successfully applied to examine the binding mode stability of HDAC inhibitors. 

Thangapandian et al. (2012) investigated inhibitor selectivity across classes of HDACs 

by a 5 ns-MD simulation. Tambunan et al. (2013) designed HDAC inhibitors whose 

affinity was comparable with that of Vorinostat against class II HDACs, and studied 

their binding mode stability by a 5 ns-MD simulation. Noor et al. (2015) extended their 

simulation time period to 12 ns in an attempt to explore the binding modes of their 

designed potential inhibitors against HDACs 2 and 8. Here, the free and ligand-HDAC 

complexes were submitted to 10 ns-production-MD simulation. The MD simulation 

results of the current study were consistent with the findings of the studies cited above, 

as the potential energy profiles of the complexes were lower and in agreement with 

RMSD and RMSF distributions throughout the simulation time.  

 

Despite increasing research effort in this field, very few truly isoform-selective 

inhibitors have been reported in the literature (Thaler and Mercurio, 2014; Zhang et al., 

2015). Majority of HDAC inhibitors are either pan-inhibitors or class selective. The 

compounds reported here showed high and moderate isoform selectivity with good. 

According to Otava's catalogue, compound 1 is under the category of ‘tangible’ 

compounds. ‘Tangible’ compounds are those compounds with a high likelihood of 

being synthesized. Compounds 11, 21 and 29 are in the screening collection for prompt 

delivery. Compounds in this collection underwent quality control for structural 

confirmation. Therefore, the availability of these candidate compounds eliminates the 

possible setback issues associated with chemical synthesis. The may also serve as 

scaffolds for further optimization towards the design of isoform-selective HDAC 

inhibitors. Further studies are recommended for in-vitro and in-vivo validation of 

inhibitory effects of these proposed inhibitors. 
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5.3 Structure-Based Virtual Screening for Identification of HDAC6-Selective 

Inhibitors 

 
Structure-based virtual screening has been an important source of novel molecular 

scaffolds for HDAC inhibitor design (Park et al., 2010; Uba and Yelekçi, 2017b). To the 

best of our knowledge, the recently solved crystal structure of HDAC6 has not been 

explored via structure-based virtual screening even though few attempts have been 

made since the release of the structure to discover new HDAC6 inhibitors (Negmeldin 

et al., 2017). Additionally, until recently, homology models were used to search for the 

conformational complexity of the enzymes and inhibitor binding properties (Sixto-

López et al., 2017). Therefore, this study attempted to identify potentially selective 

inhibitors of this crucial cancer target by the combination of other in silico approaches 

along with the structure-based virtual screening. 

 

To accomplish this goal, compounds were filtered not only based on their binding 

affinity but also and much more importantly, based on their potential selectivity for 

HDAC6 over the structurally related isoform, HDAC7. Out of the top 20 compounds 

evaluated, only 4 compounds were found to display potential selectivity for HDAC6, 

whereas the remaining compounds were excluded from further processing despite their 

high binding affinity. These 4 compounds were also predicted to have good drug-like 

and ADMET properties consistent with the widely followed “Rule of 5” and “Jorgensen 

Rule-of-Three”. Lipinki’s “Rule of 5” states that drug-like or orally available molecules 

should have no more than 1 violation of the following: MWt ≤ 500 Da; log P ≤ 5; 

S_HBD ≤ 5 and S_NO ≤ 10 (Lipinski, 2004). “Jorgensen Rule-of-Three “states that 

“the aqueous solubility measured as logS should be greater than –5.7, the apparent 

Caco-2 cell permeability should be faster than 22 nm/s and the number of primary 

metabolites should be less than 7; these limits are based on the properties of 90% of 

1700 oral drugs” (Di and Kerns, 2016).   

 

Structural analysis of these compounds revealed important information about their 

pharmacophoric features that might have aided their selectivity for HDAC6. They all 

share aromatic cap groups bound to the surface of the catalytic channel with common 
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interacting residues, HIS500 and LEU749 (except for P7020527347). Also, they all 

contain aromatic linker groups (except for P2194879), and a common carboxyl acid 

functional group as a zinc-binding domain. The capping group is responsible for 

enzyme surface recognition and various cap features of HDAC inhibitors have been 

explored to achieve selectivity, taking advantage of the subtle variation around the 

region. Butler et al. (2010) incorporated steric bulk into the cap of inhibitors and 

specifically blocked HDAC6. Shultz et al. (2011) designed isoindoline-based 

hydroxamates to achieve selectivity among HDACs. Towards a similar goal, Whitehead 

et al. (2011) designed HDAC inhibitors with aromatic heterocyclic indole ring. 

Surprisingly, very recently, “capless” inhibitors exhibited appreciable HDAC6 

selectivity, and this was shown to be contributed by favorable binding entropy of the 

inhibitors to HDAC6 (Porter et al., 2018). Tubastatin A, a well-established HDAC6-

selective inhibitor (Vishwakarma et al., 2013), closely resembles P2194879 in terms of 

capping group, and the rest of the 3 compounds, in terms of the aromatic linker group. 

Although all the 4 compounds are structurally diverse, they were found to be carboxylic 

acid derivatives. Carboxylic acid derivatives have been shown to strongly inhibit 

HDACs due to their ability to form a strong metal-acceptor interaction with Zn2+ metal 

ion (Bora-Tatar et al., 2009; Abdel-Atty et al., 2014). Moreover, the structurally related 

derivatives of carboxylic acid, valproic acid and other short chain fatty acids have 

already become well established as HDAC inhibitors (Göttlicher et al., 2001; Lu et al., 

2004). 

 

To overcome the protein flexibility issues associated with our rigid docking protocol, 

we submitted both the free HDAC6 and its complexes with these 4 predicted inhibitors 

to brief MD simulations, to examine the stability of ligand binding modes and the whole 

complex structural stability. The complex of HDAC6 with the 3rd-ranked compound 

(P3823745) was found to display the highest stability over time of the simulation. All 

the ligands remained in the active sites of the enzyme throughout the simulation and 

showed slightly higher stability compared with the free enzyme. Analysis of the last 

snapshot from each simulated system revealed that the ionized carboxyl fragments of all 

the 4 compounds formed strong metallic bond with Zn2+ ion and H-bond interactions 

with polar residues (mainly, ASP and TYR). This might justify their higher binding 
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affinity compared with the known selective inhibitors of HDAC6 (except for 

Citarinostat) The parameters analysed following the MD simulation were, to some 

extent, in agreement with our recent study examining the stability of ligand-HDAC 

binding modes via 10 ns-MD simulation (Uba and Yelekçi, 2017a), and with previous 

study by other group assessing structural stability of HDAC complexes via 5 ns-MD 

simulation (Thangapandian et al., 2012). However, the 10 ns-MD simulation time used 

by the current study may not be sufficient to fully examine the structural stability of 

these complexes — the trend of the RMSD might change at longer time. Nevertheless, 

being one of the early in silico studies on this newly-resolved crystal structure, our MD 

simulation may provide evidence of requiring a longer time for examining the stability 

of ligand binding modes. 

 

The predicted compounds identified in the current study displayed both high potency 

and potential HDAC6 selectivity based on in silico assessment. In addition, according to 

Otava’s categorization of this collection, they are compounds that have undergone 

quality control for structural confirmation and safety evaluation. Therefore, we propose 

that they may be used as lead compounds for further optimization towards the design of 

HDAC6 inhibitors with improved selectivity. 

 

5.4 The Design of Selective Inhibitors of HDAC6 via Pharmacophore Modeling 

 
Pharmacophore modeling in combination with other in silico procedures has become 

essential tools in the current computer-aided drug designs. The HipHop hypotheses 

method applied in this study, has been successful in identifying potential inhibitors of 

various biological targets. (Clement et al., 2003; Kim et al., 2008; Yilmaz et al., 2014; 

Ataei et al., 2015) Although all the 10 hypotheses developed in the current study 

consisted of the same features, their spatial locations in 3D space were different (Figure 

A1). All the hypotheses were subjected to evaluation using Güner-Henry scoring 

method. Hypo1 was found to be statistically valuable, as it successfully retrieved  85% 

of the active compounds with the enrichment factor (16.23), GH score (0.78). GH score 

of 0.78 indicates the soundness and reliability of the model. 
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The “DruglikeDiverse” database screening against Hypo1 returned a total of 1056 

compounds. The Catalyst software imbedded in Biovia DS 4.5 automatically ranked 

these compounds according to their pharmacophore fit values. The top 10 best-fitting 

compounds with fit values >3 were selected for further studies. These fit values were 

consistent with those of polo-box domain inhibitors identified via multi-pharmacophore 

modeling. (Sakkiah et al., 2014) As the database name suggests, these compounds were 

drug-like and diverse in structure. “DruglikeDiverse” database has been directly 

explored for identification of new inhibitors of Topoisomerase I (Ataei et al., 2015) and 

very recently used as a guide towards the development of linear peptides for targeting 

αvβ3 integrin for cancer diagnosis (Ma et al., 2017). Therefore, this database could be 

an important repatoir of  useful lead compounds against diverse biological targets. Its 

small size (~ 6000 compounds) allowed for a rapid search for lead compounds whose 

binding affinity were predicted by molecular docking, and the stability of binding mode 

by MD simulation. The pharmacophore model was sound, therefore can be used to 

search larger databases for better chemically diverse potential HDAC6-specific 

inhibitors.  

 

Hypo1 was also consistent with the general pharmacophoric features of HDAC 

inhibitors known from literature (Mottamal et al., 2015). The cap-linker-chelator feature 

of zinc-binding HDACs inhibitors was well represented by hypo1. Considering the two 

FDA’s approved drugs, vorinostat, and belinostat, the aromatic ring feature mapped 

onto the cap, the H-bond donor feature, and the second hydrophobic feature mapped 

onto the linker, and the H-bond acceptor feature mapped onto the chelator region. This 

is in agreement with ligand features essential for HDACs inhibitors previously studied 

by pharmacophore modeling (Beckers et al., 2007; Chen et al., 2008; Noureen et al., 

2010).  

 

Furthermore, the top 10 lead compounds were found to be drug-like, having passed the 

ADMET prediction and “Rule of 5” tests using two independent ADMET prediction 

tools, ADMET predictorTM and AdmetSAR server. Among the descriptors analyzed, 

specifically, aqueous solubility of a drug molecule influences absorption and transport 

of a drug molecule in the body. QSPR has been successfully applied to relate drug and 
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organic molecules to their respective aqueous solubility (Chen et al., 2002). Caco-2 

permeability is another property reflecting gastrointestinal permeability by measuring 

the rate of transport of a drug molecule across the Caco-2 cell line. Caco-2 permeability 

of several drug molecules and drug candidates has been studied both in vitro (Yee, 

1997; Ranaldi et al., 2003; Press and Di Grandi, 2008) and  in silico (Guangli and Yiyu, 

2006; The et al., 2011) These predicted physicochemical properties of the top 10 Hit 

compounds were consistent with those of drug molecules. 

 

Moreover, ENA501965 and IBS399024 showed increased binding affinity and 

selectivity for HDAC6 CD2 over class I HDACs and HDAC7. ENA501965 bound 

HDAC6 CD2 with interesting mode — chelating Zn2+ ion via methoxyl oxygen of the 

methoxyphenyl substituent and filling the small cavity in the middle of the tunnel with 

dimethylnitrophenyl substituent on an amide-containing linker. The unique phthalazone 

cap of ENA501965 interacting with polar residues near the entrance to the channel 

might have aided the selectivity shown by the compound. Butler et al. (Butler et al., 

2010) achieved HDAC6 selectivity by varying the cap features of hydroxamic acid 

containing HDAC inhibitors. Whitehead et al. (2011) added an aromatic heterocyclic 

indole ring to a non-hydroxamate compounds and achieved selectivity within class I 

HDACs. Findings of the current study are important given the poor pharmacokinetics 

and toxicity of hydroxamic acid-containing pan-HDAC inhibitors, prompting the search 

for non-hydroxamate HDAC inhibitors. (Suzuki and Miyata, 2005) On the other hand, 

IBS399024 bound with different mode and yet engaged Zn2+ ion via van der Waals 

interaction. 

 

The stability of binding modes of Panobinostat, ENA501965, and IBS399024 was 

examined by 10 ns-production-MD simulation. In the presence of H2O molecules and 

ions, these ligands remained bound to the enzyme throughout the simulation time. All 

the 3 complexes showed relatively higher structural stability than the free enzyme. 

HDAC6 CD2-ENA501965 complex was found to show the lowest RMSD profile (0.55-

1.17 Å), followed by HDAC6 CD2-Panobinostat complex (0.58-1.20 Å) and HDAC6 

CD2-IBS399024 complex (0.56-1.40 Å). These results were consistent with the 

molecular docking results of these complexes, also in agreement with the previous 
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results of our study examining the stability of ligand-HDAC complexes via 10 ns-MD 

simulation (Uba and Yelekçi, 2017a), and via 5 ns-MD simulation by another group  

(Thangapandian et al., 2012). Similar to the present study, Yu et al. (2009), successfully 

developed 3D pharmacophore model based on 24 hydroxamates to discover new 

HDAC1 inhibitors. Recently, Choubey et al. (2016), combined pharmacophore 

modeling, 3D-QSAR analysis, in silico screening and density functional theory (DFT) 

approaches towards identification of HDAC1 inhibitors. Class I HDACs were also 

targeted by pharmacophore modeling combined with other in silico procedures (Gupta 

et al., 2014). Here, only HDAC inhibitors in clinical use and trials were included in the 

training and test sets. In addition, the Hit compounds identified were subjected to 

selectivity assessment for other HDACs sharing structural similarity with HDAC6. 

Selectivity of HDAC inhibitors is increasingly attracting the attention of researchers 

working in this field in the wake of cytotoxicity associated with many of the HDACs 

inhibitors in clinical use and trials. Essentially, this study identified not only potential 

lead compounds for further optimization but also candidate molecules for possible 

selectivity towards HDAC6. Thus, the present study may provide additional information 

on the structural features necessary for the design of HDAC6 CD2 inhibitors, creating 

avenues for further in silico and experimental studies towards the improvement of 

potency and selectivity. 

 

5.5 Homology Modeling of Human HDAC10 and the Design of Selective Inhibitor 

 
The assessment of the accuracy and reliability of protein structures determined 

experimentally or by homology modeling is a necessary task that needs to be addressed. 

ProSA is a tool widely used to check 3D models of protein structures for potential errors 

(Wiederstein and Sippl, 2007). The web-based version of ProSA, ProSA-web was used 

to assess the quality of M0017 in the current study. The overall quality score calculated 

by ProSA for M0017 is displayed in a plot that showed the scores of all experimentally 

determined protein chains currently available in the PDB (Berman et al., 2000). This 

feature relates the score of a specific model to the scores computed from all 

experimental structures deposited in PDB. The z-score shows the overall model quality 

and measures the deviation of the total energy of the structure with respect to an energy 
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distribution derived from random conformations (Sippl, 1993; Sippl, 1995). Z-score 

outside a range characteristic for native proteins indicates erroneous structures. M0017 

was found to have a z-score value -5.00, which corresponded to the native 

conformation. 

 

Molecular docking of the known HDAC10 inhibitors was carried out to further validate 

the quality of the model as the calculated Ki values were in agreement with the 

experimental Ki (or IC50) values. In addition, all the compounds bound to the enzyme 

with reasonable orientations. This showed that the model could be used as a target 

structure for the design of selective inhibitors of HDAC10. Therefore, the most active 

compound, Quisinostat was run against ZINC database and druglike compounds with 

similar structure were retrieved. The top hit were docked into the catalytic channel of 

HDAC10 and HDAC6 CD2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



140 
   

 

 

 

6. CONCLUSIONS  
 
In this dissertation, the attempts made to design potential isoform-selective HDAC 

inhibitors for cancer therapy are reported. Class I HDACs are Zn2+-dependent, primarily 

located in the nucleus, show the strongest enzymatic activity on histone, and are 

overexpressed in a variety of cancer types. Class I HDACs 1-3, components of 

corepressor complexes, are implicated in cancer progression through epigenetic 

repression of p53 gene.  HDAC6, also a Zn2+-dependent class IIb member, deacetylates 

tubulin, HSP90 and other non-histone proteins thereby regulating microtubule dynamics 

and promotes cancer cell invasion. The present study was aimed at designing potentially 

specific inhibitors of these individual isoform by a combination of various in silico 

approaches. 

 

To achieving this aim, different molecular modeling procedures including sequence and 

structural alignments, topology-based scaffold hopping, molecular docking and 

dynamics simulation, and ADMET prediction were applied. The high sequence 

similarity and active sites conservation among HDAC (which poses difficulty in 

achieving isoform selectivity) were analyzed. HDACs 1 and 2 show the highest 

sequence and structural conservation of the catalytic domains, making the design of 

isoform-selective inhibitors particularly challenging between the two isoforms. The 

catalytic channel of HDAC3 is very similar to those of HDACs 1 and 2, while HDAC8, 

being a distant relative, displays active site plasticity and harbors acetate release 

channel, providing an avenue for achieving selectivity. 

 

For validation purpose, a series of known HDAC inhibitors in clinical use and trials 

were studied and their binding affinities were consistent with their experimental Ki 

values. Also, for the sake of comparison of the binding modes and affinities of these 

established inhibitors with those of the predicted inhibitors designed in the current 

study. 
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To design isoform-selective inhibitors, molecular modification on a fragment retrieved 

from Otava database was performed by topology-based scaffold hopping and a library 

of compounds was developed. Thirteen compounds from this library, denoted KA_025 

through KA_037, passed ADMET prediction test. In silico selectivity evaluation 

revealed 5 compounds (KA_025, KA_026, KA_027, KA_029, and KA_036) to have 

increased selectivity for HDACs 1 and 2 compared with HDACs 3, 6 and 8. They were 

found to display increased binding affinities compared with those of some selected 

HDAC inhibitors in clinical use and trials. Furthermore, their interaction patterns with 

amino acid residues in the active sites of HDACs 1 and 2 were examined and the 

structural basis of their selectivity was rationalized. 

 

To circumvent difficulty in compound synthesis, structure-based virtual screening of ~ 

2.7 million compounds retrieved from Otava database, was carried out against class I 

HDACs. By employing selectivity criteria used by previous studies on HDAC inhibitor 

selectivity, a total of 36 compounds (10 for HDAC1; 10 for HDAC2; 8 for HDAC3; and 

8 for HDAC8) were found to show selectivity for their respective isoforms. To examine 

the stability of ligand binding modes, the complex of each isoform with its respective 

best-ranked ligand was submitted to MD simulation. At the end of a10 ns-MD 

simulation, the ligands remained bound to these targets in the presence of H2O and ions. 

Comparative analyses of the potential energy, RMSD and RMSF profiles of the free and 

bound HDACs suggested that the complexes were more stable over time of the 

simulation. 

 

While undertaking this research work, the crystal structure of HDAC6 catalytic domain 

2 (CD2) was solved and deposited on the protein data bank (release date: 2016-07-27). 

Previous studies used homology models of the enzyme to design HDAC6 inhibitors. 

Here, the interaction patterns of this newly-resolved crystal structure with the 

established HDAC inhibitors were analyzed in order to gain insight into their modes of 

interaction. 
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In our continuous effort to search for selective HDAC6 inhibitors, we identified a total 

of 4 potential HDAC6-selective inhibitors via structure-based virtual screening of ~ 72 

461 compounds retrieved from Otava database. These inhibitors belonging to carboxylic 

acid derivatives class, were found to be drug-like with good ADMET profiles. Their 

binding affinity and modes were analyzed by molecular docking assay.  To examine the 

structural stability of these docking complexes, a 10 ns-MD simulation was performed 

for each complex. The results showed that these ligands remained bound to the enzyme 

in the presence of H2O and ions, throughout the simulation time. These data may serve 

as additional lead compounds for further optimization towards the design of HDAC6-

selective inhibitors. 

 

Furthermore, to search for more diverse scaffolds for HDAC6-selective inhibitor design, 

3D-common-feature (HipHop) hypotheses were developed and validated using Güner-

Henry scoring method. Hypothesis 1 (Hypo1), consisting of 1 H-bond acceptor, 1 H-

bond donor and 2 hydrophobic (aliphatic/aromatic) features, retrieved 85% of the active 

compounds with the enrichment factor (16.23) and goodness of the hit score (0.78). 

Using Hypo1, the search for new potential inhibitors of HDAC6 CD2 was performed by 

3D-search query against “DruglikeDiverse” database. The top 10 best-fitting 

compounds subjected to ADMET prediction were found to be drug-like, with good 

ADMET profiles. Their binding affinity against HDAC6 CD2 in comparison with class 

I HDACs and HDAC7 was assessed by molecular docking. The stability of binding 

modes of the high-affinity and selective compounds (IBS399024 and ENA50196) was 

examined by 10 ns-MD simulation using NAMD software. RMSD and RMSF analyses 

revealed that both lead compounds might be stable in the active site of the enzyme over 

time of the simulation. These results showed that the pharmacophore model is robust, 

and can  be used to search larger compound libraries retrieved from the National Cancer 

Institute (NCI) database.  

 

 

Towards the completion of this research work the X-ray crystal structure of zebrafish  

HDAC10 was released. This structure was used as a template to model the 3D structure 

of human HDAC10 because of their high sequence similarity, especially around their 
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catalytic domain. The best model built was validated by 3D structural confirmation, and 

later by docking of a series known HDAC10 inhibitors into its catalytic pocket. To 

identify potential selective inhibitors, the highest-affinity compound, Quisinostat, was 

run against ZINC database containing 10,639,400 drug-like compounds, using 

SwissSimilarity sever. The top 100 hits with similar scaffolds to Quisinostat were 

retrieved whose binding mode was further predicted by molecular docking into 

HDAC10 and HDAC6 CD2. This homology modeled strucuture may allow the design 

of selective inhibitors of HDAC10 and may also aid in the understanding of the 

structural dynamics of the isoform. Thus, the strtuctural dynamics of the homology 

modeled protein and its complexes with Quisinostat and ZINC19749069 was studied by 

MD simulation. Analysis of MD simulation parameters showed that ZINC19749069 

displayed the highest stability in the active site of the enzyme over time. 

 

Taken together, those predicted inhibitors identified via structure-based virtual 

screening were found to be mainly carboxylic acid and amide derivatives, displayed 

higher binding affinity, increased selectivity, safer ADMET profile and more stable 

binding modes compared with the fragment-based designed inhibitors and those 

identified via pharmacophore-based virtual screening. On the other hand,  fragment-

based inhibitor designs allowed for the discovery of compounds with diverse functional 

groups as zinc-binding domains. Similarly, pharmacophore-based virtual screening 

retrieved non-hydroxamate compounds that were able to coordinate with Zn2+ ion, 

thereby eliminating the toxicity associated with the use of hydroxamates as HDAC 

inhibitors. In a nutshell, these results show direction for synthesis and biological testing 

of novel histone deacetylase inhibitors. 

 

The future work will involve further virtual screening with larger compound libraries to 

retrieve more chemically diverse potential selective inhibitors of the individual HDAC 

isoform under study. In addition, longer MD simulation will be performed to ascertain 

the binding mode stability over time of simulation. Furthermore, for safety evaluation, 

the experimental models of Pharmacokinetic and Pharmacodynamic studies will be 

carried out to ascertain the drug candidacy of the potential selective inhibitors designed 

in this study. Similarly, for validation of the biological activity, in vitro testing against 
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panels of both solid and non-solid cancers will be performed. Furthermore, pathway 

analysis using molecular biology tools, following selective HDAC inhibition, will 

provide more insight into the role of the individual HDAC isoform in a given cancer 

pathology. 

 

Herein, structure-based drug design has been shown to be a powerful technique for the 

rapid identification of small molecules against the 3D structure of the HDAC isoforms 

derived either by X-ray crystallography, or homology model.  
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APPENDIX A 

Appendix A 1. Structures, estimated binding energy (ΔG) and inhibition constant (Ki) 
of the isoform-selective/selective inhibitors of class I HDACs identified through 
structure-based virtual screening. 
 
Table A. 1. HDAC1-Selective Inhibitors. 

S/N Otava Code Structure ΔG (Kcal/mol) Ki (nM) 

1 3368838 

 

-11.14 6.77 

2 P1167483 

 

-10.44 22.38 

3 4562316 

 

-10.1 39.56 

4 P0105480004 

 

-9.95 51.25 

5 P7012340203 

 

-9.66 83.35 
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6 P7016000027 

 

-9.62 89.3 

7 4562295 

 

-9.54 101.04 

8 P0217690002 

 

-9.3 151.28 

9 4562397 

 

-9.17 188.38 

10 P7013831126 

 

-9.06 258.38 
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Table A. 2. HDAC2-Selective Inhibitors. 

 
S/N Otava Code Structure ΔG (Kcal/mol) Ki (nM) 

11 P7020400743 

 

-12.63 0.55 

12 P2194599 

 

-11.83 2.15 

13 P1146482 

 

-11.48 3.88 

14 P7020090764 

 

-10.68 14.86 

15 P7020350445 

 

-10.6 16.97 

16 125320080 

 

-10.46 21.5 
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17 4562375 

 

-10.22 32.41 

18 P1357221 

 

-10.11 38.69 

19 P1688898 

 

-9.93 52.49 

20 4562294 

 

-9.69 78.59 
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Table A. 3. HDAC3-Selective Inhibitors. 

 
S/N Otava Code Structure ΔG (Kcal/mol) Ki (nM) 

21 P7020350446 

 

-10.24 31.05 

22 4562273 

 

-9.75 71.39 

23 4562274 

 

-9.46 116.1 

24 7.21E+09 

 

-8.98 261.17 

25 115030968 

 

-8.79 361.08 
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26 P7016361082 

 

-8.68 435.89 

27 105850571 

 

-8.65 459.18 

28 127441798 

 

-8.63 469.99 
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Table A. 4. HDAC6-selective Inhibitors. 

S/N Otava Code Structure ΔG (Kcal/mol) Ki (nM) 

29 P2194879 

 

-11.44 4.12 

30 P7715560117 

 

-10.1 39.34 

31 P3823745 

 

-9.32 148.29 

32 P7119982880 

 

-9.01 225.87 
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Table A. 5. HDAC8-Selective Inhibitors. 

S/N Otava Code Structure ΔG (Kcal/mol) Ki (nM) 

33 P7019081225 

 

-13.63 0.1 

34 P1364003 

 

-12.28 1.00 

35 P7017470060 

 

-12.2 1.15 

36 P0127442890 

 

-11.94 1.78 

37 P7020420366 

 

-11.54 3.5 
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38 P1365606 

 

-10.83 11.62 

39 P0108480094 

 

-10.81 12.00 

40 P7114490082 

 

-9.68 79.58 
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APPENDIX B 
 

Appendix B. 1 Identification of Lead Compounds for the Design of HDAC6-
Selective Inhibitors 
 
Table B. 1. Nonselective HDAC inhibitors from identified via structure-based virtual 
screening. These compounds showed reasonable binding orientation in HDAC6 active 
site.  

  ∆G (kcal/mol) 
Otava Code Structure HDAC6 HDAC7 

P7112880082 

 

-10.29 -10.32 

P7020580660 

 

-10.22 -10.35 

P7110390012 

 

-10.38 -10.33 

P7211790586 

 

-11.09 -10.75 



200 
   

P7412660574 

 

-10.63 -10.94 

P7717640005 

 

-10.38 -10.53 

P0113630043 

 

-10.24 -10.92 

 
P0123400435 

 

-10.74 -10.25 

P7714230380 

 

-10.01 -10.22 

P7217980127 

 

-10.05 -10.11 
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P7119500989 

 

-11.25 -10.92 

P7119730586 

 

-10.05 -10.03 

P7114880011 

 

-10.2 -10.43 

P1444899 

 

-11.61 -10.91 

P3823736 

 

-10.35 -10.56 
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P7020420008 

 

-10.05 -10.26 
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Table B. 2. Calculated pKa values of the neighboring residues in the catalytic channels 
of HDAC6 and HDAC7.  

 
HDAC6 HDAC7 

Residue Calculated pKa Residue Calculated pKa 
A:ASP486 3.563 A:ASP525 3.707 
A:ASP497 2.811 A:ASP537 2.303 
A:ASP567 3.123 A:ASP600 3.29 
A:ASP615 3.449 A:ASP624 4.296 
A:ASP647 7.597 A:ASP626 2.819 
A:ASP649 2 A:ASP647 3.748 
A:ASP662 2.841 A:ASP672 2.999 
A:ASP663 3.973 A:ASP705 2 
A:ASP675 2.721 A:ASP707 2 
A:ASP684 3.697 A:ASP721 3.339 
A:ASP712 3.541 A:ASP733 2.963 
A:ASP714 4.026 A:ASP734 3.415 
A:ASP742 6.797 A:ASP745 2.922 
A:ASP747 3.171 A:ASP766 3.325 
A:ASP801 3.13 A:ASP771 4.57 
A:GLU543 4.102 A:GLU543 2.509 
A:GLU552 4.658 A:GLU557 3.954 
A:GLU558 3.912 A:GLU565 4.761 
A:GLU562 4.536 A:GLU575 3.821 
A:GLU591 3.74 A:GLU576 4.55 
A:GLU597 4.614 A:GLU583 4.174 
A:GLU613 4.418 A:GLU631 4.137 
A:GLU661 4.607 A:GLU656 4.583 
A:GLU685 2.768 A:GLU746 5.536 
A:GLU729 5.165 A:GLU753 4.482 
A:GLU733 4.274 A:GLU773 5.674 
A:GLU757 4.274 A:GLU788 5.044 
A:GLU779 6.502 A:GLU804 4.03 
A:GLU789 3.997 A:GLU840 5.329 
A:GLU822 4.416 A:GLU853 4.767 
A:TYR668 12.2 A:TYR524 12.2 
A:TYR674 12.2 A:TYR589 12.2 
A:TYR715 12.2 A:TYR719 12.2 
A:TYR728 12.2 A:TYR726 12.2 
A:TYR759 12.2 A:TYR774 12.2 
A:TYR782 12.2 A:TYR813 12.2 
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A:TYR830 10.184 A:TYR822 11.246 
A:CYS512 10.514 A:CYS533 6.124 
A:CYS523 12.2 A:CYS535 6.361 
A:CYS539 12.2 A:CYS564 12.2 
A:CYS572 11.761 A:CYS566 11.582 
A:CYS578 12.2 A:CYS618 3.316 
A:CYS587 12.2 A:CYS680 12.2 
A:CYS618 12.2 A:CYS689 12.2 
A:CYS621 12.2 A:CYS819 12.2 
A:CYS752 12.2 A:CYS849 12.2 
A:CYS794 12.2 A:CYS855 12.2 
A:HIS499 6.549 A:HIS531 6.619 
A:HIS500 5.504 A:HIS541 2 
A:HIS540 7.955 A:HIS544 5.161 
A:HIS547 7.767 A:HIS581 5.97 
A:HIS560 6.82 A:HIS585 7.506 
A:HIS610 10.994 A:HIS633 6.08 
A:HIS611 6.488 A:HIS669 8.724 
A:HIS632 8.373 A:HIS670 2.114 
A:HIS639 6.807 A:HIS673 6.179 
A:HIS651 7.141 A:HIS709 2 
A:HIS652 7.544 A:HIS710 3.685 
A:HIS658 9.827 A:HIS730 7.98 
A:HIS672 10.781 A:HIS732 6.324 
A:HIS676 7.047 A:HIS806 6.807 
A:HIS720 6.623 A:HIS814 7.53 
A:HIS761 7.441 A:HIS843 5.872 
A:HIS764 6.941 A:HIS891 7.71 
A:LYS553 10.667 A:LYS571 9.745 
A:LYS555 10.685 A:LYS603 11.087 
A:ARG549 12.2 A:ARG540 12.2 
A:ARG557 12.2 A:ARG547 12.2 
A:ARG561 12.2 A:ARG554 12.2 
A:ARG588 12.2 A:ARG558 12.2 
A:ARG606 12.2 A:ARG561 12.2 
A:ARG631 12.2 A:ARG568 12.2 
A:ARG642 12.2 A:ARG570 12.2 
A:ARG673 12.2 A:ARG584 12.2 
A:ARG693 12.2 A:ARG639 12.2 
A:ARG709 12.2 A:ARG665 12.2 
A:ARG721 12.2 A:ARG690 12.2 
A:ARG745 12.2 A:ARG731 12.2 
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A:ARG773 12.2 A:ARG779 12.2 
A:ARG796 12.2 A:ARG787 12.2 
A:ARG810 12.2 A:ARG863 12.2 
A:ARG828 12.2 A:ARG882 12.2 
A:ARG829 12.2 A:ARG889 12.2 
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Figure B. 1. Binding modes of the known HDAC6-selective inhibitors. They all bound 
HDAC6 with their cap-linker-chelator pharmacophore feature, except for Tubacin, 

whose bulky cap made steric clashes at the entrance, and thereby changing the set of 
interactions deep inside the channel. 
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APPENDIX C 
 

Table C. 1.Binding energy (∆G) and inhibition constant (Ki) (against HDACs 6 and 10) 
of drug-like compounds retrieved from ZINC database by ligand-based virtual screening 

  HDAC6 HDAC10 

compound structure ΔG 
(kcal/mol) 

Ki 
(nM) 

ΔG 
(kcal/mol) 

Ki 
(nM) 

ZINC860648 

 

-7.75 2100 7.75 2100 

ZINC1719423 

 

-7.63 2530 -6.97 7820 

ZINC3619218 

 

-7.84 1790 -8.13 1100 

ZINC4163417 

 

-7.44 3530 -7.16 5610 

ZINC4163419 

 

-7.18 5500 -7.42 3630 
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ZINC4593737 

 

-6.81 10210 

 
 
 
 

  -8.43 
 
 
 
 

658.53 

ZINC4851153 

 

-6.03 37790 -7.98 1430 

ZINC5428788 

 

-7.20 5290 -7.32 4300 

ZINC19372554 

 

-8.53 558.82 -11.01 8.5 

ZINC19899798 

 

-7.56 2900 -10.12 37.91 
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ZINC19987434 

 

-7.17 5570 -8.24 905.34 

ZINC24536692 

 

-6.68 12690 -5.98 41060 

ZINC24770883 

 

-7.66 2420 -6.49 17610 

ZINC30895181 

 

-7.49 3240 -7.51 31400 

ZINC71871194 

 

-7.78 1990 -7.75 2090 
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ZINC72148254 

 

-9.00 252.65 -7.35 4100 

ZINC76301072 

 

-6.57 15340 -7.91 1590 

ZINC82608551 

 

-7.64 2500 -7.32 4310 

ZINC91603338 

 

-6.80 10330 -7.86 1730 

ZINC91820315 

 

-6.08 35030 -6.60 14430 

ZINC12240515 

 

-7.37 3990 -7.96 3430 
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ZINC12118287 

 

-7.33 4200 -8.37 731.32 

ZINC19749069 

 

-7.91 1600 -9.68 466.49 

ZINC40472959 

 

-6.00 4015 -5.56 83960 

ZINC72323260 

 

-7.02 7180 -7.61 2630 

ZINC35562277 

 

-8.19 993.25 -10.05 43.04 
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ZINC48357626 

 

-7.97 1430 -7.4 3770 

ZINC15069992 

 

-8.11 1140 -9.42 123.48 

ZINC37433253 

 

-11.96 1.71 -8.85 55890 

ZINC64669819 
 

 

-8.25 890.14 -9.3 152.61 


