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PERFORMANCE COMPARISON OF LOCALITY SENSITIVE 

HASHING AND RANDOM FOREST ALGORITHMS FOR 

HANDWRITTEN DIGITS RECOGNITION 

Abstract 

The significant increase in data created has caused to come out a new concept which 

is called big data. In addition to that multidimensional data instances in big data sets 

have many new features. Therefore, some problems become much more critical for 

data analysis in big data sets. One of these very important problems is classification 

of multidimensional data instances in big data sets in a reasonable time. 

Classification is also related to K-Nearest Neighbors problem in machine learning 

and data mining areas. A perfect example of the classification problem is object or 

pattern recognition for images in real world applications. Pattern or object 

recognition can be reduced to similarity search problem. In this work, we focused on 

the similarity search problem in large scale databases. Firstly, we implemented two 

popular machine learning algorithms: Locality Sensitive Hashing (LSH) and 

Random Forest (RF) with the Python programming language. Then we compared 

these two parameter-dependent algorithms in two different handwritten digits-

characters datasets: MNIST and NOTMNIST. In the experiments, we examined the 

algorithms performance in terms of recognition accuracy, CPU time for various 

algorithm specific parameters. Finally, we observed that LSH and RF exhibit 

positive and negative features according to their parameters and we reached the 

conclusion that LSH is more useful for time critical applications and RF is more 

favorable for accuracy critical applications. 

Keywords: Big Data, Classification, K-Nearest Neighbors, Performance, LSH, RF. 
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YERELLİĞE DUYARLI ADRESLEME VE RASTSAL KARAR 

ORMANI ALGORİTMALARININ EL YAZISI RAKAM 

TANIMLAMASI İÇİN PERFORMANS KARŞILATIRMASI 

 Özet 

Data üretimindeki önemli artış büyük veri denilen yeni bir kavramın ortaya 

çıkmasına sebep olmuştur. Buna ilaveten büyük veri kümelerindeki birçok veri 

örneği çok boyutlu özelliklere sahiptir. Bu sebeple, büyük veri kümelerindeki veri 

analizinde bir takım sorunlar çok daha kritik bir hale gelmektedir. Bu önemli 

sorunlardan bir tanesi çok boyutlu veri örneklerinin bulunduğu büyük veri 

kümelerinde makul bir zamanda sınıflandırma yapılması işlemidir. Sınıflandırma 

işlemi makine öğrenimi ve veri madenciliği alanlarındaki K-Nearest Neighbors 

problemiyle ilişkilidir. Sınıflandırma probleminin gerçek dünya 

uygulamalarındaki güzel bir örneği resimlerde nesne ya da örüntü tanımlamadır.  

Örüntü ya da nesne tanımlama ise benzerlik araması problemine indirgenebilir.  

Bu çalışmada, biz büyük ölçekli veritabanlarında benzerlik araması problemine 

odaklandık. Öncelikle, iki popüler makine öğrenimi algoritmasını gerçekledik: 

Yerelliğe Duyarlı Adresleme (YDA)  ve Rastsal Karar Ormanları (RKO) Python 

programlama dili ile. Sonra bu iki parametre bağımlı algoritmayı iki farklı el 

yazısı rakam ve karakter veri kümesinde karşılaştırdık: MNIST ve NOTMNIST. 

Bu deneyde, algoritmaların performanslarını tanımlama isabeti, merkezi işlemci 

birimi süresi cinsinden algoritmaya özgü parametreleri değiştirerek inceledik. Son 

olarak, YDA ve RKO algoritmalarının parametrelerine göre pozitif ve negatif 

davranışları olduğunu gözlemledik ve YDA algoritmasının zaman kritik 
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uygulamalarda daha kullanışlı olduğu, RKO algortimasının ise kesinlik kritik 

durumlarda daha avantajlı olduğu sonucuna vardık. 

Anahtar Kelimeler:  Büyük Veri, Sınıflandırma, K-Nearest Neighbors, 

Performans, YDA, RKO 
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Chapter 1 

Introduction 

Today’s technology world the amount of large scale databases which contain 

documents, images, videos, audios, sensor data, etc. are becoming more and more 

needed to use by the augmentation of technology usage in everywhere of our lives. 

By the increment of usage, computationally efficient applications are needed to 

analyze, search, and visualize the collection of objects in these large databases to 

answer the user requests. As long as the data gets larger, to handle with data is 

getting harder. These applications must handle high-dimensional data quickly and 

accurately to answer the user requests. The similarity search problem in large scale 

databases is a popular problem in computer science. We can briefly define this 

problem as finding the most similar (nearest) object to the query. These objects 

(images, videos, etc.) are characterized by a set of relevant high dimensional 

features. 

In this work, we examined and evaluated two important methods that allow us to 

efficiently solve this similarity search problem. Those methods are Locality 

Sensitive Hashing (LSH) and Random Forest (RF) algorithms. LSH [1] is a well-

known indexing method that provides a similarity searching in sub-linear time. LSH 

has been designed to solve the similarity search problem. RF [2] is an ensemble 

classifier that employs a set of decision trees for a classification task. RF is also 

related to finding the solution for the nearest neighbors problem as mentioned in [3]. 

The performances of LSH and RF are compared in the field of pattern recognition: 

recognition of handwritten digits. We used two public datasets to acquire 

handwritten digits which are represented with high-dimensional features. We also 

examined the performance of these methods with different parameters because LSH 

and RF are parameter dependent methods. 
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1.1. Thesis Structure 

The thesis has six main parts: Chapter 2 describes the related works. The datasets are 

given and explained in Chapter 3. The Locality Sensitive Hashing and Random 

Forest algorithms are discussed in Chapter 4. Chapter 5 demonstrates the 

experimental results. Finally Chapter 6 includes the conclusion and suggestion for 

further research. 
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Chapter 2 

Related Works 

In this section, we review studies related to Locality Sensitive Hashing (LSH) and 

Random Forest (RF) algorithms briefly to demonstrate their functionality and 

problem domains. Indyk and Motwani defined the popular Locality Sensitive 

Hashing (LSH) algorithm in 1998 [1] to reduce similarity search time in various 

pattern recognition, information retrieval, clustering, etc. problems. Yang et al. [4] 

improved the LSH algorithm by developing a hierarchical version of LSH to adapt 

for non-uniform distributions. Then they tested their algorithm on the video 

identification problem. Datar et al. [5] developed a new LSH scheme (E2LSH) 

based on l2 norm which is faster than the previous implementations of LSH. 

Terasawa and Tanaka [6] designed a LSH based scheme to represent character string 

images in the scanned document. In their approach the image regions which have 

similar appearances retrieved by a set of integers that represent high dimensional 

data. Hua et al. [7] indicated the need of similarity search approaches in peer-to-peer 

(p2p) file systems which contain high-dimensional data such as videos, images, and 

sensor data. They developed the Bounded Locality Sensitive Hashing (Bounded 

LSH) method which provides a reasonable amount of memory in p2p systems. 

Wang et al. [8] introduced entropy based LSH algorithm which is based on a new 

hash function scheme. In this schema the mapping functions are based on maximum 

entropy. They tested this algorithm on two different datasets (audio and image 

datasets) and found that their algorithm is superior to the original E2LSH [5] in 

terms of accuracy. Bernard et al. [9] analyzed the correlation between RF parameters 

with RF performances and focused to tune these parameters on the MNIST 

handwritten digits database [10]. Later, Bernard et al. [11] studied the possibility of 

forming more accurate random forests by removing some of the decision trees. 
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Caruana et al. [12] compared different supervised learning algorithms such as 

Support Vector Machines, Artificial Neural Networks, Logistic Regression, Naive 

Bayes, K-Nearest Neighbors, Random Forests, Bagged Decision Trees, Perceptrons 

on 11 binary classification tasks. They evaluated the performance of the methods 

with three different metrics: accuracy, squared error and the area under the ROC 

curve. They observed that the Random Forests performed better than the other 

methods with different dimensions of data. Li et al. [13] introduced a feature 

selection algorithm which enhances the Random K-Nearest Neighbor (RKNN) 

algorithm for the analysis of high-dimensional datasets and developed RKNN-FS. 

They also compared their method with the random forests and found their method is 

faster and more stable on different gene datasets. They pointed out that noisy input 

variables and unbalanced datasets can cause performance drops in random forests. 

Zahedi and Eslami [14] indicated that the random forest is a robust and fast classifier 

for the recognition tasks which include large number of features. They improved the 

efficiency of the random forest classifier with a localization process to recognize 

Persian handwritten characters more accurately. Mu et al. [15] developed an 

algorithm (random locality sensitive vocabulary) for visual vocabulary construction 

based on the ideas from LSH and RF. Their algorithm avoids problems such as slow 

training and huge storage requirements. They observed that their approach provides 

a balance between accuracy and efficiency for different problems: action recognition 

on videos, object recognition on images, near duplicate video detection. 
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Chapter 3 

Datasets 

In this section, we describe our datasets, their technical properties and our data 

preprocessing steps without going into implementation details. 

We used two different very large scale datasets which contain images as input in this 

work. One of them is MNIST handwritten digits dataset as you can see in Figure 1 

which is very popular dataset using in pattern recognition and image processing 

algorithms [16]. MNIST database includes two parts training and test items. 

Training part of the set has 60000 and test part has 10000 elements. All images in 

the set are labeled from “0” to “9”. 

 

Figure 1: An Example from MNIST Datasets 

These images are fixed size and normalized. For each image, the digits are centered 

in 28x28 pixels. Format of MNIST training and test datasets files is very simple. 

Thus offset values of images are known. Files contain unsigned bytes and each byte 

is located at some offsets. 0000 offset is related to magic number value and it is not 

necessarily for us. The next offset is 0004 and it contains number of item 

information. Pixel values are located at offset 0016 and it goes sequentially. For 
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instance, pixel values of an image can be read using offset column in the dataset file. 

We wrote some MATLAB scripts which creates training and test files. Each file in 

the training and test dataset are transformed into vectors which contain pixel 

intensity values. At the end of preprocessing step, we have 60000 rows and 784 

columns as pixel values or attributes as training input and 10000 row and 784 

columns of attributes as test input. 

Our second database is NOTMNIST dataset which is indicates letter images in many 

different pattern as you can check in Figure 2 [17]. Although NOTMNIST dataset is 

similar to MNIST dataset in terms of image size, images in NOTMNIST are 

characters while MNIST dataset represents digits. The dataset has got 10 classes 

from “A” to “J” in different fonts. The whole dataset has 500000 samples. However, 

we need to reduce the number of samples due to memory issues. Therefore we have 

written a MATLAB script to create a useful dataset and to create test instances from 

this dataset.  Before this step, we ran a Python script to convert images from 2D 

array to MAT files to the input format of our MATLAB script while it is easier to 

implement Python script for this purpose. At the end of data preprocessing step, 

another MATLAB script converts each instance into 784 comma separated value file 

row by row for each pixel which represents an image in 28x28 pixel formats. We 

converted these matrices to 1x784 vectors. As a result of these steps, we created a 

training dataset, which contains 146979 instances, from NOTMNIST dataset and a 

test set, which contains 10000 instances.  

 

Figure 2: An Example from NOTMNIST Datasets 
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Chapter 4 

Methodology 

Before explaining the methods, it is necessary to consider definition of classification 

problem. 

4.1. Definition of Classification Problem  

In machine learning and data mining, the most common problem is to identify an 

object or a pattern. This problem is called the classification problem and two 

different learning types exist, one of them is unsupervised learning and the other one 

is supervised learning. Unsupervised learning techniques are based on trying to find 

the hidden structure of the datasets while we have a represented structure as 

separation of data into classes in supervised learning techniques. Describing the data 

in unsupervised learning is called clustering as seen in Figure 3 while there is no 

class label to represent the structure of dataset. There exist two types of clustering 

such as K-Means Clustering, Hierarchical Clustering. For instance, hierarchical 

clustering uses a distance based method to cluster dataset. According to distance 

between objects, instances are splitting to different clusters. 

In K-Means Clustering method k cluster are determined and k sample are chosen as 

cluster centers, then by using Euclidean distance between each object and cluster 

center, instances are grouped according to closest center and cluster center 

recalculated. If the new cluster center is same with previous one, process ends, if not 

objects are grouped again and steps over. As an example of clustering you can see 

the Figure 3, instances have two features f1 and f2 and grouped into two cluster c1 

and c2. Cluster centers are determined by using K-Mean clustering method and 

centers determined according to density of similar objects. 
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Figure 3: Unsupervised Learning/Clustering 

We have four base collection or input sets. These are training dataset, training labels 

set, test dataset and test labels set. Because of having a label or a class set in our 

datasets, the method which we have used is supervised learning.  

In supervised learning, a training algorithm is used with train data set and its class 

set. At the end of training part, the algorithm can be used to classify the data 

instance. When we apply a query from test dataset then the algorithm can make a 

guess what is the class of the test element. This prediction might be wrong or 

correct. We can compute the accuracy of the algorithm using test labels. Accuracy 

percentage of the algorithm depends on your algorithm and your training dataset. 

The dataset can contain fallacious information depending on missing or wrong value 

that decreases the accuracy of our classification and make the algorithm wrong 

guesses. Supervised learning has many different classification methods such as 

Decision trees, Naive Bayes, Random Forest and K-Nearest neighbor etc. In Figure 

4, the collection of instances has two features as f1 and f2. Instances are grouped by 

their class information class A or B. 
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Figure 4: Supervised Learning/Classification 

Supervised learning uses different model estimations to train and test the data set. 

These methods are Resubstitution Method, Hold-out Method, Leave one out Method 

and Rotation method. 

1- ) Resubstitution Method: All the available data are used for training as well as for 

testing which means that the training and testing sets are the same. This method is 

preferred in real-world applications. 

2- ) Hold-out Method: Half of the data or two-third of the data is used for training 

and the remaining data for testing as seen in Figure 5. Training and testing sets 

independent and the error estimation is pessimistic. 
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Figure 5: Model Estimation 

3- ) Leave one out Method: A model is created using (n-1) samples for training and 

testing on the one remaining sample. This is iterated n times with different training 

sets of size (n-1). This approach needs large computational, because n different set 

must be created and computed. 

4- ) Rotation Method (K-fold cross validation): This approach is an agreement 

between holdout and leave one out methods. It divides the available samples into p 

disjoint subsets, where 1 ≤ p ≤ n, (p-1) subsets for training and the remaining subsets 

for testing. This is the most popular method in practice. We create same number of 

model with the fold number as seen in Figure 6. 
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Figure 6: K-fold cross-validation 

Assume that we have two classes in terms of positive samples versus negative 

samples. After training dataset, we measure how much the method learn this set and 

how much of test samples’ classification are guessed correctly. The ratio of correct 

classified samples over total classification gives the accuracy of out classification 

method (see Figure 7). 

 

 

Figure 7: Confusion matrix 
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4.2       Methods 

In this study, LSH and RF algorithms are considered. LSH is produced from K-NN 

so it is necessary to identify K-NN algorithm first. LSH and RF algorithms are also 

described in the following sections.  

4.2.1 K-Nearest Neighbors Method 

One of the most famous solution methods for the classification problem is finding 

the nearest neighbors of a specific query element. This method is also known as K-

NN. K-Nearest Neighbors method was described by T. M. Cover and P. E. Hart in 

1967. In this method, a distance metric can be defined such as Euclidean, cosine, 

hamming or Levenshtein. In the set of negatives and positives we consider the 

nearest neighbors in terms of distance metric which we use. See the Figure 8 in 

Euclidean space. 

 

Figure 8: Set of negatives and positives 
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Indyk et al. [1] gives a definition of that method: Let T be a set of point for training 

data and assume that its size is n. We can denote T as T = { }. We need to 

specify a metric space and let S be our metric space. We can define a distance 

function df in our metric space S. Each element of T has got a class related to df in 

the metric space S. K-NN algorithm as pseudo code, can be given as follows: 

 

 

Name: K-NN 

Data: q is the query element, T is the training set, L is the training label set, n is size 

of the training set, k is the number of neighbors 

Result: label of q 

initialization; 

distanceList ← ∅; 

for i  ← 1 to n do 

 t ← ; 

 distanceList[i]←df(q, t); 

end for 

sortedElementsIncOrder ← sort(distanceList); 

labelCount ← {∅}; 

for i ← 1 to k do 

l ← L[index(sortedIncOrder[i])]; 
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labelCount[l] ← labelCount[l] + 1; 

end for 

sortedLabels ← sortDecOrder(labelCount); 

return sortedLabels[0]; 

Pseudo code 1: K-NN Algorithm 

As shown as pseudo code of K-NN, the algorithm uses a distance function df. If our 

metric space S is Euclidean space, df can be defined as follows: 

df =  

The K-NN algorithm calculates distance between query point and each training 

element using df function, and each distance is stored into distanceList. In the 

second step of the algorithm, all elements in the distanceList are sorted in increasing 

order according to their distances from q. After this step, the labels of the first k 

elements of the sortedElementsIncOrder are counted and counts of labels for the 

first k elements are stored in the labelCount map. In the last step of the K-NN 

algorithm, the labelCount map is sorted in a decreasing order as sortedLabels and 

the algorithm returns the first element of the sortedLabels. Actually the algorithm 

draws an imaginary circle around q which covers nearest neighbors (See Figure 9). 

K-NN algorithm is a brute force algorithm and it works in a reasonable time for 

small datasets. Thus it is not efficient for high dimensional and big datasets.   
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Figure 9: K-NN in Euclidean Space 

4.2.2 Locality Sensitive Hashing (LSH) Method 

Locality Sensitive Hashing finds the nearest neighbors in sublinear time. A function 

which runs in linear time needs to perform operations as its input size. In contrast to 

sublinear time, the function performs operations as less than its input size and 

functions which run in sublinear time grow slower than the functions which run in 

linear time for sufficient large input size. When LSH and K-NN are compared, K-

NN needs to operate N operations for the dataset whose size is N but LSH can 

perform operations less than N for the same dataset.    

LSH is a learning algorithm which is based on hashing mechanism. Generally, 

hashing is common and very useful method in computer science. However hashing 

mechanism of LSH is different from general hashing. In general hashing methods 

have three parts: a hash function, a hash table and bucket(s). A hash function tries to 

generate unique integer or index value for a vector. For example, let w be a 1xd 

vector and it is sent to the hash function as a parameter, then the hash function 
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generates an integer for the vector w. A general hash function can be described as 

follows for vector w: 

Let P be nine or ten digit prime number and  ∈ Z 

Let T be an integer 

h(w) = ( (  *  + … + ) mod P ) mod T 

However, generating a unique integer or index is impossible in every time. This case 

is called as collision. To overcome this problem, there is an associative data 

structure for hashing. This data structure called as hash table. Hash tables can be 

described as a contiguous memory block as an array and it contains a linked list at 

each index and these lists are called as buckets. When a collision occurs for a data 

element, the data element is stored into the linked list in generated index (See Figure 

10). 

 

Figure 10: General Hashing and Collision for Items 
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LSH is separated into two parts: training and querying. For the training part, the 

similar elements are grouped into buckets in hash tables using a bunch of hash 

functions. In LSH, a hash function can be defined as follows for a data element t (it 

is assumed to be 1xd vector) in the training dataset: 

Let P is nine or ten digit Prime number and  ∈   is the finite set 

of prime numbers 

Let M be number of hash tables  

h(t) = ( (  *  + … + ) mod P ) mod M 

Format of each hash function in the function list is as function h(t). This function list 

is called as hash function family. A hash function family HF is defined as follows in 

LSH [1]: 

Let df be the distance measure and  and  be two distance value according to df. 

We can define sensitivity parameters such as ( , , , ) and for every h in HF: 

if df(x, y) ≤ , then the probability h(x) = h(y) is at least .  

if df(x, y) ≥ , then the probability h(x) = h(y) is at most . 

if >  and  <   then Sim is a dissimilarity measure. 

if >  and  >   then Sim is a similarity measure. 

 These functions are selected from the hash functions list randomly. Each element in 

training dataset is indexed by selected hash function and inserted into a bucket 

which is placed in that index. Indyk et al. [1] describes LSH such as pseudo code: 
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Name: LSH_Training 

Data: T is the training dataset, L is the training label set, l is number of hash tables 

Result: Hash tables trained with T 

H ← { , , …, }; //hash function family  

B ← { , , …, }; //hash tables 

foreach p in T do 

  ← choose randomly from H; 

  foreach table  in B do 

  hashIndex ← ; 

  [hashIndex] ← p; 

 end foreach 

end foreach 

return B; 

Pseudo code 2: LSH Training Part Algorithm 

Name: LSH_Query 

Data: q is a query point 

candidates ← ∅; 

foreach table  in B do 

  ← get from H; 

 hashIndex ← (q); 
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 append [hashIndex] to candidates; 

end foreach 

K ← k ;//constant number  

label ← K-NN(q, candidates, K); // K-NN uses Euclidean distance in this 

implementation for df function. 

return label; 

Pseudo code 3: LSH Query Part Algorithm 

LSH makes a bunch of buckets which contain similar data elements. For example, 

when two similar or equal class objects are hashed with randomly chosen hash 

functions they are in the same bucket with high probability. Then we can apply K-

NN method to a much smaller dataset than the original dataset. If we compare LSH 

to general hashing methods, we can observe basic principles of LSH. 
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Figure 11: LSH vs. General Hashing Principle 

In general hashing methods all items can be randomly placed to any indexes despite 

of their similarity (See Figure 11). In contrast to LSH, an index refers to a bucket or 

list of items which contain similar items with high probability. A randomly chosen 

hash function is responsible to generate these indexes according to similarity of 

items. That means all training data elements are inserted to the buckets with related 

to indexes. Thus, at the end of the training part we have got subsets of the original 

train dataset as many as number of hash tables.  

When a query item comes from a test dataset, candidates are found for each table via 

hashing query item. The bucket which contains possible candidates is found using 

this index at O(1) time complexity. This is the power of all hashing methods. Now 

LSH algorithm knows that the query item belongs to a group of items. However it is 

not enough to classify the query data. Although all items in the same group are 
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assumed to be similar to each other, their classes or labels can be different. To 

classify the query element, we can apply the K-NN algorithm to that candidate set 

which contains similar items with the query point with a high probability in 

sublinear time. In big datasets, sublinear search performance has got a very 

important role. At the same time LSH algorithm can be considered as an algorithm 

to reduce dimension of dataset. 

4.2.3 Random Forest (RF) Method 

Decision trees are well known methods in machine learning and data mining. We 

can use decision trees to classify any object or data point. The most important issue 

for solving a classification problem using a decision tree is the construction of the 

correct tree. In contrast to decision tree method, Brieman et al. [2] described a new 

method which was named random forest (RF). RF is an ensemble technique in 

machine learning and it is very useful for categorical datasets. In RF, there is a 

bunch of decision trees which create a forest structure. Each decision tree in the 

forest has got a maximum depth and nodes which contain split features. Let N be the 

feature number of each data sample in our dataset and maximum split feature for 

each tree in the forest should be . 

In training part of RF, each split features is picked from a random subset of the 

features. Instead of using the most discriminative thresholds, a random subset of 

features is used. Because of this randomness, the bias of the forest increases. RF has 

got an essential method for maintains accuracy when a large amount of data are 

missing and RF does not need to cross validation because it uses the out of bag error 

estimation. In the out of bag error estimation method, one out of three of the training 

dataset is dedicated for testing for created estimators or trees. After creating trees, 

each tree is tested with samples which are not in the tree and an error rate is 

estimated for each tree. The out of bag error estimation has proven to be unbiased. In 
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RF, each tree can enlarge as much as possible because RF does not prune any tree in 

the forest. 

Information gain is the most important part of RF. We need to determine the best 

split for sub trees according to information gain calculation. Thus we calculate 

information gain for each leaf before splitting. Each leaf contains the result of 

classification, so we use entropy based calculation for each leaf and split to calculate 

information gain. Entropy can be given as follow: 

entropy =                        

We used these four methods to construct a random forest following as:  

function constructTree(T, L, mD, mSF) 

function split(leaf l, L) 

function bestSplit(leaf l) 

function informationGain(leaf l, split sp) 

T is the train dataset, L is the train label set, mD is the maximum depth parameter, 

mSF is the number of maximum split features. We can define constructTree method 

in a pseudo code format such that: 

 

Name: constructTree 

Data: T is the training set, L is the label list, mD is the maximum depth, mSF is the 

number of maximum split feature 

Result: A Tree for the forest 
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if root is NULL do 

  S ← sample from T; 

  choose features SF randomly len(S) ≤ mSF; 

  make a node N from SF ; 

  root ← N; 

end if 

while depth of tree ≤ mD do 

  foreach sample s in T - S do 

   choose features SF randomly len(s) ≤ mSF; 

   make a node l from SF  

   l’, l’’ ← split(l, L); 

  if l’ is left node do 

   attach l’ to left node of  root; 

  end if 

  if l’’ is right node do 

   attach l’’ to right node of root; 

  end if      

  end foreach 

end while  

return root; 

Pseudo code 4: Construct Tree Algorithm 
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Name: split 

Data: node l, set of label L 

Result: left and right node with appropriate label 

BS ← bestSplit(l); 

if BS ≠ ∅ do 

  lc ← makeLeftChild(l, L for BS); 

  rc ← ∅; 

else 

  rc ← makeLeftChild(l, L for BS); 

  lc ← ∅; 

end if 

return lc, rc; 

Pseudo code 5: Split Algorithm 

 

 

Name: bestSplit 

Data: node l 

BS ← ∅ 

for b ∈  possible splits for l do 

 if informationGain(l, b)  informationGain(l, BS) do 
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  if isValidSplit(l, b) do 

   BS ← b; 

  end if 

 end if 

end for 

return BS; 

Pseudo code 6: Best Split Algorithm 

Name: informationGain 

Data: node l, split sp 

lc ← makeLeftChildren(sp); 

rc ← makeRightChildren(sp); 

return entropy(L[sp], l) – entropy(L[sp], lc) – entropy(L[sp], rc); 

Pseudo code 7: Information Gain Algorithm 

As shown as pseudo code for creating a decision tree, a split feature is selected 

randomly for each sample in the training dataset. The constructTree algorithm has 

got a criterion to halt the execution. If the tree has reached the maximum depth, it 

means that leaves have been constructed. Thus the algorithm is halted; otherwise a 

new node is created and the best split is calculated for the created node. The split 

function tries to find the best split for the node using bestSplit function. The bestSplit 

function calculates a best split score for the node with the current sub split feature 

set using informationGain function. In the informationGain function, an information 

gain is calculated creating possible right and left child node with a based on the 
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entropy calculation. At the end of the constructTree, a decision tree has been created 

dynamically.  

Name: randomForest 

Data: N is the number of tree, mD is the maximum depth for each tree, mSF is the 

number of maximum split feature, T is the training dataset, L is the training label set 

oobTestData ←  T;// one out of three of T training dataset is dedicated for 

calculation of out of bag error 

oobTestLabels ← L; // one out of three of L training label set is dedicated for 

calculation of out of bag error 

treeList ←∅; 

for i ← 1 to N do 

 t = constructTree( ); 

 append t to treeList; 

end for 

weightedTreeList ← ∅; 

foreach tree in treeList do  

 rate = calculate the out of bag error rate for tree using oobTestData and 

oobTestLabels; 

 if rate <  do //  = 0.37 

  increase the weight of tree for voting; 

 else 

  decrease the weight of tree for voting; 
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 end if 

 append tree to weightedTreeList; 

end foreach 

forest ← combine trees from weightedTreeList; 

return forest; 

Pseudo code 8: Random Forest Algorithm  

In the above pseudo code, one out of three of the training dataset T  and one out of 

three of training label set L are used for calculating the out of bag(OOB) error rate 

for each tree which has been constructed with two out of three of T and L. If a tree 

has got an OOB error rate which is less than 0.37, weight of tree is increased for 

voting. After this step, all trees are combined as a forest and the algorithm returns 

the forest. Creating decision trees and a random forest classifier is the training part 

of the algorithm.  

After creating the random forest classifier, we can ask class of an unknown element 

to the classifier. This part is called as querying. In the querying part, a query element 

in test dataset is classified by all trees in the forest. Then partial results are collected 

from all trees and top rated class is assigned to the query part. In addition to this, 

each tree returns the result class with a probability. When the votes for classes are 

equal, the classifier considers votes and probabilities for the query point q. Thus the 

classifier assigns the result class to the query point q according to its total votes and 

probabilities from all trees (See Figure 12). 
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Figure 12: Querying in Random Forest 

4.3      Similarities between LSH and RF 

In this unit, we talk about some similarities between LSH and RF algorithms. First 

of all two algorithms are related to classification problem. Thus both of them are 

supervised learning algorithm. Supervised learning means that an algorithm knows 

classes of each train data element before querying. The algorithm infers the class of 

a query element from previous knowledge which learned in the train part. In 

supervised learning, the algorithm creates a model (probabilistic or statistical) then 

in the query part, it uses this model to guess class of any data point. For example, 

when we ask an unknown data element to RF, RF algorithm creates forest as a 

model which contains class information and probabilities in leaves of each tree. 

After creating a model, the unknown element is searched in each tree in the forest 

and each tree returns a class and a probability for the unknown element. At the end 
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of the query part, RF determines the class of the query element according to 

numbers of classes which are collected from all trees in the forest if the numbers of 

classes are not equal, if they are equal then RF determines the class of the point 

according to the maximum probability of returned classes. Likewise, LSH also 

creates a model from train dataset. Hash table are probabilistic model for LSH. All 

data in the train dataset are inserted to hash tables which contain similar items with 

high probability. In query part of LSH algorithm, the algorithm tries to make a class 

guess for the query element using this hash tables. It applies K-NN to appropriate 

hash table for the unknown element.  

The other similar characteristic of both algorithms is randomness. LSH and RF are 

randomized algorithms. LSH chooses a hash function from the hash function 

families or lists randomly. RF constructs all trees using random feature subsets from 

train dataset instead of a specific discriminative threshold value. These algorithms 

use randomness in their training part.    

4.4      Implementation 

We give a brief description about the implementation of core algorithms and some 

utility scripts for preparing datasets without going to details. We divided the 

implementation into two parts: implementation RF and LSH as core algorithms, 

implementation of data preprocessing scripts. In this section, some important points 

are mentioned to explain the reasons of choosing programming languages and third 

party tools.  

4.4.1 Implementation of Core Algorithms 

We implemented LSH and RF using Python programming language. Python is a 

scripting language and it is the most popular tools with MATLAB and R among data 
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scientists. Also many contributors develop numerous libraries for Python and one of 

them is Numpy(NP) [18]. We used standard Python library and NP array library.    

NP is an effective array library for Python. In Python, there is no C based array 

implementation. Instead of using contiguous memory blocks as an array in Python, 

we need to use a linked list implementation or primitive list data structure of Python. 

List data structure is not efficient enough for big datasets. Thus we preferred to use a 

C based array implementation for Python. NP is the most popular and the defacto 

standard in Python communities. NP has got also C based array structure and 

functions.  Many benchmarks which are performed by NP developers show that NP 

is faster than primitive list data structure in standard Python library. 

During the implementation time, we needed to perform some basic vector and 

matrix operations. These mathematical operators are implemented as an operator 

using operator overloading or a method in NP. It provides a clear interface to us for 

complex mathematical expressions when we implemented both two algorithms.  

The other third part library is Scikitlearn [19]. Scikitlearn has got many data mining 

algorithms. It also uses NP and dictionary data structures in Python. We used 

Scikitlearn for testing our RF implementation. 

4.4.2 Implementation of Data Preprocessing Scripts 

Another useful programming tool which we used data preprocessing is MATLAB. 

We created CSV files from MNIST and NOTMNIST datasets using MATLAB 

scripts. MNIST dataset has got a special file format to read all training and test 

datasets with their classes and the creator of MNIST dataset provides some third 

party MATLAB libraries to us. However, NOTMNIST dataset is a set of raw 

images. Thus we read all images and converted it to MAT objects. Finally we wrote 
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some utility functions to prepare training and test datasets for NOTMNIST in 

MATLAB.   
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Chapter 5 

Experimental Results 

In this section, experiment results are discussed. We examined the performance 

results of RF and LSH in terms of accuracy and running time for two different 

datasets. Results were calculated for 5000 and 10000 query or test elements. 

Moreover, both algorithms were trained with 60000 training data elements for 

both datasets.  

LSH have got a sensitive parameter is called as number of tree, so this parameter 

was changed for all experiments. Although RF has got three different parameters, 

only one parameter was used in experiments. RF can be used for classification or 

regression. If RF is used for classification, maximum split feature parameter 

should be square root of the feature size. Thus the maximum split feature 

parameter was fixed for all experiments, so its value was equal to 28. The second 

fixed parameter of RF is maximum depth. This parameter was equal to 21, 

because RF reached a saturation point for accuracy when maximum depth was 

equal to 21. When it was changed, the accuracy did not change very much in our 

experiments. 

Number of hash tables and number of estimators (trees) were chosen as equal. 

These values were 12, 16, 20, 24, 28 and 32. Performance of RF and LSH was 

measured with these values. In addition to these, resubstitution model was 

performed on RF and LSH using both datasets. Each performance experiment was 

performed 30 times for each number of hash tables and number of trees value. 

This is not a magic number. This value comes from the central limit theorem. 

According to this theorem, if the number of sample is greater than or equal to 30, 
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this sample size is sufficient to get approximate normal distribution for the 

distribution of the sample mean. Thus each experiment was tested 30 times.  

Processing and Analyzing Performance Results 

First of all, accuracy vs. execution time performance results of LSH for MNIST 

and NOTMNIST 5000 are shown in Table [1] and Table [2]. 

Number of 

Hash Table 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 372 55 427 83,1 

16 77 12 89 73,4 

20 33 6 39 64,7 

24 21 3 24 58,6 

28 15 2 17 53,2 

32 13 1 14 48,4 

Table 1: LSH Running Time – Accuracy for 5000 MNIST Test Elements 

Number of 

Hash Table 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 280 107 387 81,2 

16 140 30 170 76,1 

20 72 17 89 70,4 

24 48 9 57 61,3 

28 26 4 30 54,7 

32 22 2 24 46,5 

Table 2: LSH Running Time – Accuracy for 5000 NOTMNIST Test Elements 
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Number of 

Hash Table 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 711 132 843 92,8 

16 128 17 146 81,6 

20 59 10 69 73,5 

24 35 6 41 66,8 

28 28 4 32 61,2 

32 25 3 28 55,5 

Table 3: LSH Running Time – Accuracy for 10000 MNIST Test Elements 

Number of 

Hash Table 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 775 100 875 90,7 

16 351 24 375 83,8 

20 146 12 158 70,3 

24 59 7 66 63 

28 28 5 33 56,1 

32 24 4 28 48,6 

Table 4: LSH Running Time – Accuracy for 10000 NOTMNIST Test Elements 
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Figure 13: LSH MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution 

Time 

When the accuracy is maximum, the number of hash tables parameter of LSH is 

the minimum value for both datasets. For instance, when the number of hash 

tables = 12, the accuracy of LSH equals to 83.1% and 81.2% for 5000 test 

elements in Table [1] [2]. On the other hand, when the number of hash tables = 

32, the accuracy of LSH equals to 48.4 and 46.5. It is below 50 percent. For 10000 

query elements in Table [3] [4], this is true. Although the accuracy is decreasing, 

training, test and total execution time are decreasing with increase of number of 

hash tables. LSH returns the classification results for 10000 in 3 and 4 seconds. 

LSH behaves totally like K-NN for small number of hash tables, so the running 

time complexity of LSH converges to complexity of K-NN for a small number of 

hash tables and its accuracy is growing, in other words, LSH performs K-NN for a 
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set which contains more similar items.  If the number of hash tables increases, 

each table contains less similar items. Thus LSH accuracy is decreasing and its 

execution time is decreasing, because each subgroup size is less than the original 

dataset size (See Figure 13). 

Secondly, RF performances are shown in Table [5] [6] [7] [8] for MNIST-

NOTMNIST 5000 and MNIST-NOTMNIST 10000.  

Number of 

Tree 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 58 2 60 87 

16 72 3 75 87,2 

20 90 4 94 87,4 

24 102 4 106 87,6 

28 126 5 131 87,7 

32 152 5 157 87,7 

Table 5: RF Running Time – Accuracy for 5000 MNIST Test Elements 

Number of 

Tree 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 103 5 108 82,7 

16 132 5 132 83,2 

20 154 7 154 83,6 

24 186 8 194 83,8 

28 235 10 245 84,1 

32 276 12 288 84,2 

Table 6: RF Running Time – Accuracy for 5000 NOTMNIST Test Elements 
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Number of 

Tree 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 101 3 104 93,1 

16 134 6 140 93,6 

20 166 6 172 93,8 

24 199 7 206 93,8 

28 235 8 243 93,9 

32 269 9 278 93,9 

Table 7: RF Running Time – Accuracy for 10000 MNIST Test Elements 

Number of 

Tree 

Training Time 

(seconds) 

Test Time 

(seconds) 

Total Time 

(seconds) 
Accuracy (%) 

12 139 7 146 90,1 

16 189 9 198 90,8 

20 246 13 259 91,2 

24 294 17 311 91,4 

28 332 20 352 91,4 

32 375 26 401 91,5 

Table 8: RF Running Time – Accuracy for 10000 NOTMNIST Test Elements 
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Figure 14: RF MNIST – NOT MNIST 5000 & 10000 Accuracy – Execution Time 

Accuracy of RF is increasing when the number of trees is increasing, because the 

forest converges to be unbiased. However, training and testing time are 

increasing. For example, RF accuracy, training and testing time are increasing 

when the number of trees increases from 24 to 28 in Table [5] [6] [7] [8]. Though 

its accuracy is increasing, the increment goes to a limit or saturation point as seen 

in Figure 14. The reason of increment in the training and testing time is that RF 

creates much more decision trees in the training part and a test element is 

classified by each tree in the forest in the testing part.  
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Figure 15: LSH- Training Performance for MNIST 

 

 

Figure 16: LSH- Training Performance for NOTMNIST 
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Figure 17: RF- Training Performance for MNIST 

 

 

Figure 18: RF- Training Performance for MNIST 
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When RF and LSH algorithms are compared with each other in terms of accuracy 

and execution time, some critical points occurs. For example, LSH is not fast as 

RF if accuracy of LSH is maximum value for both datasets (See Figure 13 and 

Figure 14). When LSH is faster than RF for number of table = 32, accuracy of the 

RF is greater than LSH as seen in Table [4] and Table [8].  

Resubstitution model is applied to these two algorithms using MNIST and 

NOTMNIST datasets. RF and LSH are trained with MNIST and NOTMNIST 

60000 and for the test part, number of hash tables and number of tree parameters 

are 30, 32, 34 and 38. This model shows that two algorithms are over trained. 

Accuracies of these algorithms are greater than 99% (Figure 15, 16, 17, 18). This 

case is called as overfitting in machine learning and data mining. Some learning 

algorithms can be affected negatively by overfitting and some algorithm cannot be 

affected, but LSH is affected. LSH learns every data items in the training dataset 

perfectly. When a new test element comes from test dataset, LSH cannot classify 

this query element correctly. One of the reasons of having less accuracy for LSH 

can be overfitting.  
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Chapter 6 

Conclusion 

In this thesis, we implemented two popular machine learning algorithms with their 

various parameters. After that we run these two algorithms on public datasets which 

are called MNIST and NOTMNIST. Our goal is that creating a main idea observing 

the pros and cons of these two algorithms to develop a new hybrid algorithm in the 

future. The datasets we worked on are myriads of digitized images digits and 

characters. 

The scope of the thesis after observing mechanism of these two algorithms, a 

literature research has been done in-depth looking existing studies. In this research 

direction, we learned that there were practical applications of existing two 

classification algorithms RF and LSH in some important research areas such as 

image processing, pattern recognition and bioinformatics. We run these algorithms 

on the datasets which we mentioned in previous paragraph after implementing two 

algorithms using Python programming language in Linux environment. We did not 

encounter any problem during the running time of our application. We examined the 

results which were generated by our work in details in the related section.  

According to these results, our highlighted impressions are that both of two 

algorithms are successful in their using areas.  

LSH algorithm is an approach which creates specific amount of subsets from the 

original dataset for big datasets. As a result of our experiments, we checked 

accuracy and running time of this algorithm via changing its number of hash table 

parameter. When we reached the optimal parameters of LSH, we observed that 

LSH was running faster than RF but was not successful to classify like RF in 
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terms of accuracy. As we mentioned before LSH was designed for big datasets so 

it was very fast but it was not accurate. 

RF algorithm is a forest which contains many decision trees. As a supervised 

classification algorithm RF is more successful than LSH which is a hashing method 

in terms of accuracy. In order to that, it is running fast as LSH. On the contrary, we 

observed some cases that RF is slower than LSH because RF requires much more 

memory than LSH. 

Finally, our belief became much stronger to create a hybrid algorithm which would 

be more accurate and faster combining both two algorithms in this work which we 

observed the pros and cons of these two algorithms. Moreover, we have another idea 

that determining automatically optimal parameters of these two parameter sensitive 

algorithms in the future.  
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