
KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

PERFORMANCE COMPARISON OF LOCALITY SENSITIVE

HASHING AND RANDOM FOREST ALGORITHMS FOR

HANDWRITTEN DIGITS RECOGNITION

AYKUT ÇAYIR

JANUARY, 2014

 A
Y

K
U

T
 Ç

A
Y

IR

 M
aster T

h
esis

 2

0
1
4

PERFORMANCE COMPARISON OF LOCALITY SENSITIVE

HASHING AND RANDOM FOREST ALGORITHMS FOR

HANDWRITTEN DIGITS RECOGNITION

AYKUT ÇAYIR

B.S., Computer Engineering, Kadir Has University, 2011

M.S., Computer Engineering, Kadir Has University, 2014

Submitted to the Graduate School of Science and Engineering

In partial fulfillment of the requirements for the degree of

Master of Science

In

Computer Engineering

KADIR HAS UNIVERSITY

JANUARY, 2014

KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

PERFORMANCE COMPARISON OF LOCALITY SENSITIVE

HASHING AND RANDOM FOREST ALGORITHMS FOR

HANDWRITTEN DIGITS RECOGNITION

AYKUT ÇAYIR

APPROVED BY:

Assist. Prof. Taner ARSAN Kadir Has University _______________

(Thesis Supervisor)

Assist. Prof. A. Selçuk ÖĞRENCİ Kadir Has University ________________

Assoc. Prof. Osman K. EROL Istanbul Technical University ____________

APPROVAL DATE: 08/01/2014

i

“I, AYKUT ÇAYIR, confirm that the work presented in this thesis is my

own. Where information has been derived from other sources, I confirm

that this has been indicated in the thesis.”

STUDENT’S FULL NAME & SIGNATURE

ii

PERFORMANCE COMPARISON OF LOCALITY SENSITIVE

HASHING AND RANDOM FOREST ALGORITHMS FOR

HANDWRITTEN DIGITS RECOGNITION

Abstract

The significant increase in data created has caused to come out a new concept which

is called big data. In addition to that multidimensional data instances in big data sets

have many new features. Therefore, some problems become much more critical for

data analysis in big data sets. One of these very important problems is classification

of multidimensional data instances in big data sets in a reasonable time.

Classification is also related to K-Nearest Neighbors problem in machine learning

and data mining areas. A perfect example of the classification problem is object or

pattern recognition for images in real world applications. Pattern or object

recognition can be reduced to similarity search problem. In this work, we focused on

the similarity search problem in large scale databases. Firstly, we implemented two

popular machine learning algorithms: Locality Sensitive Hashing (LSH) and

Random Forest (RF) with the Python programming language. Then we compared

these two parameter-dependent algorithms in two different handwritten digits-

characters datasets: MNIST and NOTMNIST. In the experiments, we examined the

algorithms performance in terms of recognition accuracy, CPU time for various

algorithm specific parameters. Finally, we observed that LSH and RF exhibit

positive and negative features according to their parameters and we reached the

conclusion that LSH is more useful for time critical applications and RF is more

favorable for accuracy critical applications.

Keywords: Big Data, Classification, K-Nearest Neighbors, Performance, LSH, RF.

iii

YERELLİĞE DUYARLI ADRESLEME VE RASTSAL KARAR

ORMANI ALGORİTMALARININ EL YAZISI RAKAM

TANIMLAMASI İÇİN PERFORMANS KARŞILATIRMASI

 Özet

Data üretimindeki önemli artış büyük veri denilen yeni bir kavramın ortaya

çıkmasına sebep olmuştur. Buna ilaveten büyük veri kümelerindeki birçok veri

örneği çok boyutlu özelliklere sahiptir. Bu sebeple, büyük veri kümelerindeki veri

analizinde bir takım sorunlar çok daha kritik bir hale gelmektedir. Bu önemli

sorunlardan bir tanesi çok boyutlu veri örneklerinin bulunduğu büyük veri

kümelerinde makul bir zamanda sınıflandırma yapılması işlemidir. Sınıflandırma

işlemi makine öğrenimi ve veri madenciliği alanlarındaki K-Nearest Neighbors

problemiyle ilişkilidir. Sınıflandırma probleminin gerçek dünya

uygulamalarındaki güzel bir örneği resimlerde nesne ya da örüntü tanımlamadır.

Örüntü ya da nesne tanımlama ise benzerlik araması problemine indirgenebilir.

Bu çalışmada, biz büyük ölçekli veritabanlarında benzerlik araması problemine

odaklandık. Öncelikle, iki popüler makine öğrenimi algoritmasını gerçekledik:

Yerelliğe Duyarlı Adresleme (YDA) ve Rastsal Karar Ormanları (RKO) Python

programlama dili ile. Sonra bu iki parametre bağımlı algoritmayı iki farklı el

yazısı rakam ve karakter veri kümesinde karşılaştırdık: MNIST ve NOTMNIST.

Bu deneyde, algoritmaların performanslarını tanımlama isabeti, merkezi işlemci

birimi süresi cinsinden algoritmaya özgü parametreleri değiştirerek inceledik. Son

olarak, YDA ve RKO algoritmalarının parametrelerine göre pozitif ve negatif

davranışları olduğunu gözlemledik ve YDA algoritmasının zaman kritik

iv

uygulamalarda daha kullanışlı olduğu, RKO algortimasının ise kesinlik kritik

durumlarda daha avantajlı olduğu sonucuna vardık.

Anahtar Kelimeler: Büyük Veri, Sınıflandırma, K-Nearest Neighbors,

Performans, YDA, RKO

v

Acknowledgements

I want to thank to my thesis supervisor Assist. Prof. Taner Arsan who always

helped me during the thesis period. Thank you for your useful advices and

encouragement.

In addition, I would like to thank Assist. Prof. Zeki Bozkuş who taught me high

performance computing and İlktan Ar who helped me in the implementation of

some utilities.

Last, but not least, I would like to thank my family for their unconditional support

and encouragement. I am also grateful to my best friends Cüneyt Şenbalcı and

Mustafa Alp Çolakoğlu for their useful advices and unconditional support.

vi

Table of Contents

Abstract ... ii

Özet .. iiii

Acknowledgements .. v

Table of Contents ... vii

List of Tables ... viiiii

List of Figures .. ix

List of Abbreviations .. xi

1.Introduction ... 1

1.1. Thesis Structure .. 2

2.Related Works ... 3

3.Datasets .. 5

4.Methods .. 7

4.1. Definition of Classification Problem ... 7

4.2. Methodology .. 12

4.2.1. K Nearest Neigbors Method .. 12

4.2.2. Locality Sensitive Hashing Method ... 15

4.2.3. Random Forest Method ... 21

4.3. Similarities between LSH and RF .. 28

vii

4.4. Implementation .. 29

4.4.1. Implementation of Core Algorithms .. 29

4.4.2. Implementation of Data Preprocessing Scripts .. 30

5.Experimental Results .. 32

6.Conclusion ... 42

References ... 44

Curriculum Vitae ... 46

viii

List of Tables

Table 1: LSH Running Time – Accuracy for 5000 MNIST Test

Elements…………………………………………………………………... 33

Table 2: LSH Running Time – Accuracy for 5000 NOTMNIST Test

Elements………………………….........……………………………..…… 33

Table 3: LSH Running Time – Accuracy for 10000 MNIST Test

Elements………………………..........………………………………..…… 34

Table 4: LSH Running Time – Accuracy for 10000 NOTMNIST Test

Element……………………………...…….........……………………..…… 34

Table 5: RF Running Time – Accuracy for 5000 MNIST Test

Elements………………..………….........…………….………...……..……. 36

Table 6: RF Running Time – Accuracy for 5000 NOTMNIST Test

Elements………………………………….........………….…………..…..… 36

Table 7: RF Running Time – Accuracy for 10000 MNIST Test

Elements………………………………….........………….…………..…..… 37

Table 8: RF Running Time – Accuracy for 10000 NOTMNIST Test

Elements….……………………………….........………….…………..….… 37

ix

List of Figures

Figure 1: An Example from MNIST Datasets………………………………....... 5

Figure 2: An Example from NOTMNIST Datasets…….……………………… 6

Figure 3: Unsupervised Learning/Clustering ……………………….…….……. 8

Figure 4: Supervised Learning/Classification …………………………………... 9

Figure 5: Model Estimation……………………….……………………….....… 10

Figure 6: K-fold cross-validation ……….……………………………………… 11

Figure 7: Confusion matrix...........……………………………………………… 11

Figure 8: Set of negatives and positives...…………………………….………… 12

Figure 9: K-NN in Euclidean Space..………...…………………………………. 15

Figure 10: General Hashing and Collision for Items....………........…………… 16

Figure 11: LSH vs. General Hashing Principle.....……………..………………. 20

Figure 12: Querying in Random Forest……….......……………………………. 28

Figure 13: LSH MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution

Time.…..………………….…..………......…………………………..……...…. 35

Figure 14: RF MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution

Time……………………………………………………..…………………..….. 38

Figure 15: LSH- Training Performance for MNIST ………………………..….. 39

Figure 16: LSH- Training Performance for NOTMNIST ………………..…...... 39

x

Figure 17: RF- Training Performance for MNIST…………………...……...….. 40

Figure 18: RF- Training Performance for MNIST………………..……...…. 40

xi

List of Abbreviations

LSH Locality Sensitive Hashing

RF Random Forest

K-NN K-Nearest Neighbors

R-KNN Random K-Nearest Neighbors

CSV Comma Separated Value

MAT Matrix

NP Numpy Library for Python

E2LSH Exact Euclidean in L2 Norm Locality Sensitive Hashing

p2p Peer to Peer

OOB out of bag

1

Chapter 1

Introduction

Today’s technology world the amount of large scale databases which contain

documents, images, videos, audios, sensor data, etc. are becoming more and more

needed to use by the augmentation of technology usage in everywhere of our lives.

By the increment of usage, computationally efficient applications are needed to

analyze, search, and visualize the collection of objects in these large databases to

answer the user requests. As long as the data gets larger, to handle with data is

getting harder. These applications must handle high-dimensional data quickly and

accurately to answer the user requests. The similarity search problem in large scale

databases is a popular problem in computer science. We can briefly define this

problem as finding the most similar (nearest) object to the query. These objects

(images, videos, etc.) are characterized by a set of relevant high dimensional

features.

In this work, we examined and evaluated two important methods that allow us to

efficiently solve this similarity search problem. Those methods are Locality

Sensitive Hashing (LSH) and Random Forest (RF) algorithms. LSH [1] is a well-

known indexing method that provides a similarity searching in sub-linear time. LSH

has been designed to solve the similarity search problem. RF [2] is an ensemble

classifier that employs a set of decision trees for a classification task. RF is also

related to finding the solution for the nearest neighbors problem as mentioned in [3].

The performances of LSH and RF are compared in the field of pattern recognition:

recognition of handwritten digits. We used two public datasets to acquire

handwritten digits which are represented with high-dimensional features. We also

examined the performance of these methods with different parameters because LSH

and RF are parameter dependent methods.

2

1.1. Thesis Structure

The thesis has six main parts: Chapter 2 describes the related works. The datasets are

given and explained in Chapter 3. The Locality Sensitive Hashing and Random

Forest algorithms are discussed in Chapter 4. Chapter 5 demonstrates the

experimental results. Finally Chapter 6 includes the conclusion and suggestion for

further research.

3

Chapter 2

Related Works

In this section, we review studies related to Locality Sensitive Hashing (LSH) and

Random Forest (RF) algorithms briefly to demonstrate their functionality and

problem domains. Indyk and Motwani defined the popular Locality Sensitive

Hashing (LSH) algorithm in 1998 [1] to reduce similarity search time in various

pattern recognition, information retrieval, clustering, etc. problems. Yang et al. [4]

improved the LSH algorithm by developing a hierarchical version of LSH to adapt

for non-uniform distributions. Then they tested their algorithm on the video

identification problem. Datar et al. [5] developed a new LSH scheme (E2LSH)

based on l2 norm which is faster than the previous implementations of LSH.

Terasawa and Tanaka [6] designed a LSH based scheme to represent character string

images in the scanned document. In their approach the image regions which have

similar appearances retrieved by a set of integers that represent high dimensional

data. Hua et al. [7] indicated the need of similarity search approaches in peer-to-peer

(p2p) file systems which contain high-dimensional data such as videos, images, and

sensor data. They developed the Bounded Locality Sensitive Hashing (Bounded

LSH) method which provides a reasonable amount of memory in p2p systems.

Wang et al. [8] introduced entropy based LSH algorithm which is based on a new

hash function scheme. In this schema the mapping functions are based on maximum

entropy. They tested this algorithm on two different datasets (audio and image

datasets) and found that their algorithm is superior to the original E2LSH [5] in

terms of accuracy. Bernard et al. [9] analyzed the correlation between RF parameters

with RF performances and focused to tune these parameters on the MNIST

handwritten digits database [10]. Later, Bernard et al. [11] studied the possibility of

forming more accurate random forests by removing some of the decision trees.

4

Caruana et al. [12] compared different supervised learning algorithms such as

Support Vector Machines, Artificial Neural Networks, Logistic Regression, Naive

Bayes, K-Nearest Neighbors, Random Forests, Bagged Decision Trees, Perceptrons

on 11 binary classification tasks. They evaluated the performance of the methods

with three different metrics: accuracy, squared error and the area under the ROC

curve. They observed that the Random Forests performed better than the other

methods with different dimensions of data. Li et al. [13] introduced a feature

selection algorithm which enhances the Random K-Nearest Neighbor (RKNN)

algorithm for the analysis of high-dimensional datasets and developed RKNN-FS.

They also compared their method with the random forests and found their method is

faster and more stable on different gene datasets. They pointed out that noisy input

variables and unbalanced datasets can cause performance drops in random forests.

Zahedi and Eslami [14] indicated that the random forest is a robust and fast classifier

for the recognition tasks which include large number of features. They improved the

efficiency of the random forest classifier with a localization process to recognize

Persian handwritten characters more accurately. Mu et al. [15] developed an

algorithm (random locality sensitive vocabulary) for visual vocabulary construction

based on the ideas from LSH and RF. Their algorithm avoids problems such as slow

training and huge storage requirements. They observed that their approach provides

a balance between accuracy and efficiency for different problems: action recognition

on videos, object recognition on images, near duplicate video detection.

5

Chapter 3

Datasets

In this section, we describe our datasets, their technical properties and our data

preprocessing steps without going into implementation details.

We used two different very large scale datasets which contain images as input in this

work. One of them is MNIST handwritten digits dataset as you can see in Figure 1

which is very popular dataset using in pattern recognition and image processing

algorithms [16]. MNIST database includes two parts training and test items.

Training part of the set has 60000 and test part has 10000 elements. All images in

the set are labeled from “0” to “9”.

Figure 1: An Example from MNIST Datasets

These images are fixed size and normalized. For each image, the digits are centered

in 28x28 pixels. Format of MNIST training and test datasets files is very simple.

Thus offset values of images are known. Files contain unsigned bytes and each byte

is located at some offsets. 0000 offset is related to magic number value and it is not

necessarily for us. The next offset is 0004 and it contains number of item

information. Pixel values are located at offset 0016 and it goes sequentially. For

6

instance, pixel values of an image can be read using offset column in the dataset file.

We wrote some MATLAB scripts which creates training and test files. Each file in

the training and test dataset are transformed into vectors which contain pixel

intensity values. At the end of preprocessing step, we have 60000 rows and 784

columns as pixel values or attributes as training input and 10000 row and 784

columns of attributes as test input.

Our second database is NOTMNIST dataset which is indicates letter images in many

different pattern as you can check in Figure 2 [17]. Although NOTMNIST dataset is

similar to MNIST dataset in terms of image size, images in NOTMNIST are

characters while MNIST dataset represents digits. The dataset has got 10 classes

from “A” to “J” in different fonts. The whole dataset has 500000 samples. However,

we need to reduce the number of samples due to memory issues. Therefore we have

written a MATLAB script to create a useful dataset and to create test instances from

this dataset. Before this step, we ran a Python script to convert images from 2D

array to MAT files to the input format of our MATLAB script while it is easier to

implement Python script for this purpose. At the end of data preprocessing step,

another MATLAB script converts each instance into 784 comma separated value file

row by row for each pixel which represents an image in 28x28 pixel formats. We

converted these matrices to 1x784 vectors. As a result of these steps, we created a

training dataset, which contains 146979 instances, from NOTMNIST dataset and a

test set, which contains 10000 instances.

Figure 2: An Example from NOTMNIST Datasets

7

Chapter 4

Methodology

Before explaining the methods, it is necessary to consider definition of classification

problem.

4.1. Definition of Classification Problem

In machine learning and data mining, the most common problem is to identify an

object or a pattern. This problem is called the classification problem and two

different learning types exist, one of them is unsupervised learning and the other one

is supervised learning. Unsupervised learning techniques are based on trying to find

the hidden structure of the datasets while we have a represented structure as

separation of data into classes in supervised learning techniques. Describing the data

in unsupervised learning is called clustering as seen in Figure 3 while there is no

class label to represent the structure of dataset. There exist two types of clustering

such as K-Means Clustering, Hierarchical Clustering. For instance, hierarchical

clustering uses a distance based method to cluster dataset. According to distance

between objects, instances are splitting to different clusters.

In K-Means Clustering method k cluster are determined and k sample are chosen as

cluster centers, then by using Euclidean distance between each object and cluster

center, instances are grouped according to closest center and cluster center

recalculated. If the new cluster center is same with previous one, process ends, if not

objects are grouped again and steps over. As an example of clustering you can see

the Figure 3, instances have two features f1 and f2 and grouped into two cluster c1

and c2. Cluster centers are determined by using K-Mean clustering method and

centers determined according to density of similar objects.

8

Figure 3: Unsupervised Learning/Clustering

We have four base collection or input sets. These are training dataset, training labels

set, test dataset and test labels set. Because of having a label or a class set in our

datasets, the method which we have used is supervised learning.

In supervised learning, a training algorithm is used with train data set and its class

set. At the end of training part, the algorithm can be used to classify the data

instance. When we apply a query from test dataset then the algorithm can make a

guess what is the class of the test element. This prediction might be wrong or

correct. We can compute the accuracy of the algorithm using test labels. Accuracy

percentage of the algorithm depends on your algorithm and your training dataset.

The dataset can contain fallacious information depending on missing or wrong value

that decreases the accuracy of our classification and make the algorithm wrong

guesses. Supervised learning has many different classification methods such as

Decision trees, Naive Bayes, Random Forest and K-Nearest neighbor etc. In Figure

4, the collection of instances has two features as f1 and f2. Instances are grouped by

their class information class A or B.

9

Figure 4: Supervised Learning/Classification

Supervised learning uses different model estimations to train and test the data set.

These methods are Resubstitution Method, Hold-out Method, Leave one out Method

and Rotation method.

1-) Resubstitution Method: All the available data are used for training as well as for

testing which means that the training and testing sets are the same. This method is

preferred in real-world applications.

2-) Hold-out Method: Half of the data or two-third of the data is used for training

and the remaining data for testing as seen in Figure 5. Training and testing sets

independent and the error estimation is pessimistic.

10

Figure 5: Model Estimation

3-) Leave one out Method: A model is created using (n-1) samples for training and

testing on the one remaining sample. This is iterated n times with different training

sets of size (n-1). This approach needs large computational, because n different set

must be created and computed.

4-) Rotation Method (K-fold cross validation): This approach is an agreement

between holdout and leave one out methods. It divides the available samples into p

disjoint subsets, where 1 ≤ p ≤ n, (p-1) subsets for training and the remaining subsets

for testing. This is the most popular method in practice. We create same number of

model with the fold number as seen in Figure 6.

11

Figure 6: K-fold cross-validation

Assume that we have two classes in terms of positive samples versus negative

samples. After training dataset, we measure how much the method learn this set and

how much of test samples’ classification are guessed correctly. The ratio of correct

classified samples over total classification gives the accuracy of out classification

method (see Figure 7).

Figure 7: Confusion matrix

12

4.2 Methods

In this study, LSH and RF algorithms are considered. LSH is produced from K-NN

so it is necessary to identify K-NN algorithm first. LSH and RF algorithms are also

described in the following sections.

4.2.1 K-Nearest Neighbors Method

One of the most famous solution methods for the classification problem is finding

the nearest neighbors of a specific query element. This method is also known as K-

NN. K-Nearest Neighbors method was described by T. M. Cover and P. E. Hart in

1967. In this method, a distance metric can be defined such as Euclidean, cosine,

hamming or Levenshtein. In the set of negatives and positives we consider the

nearest neighbors in terms of distance metric which we use. See the Figure 8 in

Euclidean space.

Figure 8: Set of negatives and positives

13

Indyk et al. [1] gives a definition of that method: Let T be a set of point for training

data and assume that its size is n. We can denote T as T = { }. We need to

specify a metric space and let S be our metric space. We can define a distance

function df in our metric space S. Each element of T has got a class related to df in

the metric space S. K-NN algorithm as pseudo code, can be given as follows:

Name: K-NN

Data: q is the query element, T is the training set, L is the training label set, n is size

of the training set, k is the number of neighbors

Result: label of q

initialization;

distanceList ← ∅;

for i ← 1 to n do

 t ← ;

 distanceList[i]←df(q, t);

end for

sortedElementsIncOrder ← sort(distanceList);

labelCount ← {∅};

for i ← 1 to k do

l ← L[index(sortedIncOrder[i])];

14

labelCount[l] ← labelCount[l] + 1;

end for

sortedLabels ← sortDecOrder(labelCount);

return sortedLabels[0];

Pseudo code 1: K-NN Algorithm

As shown as pseudo code of K-NN, the algorithm uses a distance function df. If our

metric space S is Euclidean space, df can be defined as follows:

df =

The K-NN algorithm calculates distance between query point and each training

element using df function, and each distance is stored into distanceList. In the

second step of the algorithm, all elements in the distanceList are sorted in increasing

order according to their distances from q. After this step, the labels of the first k

elements of the sortedElementsIncOrder are counted and counts of labels for the

first k elements are stored in the labelCount map. In the last step of the K-NN

algorithm, the labelCount map is sorted in a decreasing order as sortedLabels and

the algorithm returns the first element of the sortedLabels. Actually the algorithm

draws an imaginary circle around q which covers nearest neighbors (See Figure 9).

K-NN algorithm is a brute force algorithm and it works in a reasonable time for

small datasets. Thus it is not efficient for high dimensional and big datasets.

15

Figure 9: K-NN in Euclidean Space

4.2.2 Locality Sensitive Hashing (LSH) Method

Locality Sensitive Hashing finds the nearest neighbors in sublinear time. A function

which runs in linear time needs to perform operations as its input size. In contrast to

sublinear time, the function performs operations as less than its input size and

functions which run in sublinear time grow slower than the functions which run in

linear time for sufficient large input size. When LSH and K-NN are compared, K-

NN needs to operate N operations for the dataset whose size is N but LSH can

perform operations less than N for the same dataset.

LSH is a learning algorithm which is based on hashing mechanism. Generally,

hashing is common and very useful method in computer science. However hashing

mechanism of LSH is different from general hashing. In general hashing methods

have three parts: a hash function, a hash table and bucket(s). A hash function tries to

generate unique integer or index value for a vector. For example, let w be a 1xd

vector and it is sent to the hash function as a parameter, then the hash function

16

generates an integer for the vector w. A general hash function can be described as

follows for vector w:

Let P be nine or ten digit prime number and ∈ Z

Let T be an integer

h(w) = ((* + … +) mod P) mod T

However, generating a unique integer or index is impossible in every time. This case

is called as collision. To overcome this problem, there is an associative data

structure for hashing. This data structure called as hash table. Hash tables can be

described as a contiguous memory block as an array and it contains a linked list at

each index and these lists are called as buckets. When a collision occurs for a data

element, the data element is stored into the linked list in generated index (See Figure

10).

Figure 10: General Hashing and Collision for Items

17

LSH is separated into two parts: training and querying. For the training part, the

similar elements are grouped into buckets in hash tables using a bunch of hash

functions. In LSH, a hash function can be defined as follows for a data element t (it

is assumed to be 1xd vector) in the training dataset:

Let P is nine or ten digit Prime number and ∈ is the finite set

of prime numbers

Let M be number of hash tables

h(t) = ((* + … +) mod P) mod M

Format of each hash function in the function list is as function h(t). This function list

is called as hash function family. A hash function family HF is defined as follows in

LSH [1]:

Let df be the distance measure and and be two distance value according to df.

We can define sensitivity parameters such as (, , ,) and for every h in HF:

if df(x, y) ≤ , then the probability h(x) = h(y) is at least .

if df(x, y) ≥ , then the probability h(x) = h(y) is at most .

if > and < then Sim is a dissimilarity measure.

if > and > then Sim is a similarity measure.

 These functions are selected from the hash functions list randomly. Each element in

training dataset is indexed by selected hash function and inserted into a bucket

which is placed in that index. Indyk et al. [1] describes LSH such as pseudo code:

18

Name: LSH_Training

Data: T is the training dataset, L is the training label set, l is number of hash tables

Result: Hash tables trained with T

H ← { , , …, }; //hash function family

B ← { , , …, }; //hash tables

foreach p in T do

 ← choose randomly from H;

 foreach table in B do

 hashIndex ← ;

 [hashIndex] ← p;

 end foreach

end foreach

return B;

Pseudo code 2: LSH Training Part Algorithm

Name: LSH_Query

Data: q is a query point

candidates ← ∅;

foreach table in B do

 ← get from H;

 hashIndex ← (q);

19

 append [hashIndex] to candidates;

end foreach

K ← k ;//constant number

label ← K-NN(q, candidates, K); // K-NN uses Euclidean distance in this

implementation for df function.

return label;

Pseudo code 3: LSH Query Part Algorithm

LSH makes a bunch of buckets which contain similar data elements. For example,

when two similar or equal class objects are hashed with randomly chosen hash

functions they are in the same bucket with high probability. Then we can apply K-

NN method to a much smaller dataset than the original dataset. If we compare LSH

to general hashing methods, we can observe basic principles of LSH.

20

Figure 11: LSH vs. General Hashing Principle

In general hashing methods all items can be randomly placed to any indexes despite

of their similarity (See Figure 11). In contrast to LSH, an index refers to a bucket or

list of items which contain similar items with high probability. A randomly chosen

hash function is responsible to generate these indexes according to similarity of

items. That means all training data elements are inserted to the buckets with related

to indexes. Thus, at the end of the training part we have got subsets of the original

train dataset as many as number of hash tables.

When a query item comes from a test dataset, candidates are found for each table via

hashing query item. The bucket which contains possible candidates is found using

this index at O(1) time complexity. This is the power of all hashing methods. Now

LSH algorithm knows that the query item belongs to a group of items. However it is

not enough to classify the query data. Although all items in the same group are

21

assumed to be similar to each other, their classes or labels can be different. To

classify the query element, we can apply the K-NN algorithm to that candidate set

which contains similar items with the query point with a high probability in

sublinear time. In big datasets, sublinear search performance has got a very

important role. At the same time LSH algorithm can be considered as an algorithm

to reduce dimension of dataset.

4.2.3 Random Forest (RF) Method

Decision trees are well known methods in machine learning and data mining. We

can use decision trees to classify any object or data point. The most important issue

for solving a classification problem using a decision tree is the construction of the

correct tree. In contrast to decision tree method, Brieman et al. [2] described a new

method which was named random forest (RF). RF is an ensemble technique in

machine learning and it is very useful for categorical datasets. In RF, there is a

bunch of decision trees which create a forest structure. Each decision tree in the

forest has got a maximum depth and nodes which contain split features. Let N be the

feature number of each data sample in our dataset and maximum split feature for

each tree in the forest should be .

In training part of RF, each split features is picked from a random subset of the

features. Instead of using the most discriminative thresholds, a random subset of

features is used. Because of this randomness, the bias of the forest increases. RF has

got an essential method for maintains accuracy when a large amount of data are

missing and RF does not need to cross validation because it uses the out of bag error

estimation. In the out of bag error estimation method, one out of three of the training

dataset is dedicated for testing for created estimators or trees. After creating trees,

each tree is tested with samples which are not in the tree and an error rate is

estimated for each tree. The out of bag error estimation has proven to be unbiased. In

22

RF, each tree can enlarge as much as possible because RF does not prune any tree in

the forest.

Information gain is the most important part of RF. We need to determine the best

split for sub trees according to information gain calculation. Thus we calculate

information gain for each leaf before splitting. Each leaf contains the result of

classification, so we use entropy based calculation for each leaf and split to calculate

information gain. Entropy can be given as follow:

entropy =

We used these four methods to construct a random forest following as:

function constructTree(T, L, mD, mSF)

function split(leaf l, L)

function bestSplit(leaf l)

function informationGain(leaf l, split sp)

T is the train dataset, L is the train label set, mD is the maximum depth parameter,

mSF is the number of maximum split features. We can define constructTree method

in a pseudo code format such that:

Name: constructTree

Data: T is the training set, L is the label list, mD is the maximum depth, mSF is the

number of maximum split feature

Result: A Tree for the forest

23

if root is NULL do

 S ← sample from T;

 choose features SF randomly len(S) ≤ mSF;

 make a node N from SF ;

 root ← N;

end if

while depth of tree ≤ mD do

 foreach sample s in T - S do

 choose features SF randomly len(s) ≤ mSF;

 make a node l from SF

 l’, l’’ ← split(l, L);

 if l’ is left node do

 attach l’ to left node of root;

 end if

 if l’’ is right node do

 attach l’’ to right node of root;

 end if

 end foreach

end while

return root;

Pseudo code 4: Construct Tree Algorithm

24

Name: split

Data: node l, set of label L

Result: left and right node with appropriate label

BS ← bestSplit(l);

if BS ≠ ∅ do

 lc ← makeLeftChild(l, L for BS);

 rc ← ∅;

else

 rc ← makeLeftChild(l, L for BS);

 lc ← ∅;

end if

return lc, rc;

Pseudo code 5: Split Algorithm

Name: bestSplit

Data: node l

BS ← ∅

for b ∈ possible splits for l do

 if informationGain(l, b) informationGain(l, BS) do

25

 if isValidSplit(l, b) do

 BS ← b;

 end if

 end if

end for

return BS;

Pseudo code 6: Best Split Algorithm

Name: informationGain

Data: node l, split sp

lc ← makeLeftChildren(sp);

rc ← makeRightChildren(sp);

return entropy(L[sp], l) – entropy(L[sp], lc) – entropy(L[sp], rc);

Pseudo code 7: Information Gain Algorithm

As shown as pseudo code for creating a decision tree, a split feature is selected

randomly for each sample in the training dataset. The constructTree algorithm has

got a criterion to halt the execution. If the tree has reached the maximum depth, it

means that leaves have been constructed. Thus the algorithm is halted; otherwise a

new node is created and the best split is calculated for the created node. The split

function tries to find the best split for the node using bestSplit function. The bestSplit

function calculates a best split score for the node with the current sub split feature

set using informationGain function. In the informationGain function, an information

gain is calculated creating possible right and left child node with a based on the

26

entropy calculation. At the end of the constructTree, a decision tree has been created

dynamically.

Name: randomForest

Data: N is the number of tree, mD is the maximum depth for each tree, mSF is the

number of maximum split feature, T is the training dataset, L is the training label set

oobTestData ← T;// one out of three of T training dataset is dedicated for

calculation of out of bag error

oobTestLabels ← L; // one out of three of L training label set is dedicated for

calculation of out of bag error

treeList ←∅;

for i ← 1 to N do

 t = constructTree();

 append t to treeList;

end for

weightedTreeList ← ∅;

foreach tree in treeList do

 rate = calculate the out of bag error rate for tree using oobTestData and

oobTestLabels;

 if rate < do // = 0.37

 increase the weight of tree for voting;

 else

 decrease the weight of tree for voting;

27

 end if

 append tree to weightedTreeList;

end foreach

forest ← combine trees from weightedTreeList;

return forest;

Pseudo code 8: Random Forest Algorithm

In the above pseudo code, one out of three of the training dataset T and one out of

three of training label set L are used for calculating the out of bag(OOB) error rate

for each tree which has been constructed with two out of three of T and L. If a tree

has got an OOB error rate which is less than 0.37, weight of tree is increased for

voting. After this step, all trees are combined as a forest and the algorithm returns

the forest. Creating decision trees and a random forest classifier is the training part

of the algorithm.

After creating the random forest classifier, we can ask class of an unknown element

to the classifier. This part is called as querying. In the querying part, a query element

in test dataset is classified by all trees in the forest. Then partial results are collected

from all trees and top rated class is assigned to the query part. In addition to this,

each tree returns the result class with a probability. When the votes for classes are

equal, the classifier considers votes and probabilities for the query point q. Thus the

classifier assigns the result class to the query point q according to its total votes and

probabilities from all trees (See Figure 12).

28

Figure 12: Querying in Random Forest

4.3 Similarities between LSH and RF

In this unit, we talk about some similarities between LSH and RF algorithms. First

of all two algorithms are related to classification problem. Thus both of them are

supervised learning algorithm. Supervised learning means that an algorithm knows

classes of each train data element before querying. The algorithm infers the class of

a query element from previous knowledge which learned in the train part. In

supervised learning, the algorithm creates a model (probabilistic or statistical) then

in the query part, it uses this model to guess class of any data point. For example,

when we ask an unknown data element to RF, RF algorithm creates forest as a

model which contains class information and probabilities in leaves of each tree.

After creating a model, the unknown element is searched in each tree in the forest

and each tree returns a class and a probability for the unknown element. At the end

29

of the query part, RF determines the class of the query element according to

numbers of classes which are collected from all trees in the forest if the numbers of

classes are not equal, if they are equal then RF determines the class of the point

according to the maximum probability of returned classes. Likewise, LSH also

creates a model from train dataset. Hash table are probabilistic model for LSH. All

data in the train dataset are inserted to hash tables which contain similar items with

high probability. In query part of LSH algorithm, the algorithm tries to make a class

guess for the query element using this hash tables. It applies K-NN to appropriate

hash table for the unknown element.

The other similar characteristic of both algorithms is randomness. LSH and RF are

randomized algorithms. LSH chooses a hash function from the hash function

families or lists randomly. RF constructs all trees using random feature subsets from

train dataset instead of a specific discriminative threshold value. These algorithms

use randomness in their training part.

4.4 Implementation

We give a brief description about the implementation of core algorithms and some

utility scripts for preparing datasets without going to details. We divided the

implementation into two parts: implementation RF and LSH as core algorithms,

implementation of data preprocessing scripts. In this section, some important points

are mentioned to explain the reasons of choosing programming languages and third

party tools.

4.4.1 Implementation of Core Algorithms

We implemented LSH and RF using Python programming language. Python is a

scripting language and it is the most popular tools with MATLAB and R among data

30

scientists. Also many contributors develop numerous libraries for Python and one of

them is Numpy(NP) [18]. We used standard Python library and NP array library.

NP is an effective array library for Python. In Python, there is no C based array

implementation. Instead of using contiguous memory blocks as an array in Python,

we need to use a linked list implementation or primitive list data structure of Python.

List data structure is not efficient enough for big datasets. Thus we preferred to use a

C based array implementation for Python. NP is the most popular and the defacto

standard in Python communities. NP has got also C based array structure and

functions. Many benchmarks which are performed by NP developers show that NP

is faster than primitive list data structure in standard Python library.

During the implementation time, we needed to perform some basic vector and

matrix operations. These mathematical operators are implemented as an operator

using operator overloading or a method in NP. It provides a clear interface to us for

complex mathematical expressions when we implemented both two algorithms.

The other third part library is Scikitlearn [19]. Scikitlearn has got many data mining

algorithms. It also uses NP and dictionary data structures in Python. We used

Scikitlearn for testing our RF implementation.

4.4.2 Implementation of Data Preprocessing Scripts

Another useful programming tool which we used data preprocessing is MATLAB.

We created CSV files from MNIST and NOTMNIST datasets using MATLAB

scripts. MNIST dataset has got a special file format to read all training and test

datasets with their classes and the creator of MNIST dataset provides some third

party MATLAB libraries to us. However, NOTMNIST dataset is a set of raw

images. Thus we read all images and converted it to MAT objects. Finally we wrote

31

some utility functions to prepare training and test datasets for NOTMNIST in

MATLAB.

32

Chapter 5

Experimental Results

In this section, experiment results are discussed. We examined the performance

results of RF and LSH in terms of accuracy and running time for two different

datasets. Results were calculated for 5000 and 10000 query or test elements.

Moreover, both algorithms were trained with 60000 training data elements for

both datasets.

LSH have got a sensitive parameter is called as number of tree, so this parameter

was changed for all experiments. Although RF has got three different parameters,

only one parameter was used in experiments. RF can be used for classification or

regression. If RF is used for classification, maximum split feature parameter

should be square root of the feature size. Thus the maximum split feature

parameter was fixed for all experiments, so its value was equal to 28. The second

fixed parameter of RF is maximum depth. This parameter was equal to 21,

because RF reached a saturation point for accuracy when maximum depth was

equal to 21. When it was changed, the accuracy did not change very much in our

experiments.

Number of hash tables and number of estimators (trees) were chosen as equal.

These values were 12, 16, 20, 24, 28 and 32. Performance of RF and LSH was

measured with these values. In addition to these, resubstitution model was

performed on RF and LSH using both datasets. Each performance experiment was

performed 30 times for each number of hash tables and number of trees value.

This is not a magic number. This value comes from the central limit theorem.

According to this theorem, if the number of sample is greater than or equal to 30,

33

this sample size is sufficient to get approximate normal distribution for the

distribution of the sample mean. Thus each experiment was tested 30 times.

Processing and Analyzing Performance Results

First of all, accuracy vs. execution time performance results of LSH for MNIST

and NOTMNIST 5000 are shown in Table [1] and Table [2].

Number of

Hash Table

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 372 55 427 83,1

16 77 12 89 73,4

20 33 6 39 64,7

24 21 3 24 58,6

28 15 2 17 53,2

32 13 1 14 48,4

Table 1: LSH Running Time – Accuracy for 5000 MNIST Test Elements

Number of

Hash Table

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 280 107 387 81,2

16 140 30 170 76,1

20 72 17 89 70,4

24 48 9 57 61,3

28 26 4 30 54,7

32 22 2 24 46,5

Table 2: LSH Running Time – Accuracy for 5000 NOTMNIST Test Elements

34

Number of

Hash Table

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 711 132 843 92,8

16 128 17 146 81,6

20 59 10 69 73,5

24 35 6 41 66,8

28 28 4 32 61,2

32 25 3 28 55,5

Table 3: LSH Running Time – Accuracy for 10000 MNIST Test Elements

Number of

Hash Table

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 775 100 875 90,7

16 351 24 375 83,8

20 146 12 158 70,3

24 59 7 66 63

28 28 5 33 56,1

32 24 4 28 48,6

Table 4: LSH Running Time – Accuracy for 10000 NOTMNIST Test Elements

35

Figure 13: LSH MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution

Time

When the accuracy is maximum, the number of hash tables parameter of LSH is

the minimum value for both datasets. For instance, when the number of hash

tables = 12, the accuracy of LSH equals to 83.1% and 81.2% for 5000 test

elements in Table [1] [2]. On the other hand, when the number of hash tables =

32, the accuracy of LSH equals to 48.4 and 46.5. It is below 50 percent. For 10000

query elements in Table [3] [4], this is true. Although the accuracy is decreasing,

training, test and total execution time are decreasing with increase of number of

hash tables. LSH returns the classification results for 10000 in 3 and 4 seconds.

LSH behaves totally like K-NN for small number of hash tables, so the running

time complexity of LSH converges to complexity of K-NN for a small number of

hash tables and its accuracy is growing, in other words, LSH performs K-NN for a

36

set which contains more similar items. If the number of hash tables increases,

each table contains less similar items. Thus LSH accuracy is decreasing and its

execution time is decreasing, because each subgroup size is less than the original

dataset size (See Figure 13).

Secondly, RF performances are shown in Table [5] [6] [7] [8] for MNIST-

NOTMNIST 5000 and MNIST-NOTMNIST 10000.

Number of

Tree

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 58 2 60 87

16 72 3 75 87,2

20 90 4 94 87,4

24 102 4 106 87,6

28 126 5 131 87,7

32 152 5 157 87,7

Table 5: RF Running Time – Accuracy for 5000 MNIST Test Elements

Number of

Tree

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 103 5 108 82,7

16 132 5 132 83,2

20 154 7 154 83,6

24 186 8 194 83,8

28 235 10 245 84,1

32 276 12 288 84,2

Table 6: RF Running Time – Accuracy for 5000 NOTMNIST Test Elements

37

Number of

Tree

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 101 3 104 93,1

16 134 6 140 93,6

20 166 6 172 93,8

24 199 7 206 93,8

28 235 8 243 93,9

32 269 9 278 93,9

Table 7: RF Running Time – Accuracy for 10000 MNIST Test Elements

Number of

Tree

Training Time

(seconds)

Test Time

(seconds)

Total Time

(seconds)
Accuracy (%)

12 139 7 146 90,1

16 189 9 198 90,8

20 246 13 259 91,2

24 294 17 311 91,4

28 332 20 352 91,4

32 375 26 401 91,5

Table 8: RF Running Time – Accuracy for 10000 NOTMNIST Test Elements

38

Figure 14: RF MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution Time

Accuracy of RF is increasing when the number of trees is increasing, because the

forest converges to be unbiased. However, training and testing time are

increasing. For example, RF accuracy, training and testing time are increasing

when the number of trees increases from 24 to 28 in Table [5] [6] [7] [8]. Though

its accuracy is increasing, the increment goes to a limit or saturation point as seen

in Figure 14. The reason of increment in the training and testing time is that RF

creates much more decision trees in the training part and a test element is

classified by each tree in the forest in the testing part.

39

Figure 15: LSH- Training Performance for MNIST

Figure 16: LSH- Training Performance for NOTMNIST

40

Figure 17: RF- Training Performance for MNIST

Figure 18: RF- Training Performance for MNIST

41

When RF and LSH algorithms are compared with each other in terms of accuracy

and execution time, some critical points occurs. For example, LSH is not fast as

RF if accuracy of LSH is maximum value for both datasets (See Figure 13 and

Figure 14). When LSH is faster than RF for number of table = 32, accuracy of the

RF is greater than LSH as seen in Table [4] and Table [8].

Resubstitution model is applied to these two algorithms using MNIST and

NOTMNIST datasets. RF and LSH are trained with MNIST and NOTMNIST

60000 and for the test part, number of hash tables and number of tree parameters

are 30, 32, 34 and 38. This model shows that two algorithms are over trained.

Accuracies of these algorithms are greater than 99% (Figure 15, 16, 17, 18). This

case is called as overfitting in machine learning and data mining. Some learning

algorithms can be affected negatively by overfitting and some algorithm cannot be

affected, but LSH is affected. LSH learns every data items in the training dataset

perfectly. When a new test element comes from test dataset, LSH cannot classify

this query element correctly. One of the reasons of having less accuracy for LSH

can be overfitting.

42

Chapter 6

Conclusion

In this thesis, we implemented two popular machine learning algorithms with their

various parameters. After that we run these two algorithms on public datasets which

are called MNIST and NOTMNIST. Our goal is that creating a main idea observing

the pros and cons of these two algorithms to develop a new hybrid algorithm in the

future. The datasets we worked on are myriads of digitized images digits and

characters.

The scope of the thesis after observing mechanism of these two algorithms, a

literature research has been done in-depth looking existing studies. In this research

direction, we learned that there were practical applications of existing two

classification algorithms RF and LSH in some important research areas such as

image processing, pattern recognition and bioinformatics. We run these algorithms

on the datasets which we mentioned in previous paragraph after implementing two

algorithms using Python programming language in Linux environment. We did not

encounter any problem during the running time of our application. We examined the

results which were generated by our work in details in the related section.

According to these results, our highlighted impressions are that both of two

algorithms are successful in their using areas.

LSH algorithm is an approach which creates specific amount of subsets from the

original dataset for big datasets. As a result of our experiments, we checked

accuracy and running time of this algorithm via changing its number of hash table

parameter. When we reached the optimal parameters of LSH, we observed that

LSH was running faster than RF but was not successful to classify like RF in

43

terms of accuracy. As we mentioned before LSH was designed for big datasets so

it was very fast but it was not accurate.

RF algorithm is a forest which contains many decision trees. As a supervised

classification algorithm RF is more successful than LSH which is a hashing method

in terms of accuracy. In order to that, it is running fast as LSH. On the contrary, we

observed some cases that RF is slower than LSH because RF requires much more

memory than LSH.

Finally, our belief became much stronger to create a hybrid algorithm which would

be more accurate and faster combining both two algorithms in this work which we

observed the pros and cons of these two algorithms. Moreover, we have another idea

that determining automatically optimal parameters of these two parameter sensitive

algorithms in the future.

44

References

[1] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing

the curse of dimensionality,” in The 30th Annual ACM Symposium on Theory of

Computing, 1998, p. 604.

[2] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5–32,

2001.

[3] Y. Lin and Y. Jeon, “Random forests and adaptive nearest neighbors,”

University of Wisconsin, Tech. Rep. 1055, 2002.

[4] Z. Yang, W. T. Ooi, and Q. Sun, “Hierarchical, non-uniform locality sensitive

hashing and its application to video identification,” in IEEE International

Conference on Multimedia and Expo (ICME), 2004, pp. 743–746.

[5] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions,” in Proceedings of the 12th Annual

Symposium on Computational Geometry, 2004, pp. 253–262.

[6] K. Terasawa and Y. Tanaka, “Locality sensitive pseudo-code for document

images,” in The 9th International Conference on Document Analysis and

Recognition (ICDAR), 2007, pp. 73–77.

[7] Y. Hua, B. Xiao, D. Feng, and B. Yu, “Bounded LSH for similarity search in

peer-to-peer file systems,” in International Conference on Parallel Processing, 2008,

pp. 644–651.

[8] Q. Wang, Z. Guo, G. Liu, and J. Guo, “Entropy based locality sensitive hashing,”

in International Conference on Acoustics, Speech, and Signal Processing (ICASSP),

2012, pp. 1045–1048.

[9] S. Bernard, S. Adam, and L. Heutte, “Using random forests for handwritten digit

recognition,” in Proceedings of the 9th International Conference on Document

Analysis and Recognition (ICDAR), 2007, pp. 1043–1047.

45

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” in Proceedings of the IEEE, 1998, pp. 2278–

2324.

[11] S. Bernard, L. Heutte, and S. Adam, “On the selection of decision trees in

random forests,” in International Joint Conference on Neural Networks (IJCNN),

2009, pp. 302–307.

[12] R. Caruana, N. Karampatziakis, and A. Yessenalina, “An empirical evaluation

of supervised learning in high dimensions,” in International Conference on Machine

Learning (ICML), 2008, pp. 96–103.

[13] S. Li, E. Harner, and D. Adjeroh, “Random knn feature selection - a fast and

stable alternative to random forests,” BMC Bioinformatics, vol. 12, p. 450, 2011.

[14] M. Zahedi and S. Eslami, “Improvement of random forest classifier through

localization of Persian handwritten ocr,” ACEEE International Journal on

Information Technology, vol. 2, no. 1, pp. 13–17, 2012.

[15] Y. Mu, J. Sun, T. H. , L. Cheong, and S. Yan, “Randomized locality sensitive

vocabularies for bag-of-features model,” in Proceedings of the 11th European

Conference on Computer Vision (ECCV), Heraklion, Crete, Greece, 2010, pp. 748–

761.

[16] Y. LeCun, C. Cortes, and C. Burges, “THE MNIST DATABASE of

handwritten digit,” http://yann.lecun.com/exdb/mnist/.

[17] Y. Bulatov, “notMNIST Dataset,” http://yaroslavvb.blogspot.com/2011/

09/notmnist-dataset.html, 2011, [Online; accessed 25-September-2013].

[18] Numpy, “Numpy,” http://www.numpy.org/, 2013, [Online; accessed 25-

September-2013].

[19]Scikit-Learn, “Random Forest,” http://scikit-

learn.org/stable/modules/ensemble.html#forest, 2010, [Online; accessed 25-

September-2013].

46

Curriculum Vitae

 Aykut Çayır was born in August 26th, 1988, in Istanbul. He received his

BS in Computer Engineering in 2011 at Kadir Has University. From 2011 to

2013, he worked as a graduate assistant at Kadir Has University. He worked as a

software engineer at AGMLab between June and September 2013. Now he is a

data engineer at HemTeknoloji.

