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VISUALIZATION OF PROTEIN-PROTEIN INTERACTION NETWORKS

Abstract

We provide a model to visualize and verify PPI Networks using Gene Expression and
Gene Ontology data. A clustered dual (central/peripheral) visualization model is pro-
vided and user can cluster PPI Networks according to biological semantics rather than
graph-theoretical measures which are common in the literature. Second novelty of
our work is that interaction reliabilities are taken into account in the layout computa-
tions. For this purpose, weighted modifications on popular graph layouts are employed.
Third novelty is that Robinviz can partition PPI Networks according to biclustering
results on Gene Expression data and visualize the partitions. Finally, bidirectional
verification between PPI Networks and Gene Ontology/Gene Expression data can be
performed using our visuals. These features may prove Robinviz to be of value on its
own.
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PROTEİN-PROTEİN ETKİLEŞİM AĞLARININ GÖRSELLEŞTİRİLMESİ

Özet

Bu çalışmamızda Protein-Protein Etkileşim (PPE) Ağlarının Gen İfade ve Gen On-
toloji verileri kullanılarak görselleştirilmesi ve doğrulanması için bir model sunuy-
oruz. Kümeli görselleştirme modelimiz merkez ve çevrel görünümden oluşmakta olup
kullanıcı PPE ağlarını yaygın olarak kullanılan çizgesel unsurlara göre değil, biyolojik
verilere göre kümeleyebilmektedir. Kümelerin içeriği çevrel görünümde görüntülenirken
kümeler arası etkileşimler merkez görünümde görüntülenmektedir. Çalışmamızın sunduğu
ikinci yenilik, etkileşim güvenilirliklerinin çizge yerleşim algoritmaları çalışırken hesaba
katılıyor olmasıdır. Bu amaçla yaygın olarak kullanılan çizge yerleşim algoritmalarına
kenar ağırlıklarını hesaba katacak şekilde değişiklik yaptık. Üçüncü yenilik ise Robin-
viz’in PPE ağlarını Gen İfade verileri üzerinde uygulanan ikili kümeleme (bicluster-
ing) sonuçlarına göre parçalayabiliyor olmasıdır. Son olarak, ürettiğimiz görseller
aracılığıyla PPE Ağları ve Gen Ontoloji/Gen İfade verileri arasında çift yönlü doğrulama
yapılabilmektedir. Bu özellikleri, Robinviz’in literatüre kattığı değeri kanıtlamaktadır.
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Chapter 1

Introduction

Protein-Protein Interaction Network visualization is a trending topic in Bioinformat-
ics. There are several approaches to visualization of large PPI Networks. Some of them
prefer to display the whole network at one scene whereas some of them (like ours) use
clustered visualizations to display the network consisting of large quantities of node
and edges. We think that displaying the whole network is not really useful in terms
of readibility. Huang and Eades describes clustered visualization the best: “Groups

of related nodes are “clustered” into super-nodes. The user sees a “summary” of the

graph: the super-nodes and super-edges between the super-nodes. Some clusters may

be shown in more detail than others.” [36]. Most of the approaches apply graph-
theoretical clustering on the networks. But we think that biological semantics should
be considered in clustering as there are natural interconnections between Gene Expres-
sion levels / Gene Annotations and the protein interactions. So we use GO annotations
and Gene Expression data to split the graph in to clusters. This is one of the novelties
of our work.

In our work, Robinviz, we provide a dual visualization model consisting of cen-

tral view and peripheral views. Central view has nodes representing the clusters and
each central node has a corresponding peripheral view (i.e. subgraph). Each periph-
eral view has nodes corresponding to proteins and edges corresponding to interactions
within this subgraph. The weights of these edges are assigned to the reliability value of
the interaction. The edge weights in the central give information about the abundance
of reliable cross talks between clusters.

The reliability concept has been used in some works as visual aids but none
of them had incorporated the reliability values into the graph layout algorithms and

1



our contribution is in this place in terms of visualization. Moreover, incorporation of
biclustering of gene expression data within PPI visualization model is another novelty
we are providing.

Our approach performs a more intuitive way of clustering and improves the read-

ibility of the visualizations. Other feature of Robinviz is that it allows the user to verify

the biological data using one another. For example, trusting the GO Annotation data,
a biologist may observe the visuals. She things intuitively that proteins with the same
function or that are co-expressed are more likely to interact. The absence of periph-
eral edges gives clues about false-negatives as those missing interactions should have
existed there and the abundance of cross-talks between clusters gives clue about false-

positives as proteins with different function are unlikely to interact. This way, she
may study the missing or unexpected interactions in the network more deeply to verify
them.

Robinviz is user-friendly with its fully automated data retrieval and processing,
preconfigurations for first-time users and simple graphical user interface.

Our work has been published in ISB 2010 conference [13] and Oxford Bioin-
formatics journal [12] and it is freely available [8] for download under GPL. In the
following sections of this chapter, some preliminary information about Visualization
and Bioinformatics is given.

1.1 Visualization

Visualization is a method that converts raw data to visually-understandable forms for
humans. With the help of visualization, meaningful information hidden in the crowd
of numerical results can be revealed. Patterns, tendencies, and lots of unseen or com-
plicated things can be discovered with the visualization methods. If we were to give
an example from the real world, it’s like watching the flowers or crops specifically laid
out in a pattern from top of a hill and seeing the big picture.

There are several visualization techniques. They can be categorized [9] as below.

Data Visualization : Visual representations of quantitative data in schematic for (ei-
ther with our without axes). Examples: tables, charts(pie, bar, line), histogram,
scatterplot.

Information Visualization : The use of interactive visual representations of data to
amplify cognition. This means that the data is transformed into an image, it is
mapped to screen space. The image can be changed by users as they proceed
working with it. Examples: parallel coordinate, data map, heat map, clustering,
flow chart, timeline, venn diagram.
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Figure 1.1: Sample undirected graph [1]. Lines represent edges and circles represent
nodes. Number on edges are the edge weights. Number on the nodes can represent
either node weights or node IDs depending on the definition.

Concept Visualization : Methods to elaborate (mostly) qualitative concepts, ideas,
plans and analyses. Examples: mindmap, layer chart, decision tree, graph.

Strategy Visualization : The systematic use of complementary visual representations
in the analysis, development, formulation, communication, and implementation
of strategies in organizations. Examples: Organization chart, life-cycle diagram,
feedback diagram.

Metaphor Visualization : Displays information graphically to organize and structure
information. Examples: metro map, iceberg.

Compound Visualization : complementary use of different graphic representation
formats in one single schema or frame. Examples: knowledge map, learning
map, rich picture.

1.2 Graphs

In representations of both theoretical and practical information, Graphs are commonly
used in various fields. A graph models the entities and their relationships [28]. Entities
are represented with nodes whereas relationships are represented with edges (connec-

tions). Nodes can be drawn in various shapes and edges can be in form of line, curve
with or without arrows. At least one node is required to form a graph and one node
may be connected to more than one node. Graphs can be directed if direction of the
relation is important or undirected otherwise. Cyclic graphs are the directed ones in
which we can reach our starting point by navigating through the graph following the
directed edges. Both nodes and edges can have weights which may represent the im-
portance of the entity or magnitude of the relationship. The number of edges linked to
a node defines the degree of that node. See Figure 1.1 for an example.
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Figure 1.2: Bioinformatics involves Mathematics, Biological Sciences, Algorithms,
Databases and even Machine Learning [2]

1.2.1 Graph Layouts

Graphs are easy to draw on paper when we have only a few nodes/edges. We intuitively
place the nodes and the edges that pleases us in an aesthetical way. But when it comes
to drawing large graphs, we need to find a systematic way, an aesthetically pleasing
drawing style and perform this operation automatically on computer. For this reason,
there have been proposed numerous graph layouts. There are several challenges in
drawing a pleasant graph such as obtaining minimum number of edge crossings or
edge bends. Descriptions and examples for graph layout can be seen in Section 3.2

1.3 Bioinformatics

Bioinformatics is the field where computational techniques are used to analyze and
interpret the biological data from various biological sources. Bioinformatics is an in-
terdisciplinary field where biology and computational sciences meet (see Figure 1.2).
In molecular biology, bulks of data have been generated from the experiments. How-
ever these large quantities of data is not only noisy but also have missing data. Other
challenge with these data is that it is hard to interpret them by using pure eye. At
this point, Bioinformatics helps us remove the noise, interpret the information despite
the missing data and visualize the big picture in order to make inferences. Bioinfor-
matics is in summary, the application of computer scientific and statistical methods
on molecular biology problems such as protein interactions, interaction prediction, in-
teraction network alignment between two species, gene expression, drug discovery,
protein structure alignment and prediction, sequence alignment, gene finding.
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Figure 1.3: DNA is in the helix form with nucleotides on it.[3]

Figure 1.4: Information flow from genes to metabolites in cells, the Gene Expression
process [39].

1.3.1 DNA

The information about the nature of organisms is stored in desoxyribonucleic acid
(DNA). DNA is a double-helix consisting of two phosphate backbones and nucleotide
bases connected to it (see Figure 1.3). Nucleotide bases can be listed with their abbre-
viations as adenine (A), cytosine (C), guanine (G), thymine (T) and uracil (U - only
in RNA). A and T/U, C and G can be paired when it is required. DNA itself only
stores information but in order to sustain the activity of a cell, proteins must be pro-
duced. Protein production is done through the gene expression process. See Figure 1.4
for gene expression process and 1.6 for Central Dogma of Molecular Biology. Cen-
tral Dogma includes an additional DNA replication phase in which DNA is replicated
when the cell is cloning.

1.3.2 Gene Expression

Gene Expression is a two phase process (see Figure 1.4). In the transcription phase
messenger ribonucleic acid (mRNA) corresponding to the DNA is produced (see Fig-
ure 1.5 for a demonstration). mRNA has complementary nucleic acids (U for A, A for
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Figure 1.5: In the transcription phase, complementary mRNA is generated from DNA
chain. Then in the translation phase, aminoacids forming the protein is produced ac-
cording to this mRNA.[4]

Figure 1.6: Central Dogma of Molecular Biology.
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Table 1.1: Format of Gene Expression Matrix

mRNA Condition 1 Condition 2 Condition 3 Condition 4 ...
Gene 1 value11 value12 value13 value14 ...
Gene 2 value21 value22 value23 value24 ...
Gene 3 value31 value32 value33 value34 ...
Gene 4 value41 value42 value43 value44 ...

... ... ... ... ... ...

T, G for C, C for G). Then mRNA is translated to aminoacid sequences by scanning
the mRNA with a window size of 3 (triplets - codons). A codon might be in the range
AAA - TTT which leads to 43 = 64 combinations. These combinations will result in 20
amino acids. Multiple codons might correspond to a single amino acid. With this scan,
an amino acid sequence, (i.e. a protein) is generated. Cenral Dogma of Molecular

Biology (see Figure 1.6) covers these transcription, translation phases and additionally
DNA replication process to show protein lifecycle in the cell.

To quote Eric Lander [41],

“The mRNA levels sensitively reflect the state of the cell, perhaps uniquely
defining cell types, stages, and responses. To decipher the logic of gene
regulation, we should aim to be able to monitor the expression level of all
genes simultaneously ...”

To achieve this, during the gene expression process for each gene, the amount of
mRNAs, are measured and recorded at various conditions. These records form a gene
expression matrix where rows correspond to genes, columns correspond to conditions
such as environmental conditions of interest or time points and cells correspond to the
relative amount of mRNA. See Table 1.1 for a demonstration.

1.3.3 Proteins

A protein is a large organic compound consisting of sequences of amino acids (see
Figure 1.7 for an amino acid chain). Permutation of the amino acids in the chain
define the protein formed and its function. Multiple proteins gathering together or
forming a stable complex can perform essential operations inside or outside the cell.
Transcription, translation, binding, inhibition, catalization are some examples for these
operations.
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Figure 1.7: Primary protein structure is sequence of a chain of amino acids. [5]

Figure 1.8: A sample Human PPI Network portion
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1.3.4 Protein-Protein Interaction Networks

Proteins rarely act individually but most of the times they collaborate with partner pro-
teins for various biological activities. Protein-Protein Interaction (PPI) networks (see
Figure 1.8 for an example) are the graph representation of these collaborations. They
consist of nodes corresponding to the proteins and edges corresponding to interac-
tions. This way, a couple of proteins interacting can be represented as two nodes with
an edge between. Proteins might interact with multiple proteins and this is represented
as multiple edges towards multiple proteins. A drawback of the PPI Network data and
this representation is that they lack information about the conditions of an interaction
of interest. But rather they give information about all possible interactions combined.
In this representation, understanding whether 2 or more interactions of a protein are
occuring at the same time or not is not possible.

1.3.5 Gene Ontology and Association

Proteins have different functionalities and their expresser genes need to be categorized
according to the functions of the protein. To achieve this goal, there had been several
categorizations introduced [62, 24, 16], but each had their own categorization system-
atic. Gene Ontology Consortium [14] collaborated with these databases in 1998 and
many more afterwards to establish the Gene Ontology Database. In this database, a
Gene Ontology (GO) Tree and GO Association information can be obtained.

In the GO Tree, categories with their children are listed. There are three top-level
categories: biological process, cellular component and molecular function. There are
some number of high-level categories under these 3 top-level categories, and many
sub-categories under them forming a tree. One subcategory might be under multiple
categories so it can be said that the GO Tree has redundancies. See Figure 1.9 for a
portion from the GO Tree in the Execution Wizard.

Besides from the GO Tree, GO Consortium provides information about the gene-
category association. In GO Annotation data provided, every gene is listed with the
categories it is assigned to. A gene might be in multiple categories and a category
might have multiple genes. So there’s a many-to-many relationship between genes and
categories.

1.4 Visualization of Protein-Protein Interaction Networks

We have lots of interaction data, thousands of proteins and thousands of interactions.
These are not really useful when held as raw data. Drawing the protein interaction
network as graphs lets us see the big picture through our eyes. But this crowd of nodes
and edges makes the understanding of the network harder. So applying some graph
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Figure 1.9: Three main categories and children of molecular function listed as a tree.
Taken from Execution Wizard. More of the GO Tree can be browsed from AMIGO
Browser [21].
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Figure 1.10: Yeast PPI Network [6]

layouts mentioned in 1.2.1 is a requirement. This way, a visually pleasing drawing can
be provided to the user to make inferences. With the spring embedder layout, detecting
subgraphs (i.e. protein complexes) is much more easier as nodes will be grouped with
the force directed simulation.

Nevertheless, with thousands of nodes and edges, it can be hard to make any
further analysis in this hairball of nodes (see Figure 1.10). To solve this problem, PPI
Networks are partitioned into clusters and each cluster that is smaller than the complete
graph can be analyzed more deeply. This clustering is mostly done according to graph
theoretical measures. But we prefer to do this partitioning according to Gene Ontology
and Gene Expression data.
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Chapter 2

Related Work

There are numerous software applications aiming to visualize and analyze protein-
protein interaction networks [20, 32, 35, 38, 51, 55, 56, 58]; see [44, 53]. Our work
brings some novelties to all of these works but before explaining these novelties, let us
give a brief overview about related work.

2.1 Cytoscape

Cytoscape [56, 58], which is a general-purpose visualization tool, allows users to ex-
tend the system with plugins for specific purposes. The barebone system allows basic
functionalities like drawing a network, computing layout for it, querying it, integrating
different bioinformatics sources like expression profiles, molecular states and pheno-
types, linking networks to Gene Ontology database and using external web services.
Even the core system provides features useful for bioinformatics studies. It can fur-
thermore be extended with plugins for bioinformatics, social network analysis and
semantic web. Some features coming with the bioinformatics plugins include network
inference, network analysis via graph-theoretical properties and functional enrichment
analysis of networks. See Figure 2.1 for a screenshot from Cytoscape.

Here are some bioinformatics plugins that are similar to our work Robinviz.

2.1.1 MCODE

MCODE [15] is a plugin with the objective of detecting dense subgraphs in the network
using clustering methods according to graph-theoretical measures. See Figure 2.2.
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Figure 2.1: A Screenshot from Cytoscape.

Figure 2.2: A Screenshot from MCODE plugin.
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Figure 2.3: A Screenshot from jActiveModules plugin.

2.1.2 jActiveModules

jActiveModules [37] detects subgraphs with significant changes in gene expression
over some given conditions. This plugin also uses clustering methods for this. See
Figure 2.3.

2.1.3 GenePro

GenePro [63] provides clustered visualization. The user defines the clusters of genes
and the overlaps or interactions between the clusters are visualized. Spikes represent
the gene expression levels and pie charts on the nodes are used to signify the belonging
to the same complex. See Figure 2.4.

2.1.4 BiNGO

BiNGO [47] receives an input consisting of genes and finds the over-represented Gene
Ontology terms on this set of genes. To achieve this, binomial and hyper-geometric
tests are used to give statistical functional enrichment scores. See Figure 2.5.

2.1.5 PiNGO

Similar to BiNGO but providing more flexibility its use of ontologies and annotations,
PiNGO [57] can wipe out some genes with certain functional properties obtained from
the statistical analysis. See Figure 2.6.
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Figure 2.4: A Screenshot from GenePro plugin.
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Figure 2.5: A Screenshot from BiNGO plugin.
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Figure 2.6: A Screenshot from PiNGO plugin.

2.2 Standalone Tools

Various standalone tools with features similar to Cytoscape have been proposed. Below
are some of them similar to Robinviz.

2.2.1 ProViz

ProViz [38] uses Tulip library for its visualizations. The tool integrates PPI Networks
and GO annotation data. User can define subgraphs by selection, filtering or clustering
methods. The tool can automatically organize the visualization into views according
to annotations including GO. See Figure 2.7.

2.2.2 Osprey

Osprey [20] uses the protein interactions in BioGRID [59] database and provides vari-
ous layout options and node coloring according to GO annotations. The user can filter
networks by experimental system or graph-theoretical distances. See Figure 2.8.
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Figure 2.7: A Screenshot from ProViz.
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Figure 2.8: A Screenshot from Osprey.

2.2.3 Medusa

Medusa [35] uses the protein interaction data from the STRING [26] database. The
specialty of this software is that there exists parallel edges with different meanings and
the nodes can have background images. The software can also run as a web applet
which makes it easier to reach. See Figure 2.9.

2.2.4 PIVOT

PIVOT [51] gives a flexibility of dynamic layout computations when the user edits
the graph. It also can compute shortest graph-theoretical distances between the pro-
tein nodes. Node naming can also provide homolog identifiers through the BLAST
database. See Figure 2.10.

2.2.5 Protopia

Protopia [55] has the feature of integrating multiple databases while removing redun-
dancies among them. After the integration, the tools visualizes the results using graph
drawing packages such as GraphViz [31]. See Figure 2.11 for a redundancy analysis
hypergraph with redundancy scores on the edges. The higher score it is, the higher
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Figure 2.9: A Screenshot from Medusa.
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Figure 2.10: A Screenshot from PIVOT. When clicked on IRA1, graph is dynamically
expanded.
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Figure 2.11: Redundancy analysis hypergraph with redundancy scores on edges giving
clues about interaction probability.

reliability the interaction has.

2.2.6 Polar Mapper

Polar Mapper [32] is a similar visualization alternative that is similar to Robinviz in
terms of conceptual visualization model. To determine the location of a protein in
the visualization layout, radial and angular coordinates are used. To define how far
from the center the node will be, betweenness centrality measure is used. The graph is
partitioned into modules according to the graph-theoretical measure density and each
module has its own angular coordinates calculated. After calculating the coordinates
of each module, all the modules are ordered on a circle taking inter-connectivity of
module pairs into account. Gene Expression data is provided on the network by as-
signing node colors indicating mRNA fold induction relative to conditions. See Figure
2.12.
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Figure 2.12: A Screenshot from Polar Mapper.
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Chapter 3

Robinviz

Our work, Robinviz, brings several novelties to PPI Network visualization. First nov-
elty is the clustering mechanism. Most of the graph drawing tools perform clustering
on the graphs according to graph-theoretical measures. However, Robinviz performs
clustering using biological semantics such as Gene Ontology or Gene Expression data.
Proteins in the network are categorized according to Gene Ontology categories or Gene
Expression biclusters. An abstract graph containing these clusters are visualized in the
central view and details are provided in the peripheral views. These kind of abstraction
is nonexistent within other PPI Network visualization tools. This way, we are provid-
ing a dual visualization model. It should be noted that although not in this generality,
concepts similar to our dual model have been partly employed in some other tools.
For example, filtering mechanisms in ProViz and the Cytoscape plugins BiNGO and
PiNGO have such similar concepts.

Proviz can filter the PPI network according to user-selected GO Categories.
PiNGO gives an additional feature such as removing genes of a given category to
further limit the network.

GenePro plugin of Cytoscape provides a similar clustered visualization model
but it does not provide a central/peripheral duality Robinviz has. Although it is claimed
that clusters are based on common GO Annotations, tool requires user-defined clusters
to be input.

Polarmapper provides a network clustering based on graph-theoretical properties
and a special layout algorithm separates each cluster such that they are easily discrimi-
nated. Similar separation is also provided in Cytoscape with some special graph layout.
GO Categories are represented as clusters in these drawings.
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Compared to these related tools, central/peripheral duality of Robinviz is more
intuitive and general in terms of clustered visualization and improves the usability.
Cross talks can be seen more clearly in the abstract graph and each cluster can be
examined in detail independently.

Second important novelty of Robinviz is that it takes interaction reliabilities into
account when performing graph layout algorithms. Some tools [20, 35] except from
Cytoscape do not provide this feature but just give visual clues such as edge thick-
ness to inform the user about interaction reliabilities. Cytoscape, on the other hand,
achieves this functionality only for force-directed layout algorithms. Other layouts in
Cytoscape are applied via yFiles library. Robinviz, on the other hand, employs in-
teraction weights in many graph layout algorithms such as Force Directed, Sugiyama
Style, Circular, Star, Spring Embedder, Circular Tracks. To achieve this, nontrivial
modifications had to be carried out for each of these paradigms. Regarding Sugiyama
Style hierarchical layouts, edge-lengths, edge bends, edge-crossings should be care-
fully handled in favor of heavy-weight edges. For example, heavy-weight edges are
expected to be shorter with fewer edge bends and crossings whereas low-weight edges
aren’t given such special consideration.

Third important novelty of Robinviz is the clustering based on biclustered gene
expression data. Expression analysis is implemented through biclustering of the Gene
Expression Matrix. Biclustering is seen as one of the most popular methods in the gene
expression matrix analysis field; see [45] for a detailed definition and a nice survey on
the topic. No other PPI visualization system uses biclustering and incorporate the
results in the visualization. In Cytoscape and Polar Mapper, Gene Expression data is
used as visual clues such as node colors.

Robinviz uses three popular biclustering algorithms and preference to use one
and parameters of the chosen algorithm is defined by the user. Gene Expression data
is also chosen by the user which increases the flexibility of the system. The outputs of
the algorithm defines the nodes in the central graph and contents of the biclusters are
displayed in the peripheral views on demand. Robinviz also provides detailed analysis
of the biclusters in terms of enrichment ratios based on high-level GO categories, H-
value, p-value, PPI hit ratios. This analysis can be extended with heatmap and parallel

plot visualizations.
Although the main purpose of Robinviz is visualization, our tool can be used for

bicluster analysis with the statistical methods it employs. All the statistical measures
we used except for the H-Value are employed to grouping based on GO Categories.
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Figure 3.1: Central View and Peripheral Views around it

3.1 Visualization Model

Robinviz has a dual visualization model in the form of Central and Peripheral Views.
Central View contains nodes representing clusters of proteins and each central node
has a corresponding peripheral view. In each peripheral view, nodes representing the
proteins and edges representing the interactions exist. The edges between the central
nodes represent the reliable cross-talks between the proteins of clusters. With this
way, PPI Network is meaningfully partitioned into clusters for a better observation.
See Figure 3.1. User can double click on a central node to display its contents in an
available peripheral view.

3.2 Graph Layouts

3.2.1 Circular Layout

In the circular layout, nodes are distributed around a circle. To achieve a non-overlapping
drawing, diameter of the circle and the order of the nodes should be defined properly
via calculations. Aim is to draw the smallest circle with minimum number of edge
crossings. We have modified this algorithm and minimized the total weights of the
crossing edges. See Figure 3.2 for an example from Robinviz.

3.2.2 Sugiyama Style

In the Sugiyama Style (i.e. Hierarchical/Layered) Layout, nodes are distributed among
k-levels/layers (see Figure 3.3). There are some constraints defined by the user such as
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Figure 3.2: Circular Layout example

number of nodes in a layer, number of layers, minimum horizontal distance between
nodes, minimum vertical distance between levels.

The Sugiyama algorithm [60] has four phases:

1. Cycle Removal: Cycles are eliminated by reversing minimum number of edges
if the graph is directed.

2. Layer Assignment: Nodes are assigned to layers under some constraints like
maximum layer length or number of layers.

3. Crossing Reduction: Number of edge crossings is decreased as much as possi-
ble by changing the order of the nodes in the same level.

4. Coordinate Assignment: Horizontal Coordinates are calculated to produce a
nice-looking graph without too many edge bends. Minimum separation con-
straint is satisfied to avoid untraceable edges.

These major steps require modifications taking into account edge weights; cycle
removal, layer assignment, ordering within layers and y-coordinate assignment. In the
unweighted settings the goal of the first step is to reverse the smallest subset of edges
to obtain an acyclic graph. For the weighted version we propose to reverse the subset
of edges with minimum total weight. This way the major flow in the output drawing
is preserved in favor of heavier edges (ones with higher reliability score or ones that
connect important proteins). Demetrescu et al. provide a two phase algorithm for the
weighted feedback arc set (FAS) problem [27], which is exactly what we require of this
first step. A minimum weight edge in a cycle is found and its weight is decremented
from the weights of all edges in the cycle. Then all edges with zero weight are removed
and this process is repeated until no cycle exists. It is guaranteed that this initial phase
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Figure 3.3: Sugiyama Style Layout [18]
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produces a result within a ratio bounded by the length of the longest cycle in the graph
from the optimum. In the second phase, reversed edges are examined and re-reversed
if no cycles are introduced. We modify this examination to be performed on the edges
sorted in decreasing weights to achieve minimality first with heavier edges. For the
second major step each vertex is assigned to one of k parallel layers. Usual optimiza-
tion goals of the unweighted version include minimizing the height or the width of the
drawing, or the total length of the edges. We employ a layering algorithm that is based
on Coffman-Graham algorithm of [25] and the longest path with promotion heuristic
of [50]. Our modifications are towards minimizing total weighted edge lengths while
providing a compact drawing area. We perform a lexicographical ordering π(v) on the
vertices of the graph based on the distance to a source vertex with indegree zero. Then
we pick a new vertex with maximum π(v) and assign it to a layer, starting from the
bottom. When v is assigned to a layer and outdeg(v) is zero, the source vertices of
incoming edges of v are appended to a waiting list. If more than one candidate vertex
available for the waitlist, one whose outgoing edges’ weight sum is the maximum is
chosen. To reduce the height of the drawing, we use a promotion heuristic. Going
through the set of vertices in no specific order, the gain of moving the vertex v to the
upper layer is examined. This may require recursive promotion of u, if u is on the one
upper layer of v. If a promotion decreases the total weighted edge lengths and satisfies
a given maximum width, promotion is realized. This examination process is repeated
until no promotion can be realized. Our last major step involves ordering the vertices
in each layer.

In the unweighted settings the goal is to minimize the number of edge crossings
between consecutive layers. A crossing minimization heuristic for one-layer-fixed bi-
partite drawings is employed while sweeping up and down the consecutive layers. We
use the same sweeping strategy but with a carefully chosen crossing minimization al-
gorithm which aims at minimizing weighted crossings between consecutive layers and
guarantees a 3-approximation for the problem [22]. We finally employ the method
of [17] without any modification to achieve an x-coordinate assignment of the vertices
while preserving the ordering achieved in the previous step and an y-coordinate as-
signment such that the distance between levels should be proportional to the total edge
weights between these two levels.

3.2.3 Star Style

In the star style, the node with the highest degree is positioned in the center of the
drawing and other nodes are distributed around it so as to form a circle. See Figure 3.4
for an example.
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Figure 3.4: A Graph in star layout.

3.2.4 Force-Based Algorithms

Force-based algorithms is a simulation of Hooke’s Law on edges and Coulomb’s law
on nodes. Nodes are electrically charged masses which push each other and edges are
springs that pull the nodes at each end (see Figure 3.5). The algorithm works in itera-
tions and at each iteration, push and pull forces are calculated for every node. Nodes
are moved for a distance proportional to the calculated forces and a predefined step
size (see Figure 3.6). After several iterations, the system reaches a balance and the al-
gorithm stops. The balance should be defined with a threshold for the net force exerted
on the system. When the net force on the system is less than the given threshold, it is
assumed to be in balance. See Figure 3.7 for a resulting graph. Spring Embedder is
one of the popular Force-Based Algorithms.

Hooke’s Law: F =−kx where k is the spring constant and x is the distance
spring is streched when force F is applied on the spring. The negative
sign indicates that direction of movement is opposite to the direction of
the force exerted on the spring.

Coulomb’s Law: F = ke
q1q2

r2 where ke is proportionality constant, q1 and
q2 are the amounts of electrostatical charge for two particles and r is the
distance between them.

In the unweighted settings a force-directed layout algorithm applies a suitable
combination of attractive forces (between pairs of adjacent vertices) and repulsive
forces (between every pair) iteratively until the energy of the system determined by
the defined force formulations and the current layout attains a desirably stable level.
Usually the symmetry inherent in the graph is reflected in the drawing and the adjacent
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Figure 3.5: Waves represent the pulling forces between nodes and stripes represent the
pushing forces against nodes [7].

Figure 3.6: Before and after forces are exerted on the nodes

vertices are located in close proximity. We modify the algorithm of [40] by introducing
the edge weights to the employed force formulations so that the individual attractive
forces are proportional to the assigned weights. Such a modification brings adjacent
vertices connected via heavier edges in closer proximity.

3.2.5 Spring Embedder on Circular Tracks

For aesthetically pleasing layouts it may sometimes be useful to limit the vertex co-
ordinates to some predefined tracks with regular geometries. We extend the utility
of the weighted force-directed drawing method to such layouts where circular tracks
constitute the choice of embedding space as the biologists are inclined to such visual
output for historical reasons. This is achieved by first running the described weighted
modification of the force-directed method. Working on this layout, the vertex posi-
tions are moved to concentric circular tracks with as little change to the original layout
as possible. We find the center of the layout and start growing a track (circle in this
case) from the center until the number of vertices inside the track reaches its poten-
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Figure 3.7: A Graph with Spring Embedder layout

Figure 3.8: A Graph with Spring Embedder on Circular Tracks Layout taken from
Robinviz
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Figure 3.9: Overview of Robinviz Modules and Features

tial, an integer proportional to the circumference of the track. Vertices inside the track
are then placed at the closest open spot on the track. Concentric tracks are iteratively
grown until all the vertices are placed on suitable tracks not too far from their original
locations computed by the weighted force-directed layout method. See Figure 3.8 for
an example.

3.3 Software Architecture and Operation

Architecture of Robinviz can be summarized through four major branches: Data Sources
we use, preparation of data sources via Execution Wizard, Processing the data and dis-
playing the results. A mindmap of these branches can be seen in Figure 3.9.

The workflow of Robinviz is as follows.

1. Execution Wizard is run and user preferences are taken.

2. Required data sources are acquired.

3. Acquired data sources are formatted and integrated, prepared for computation
input.

4. Given the prepared inputs, computation (clustering and applying layouts) is run.
The results are written to the disk.

5. Results are displayed through Visualization module (Graphical User Interface -
GUI).

6. Offline and online information for detailed analysis is available via the GUI.
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3.3.1 Data Processing

We have 5 data sources: Gene Identifiers, GO Tree, Gene Annotations, PPI Net-
work (from BioGRID and Hitpredict), Gene Expression Omnibus. We integrate these
sources according to user’s needs. See Figure 3.10 for data processing diagram and
see Figure 3.11 for data preparation for each run according to user preferences.

Identifier Database

Our data sources have different annotations (i.e. gene namings) so in order to inte-
grate these data sources, we had to translate all the sources to a common naming. We
chose Official Symbol as our default naming system. For the translation, we used Bi-
oGRID Gene Identifiers file. We filtered the contents of this huge file and indexed it
for a quicker use. The generated SQLite3 file of size 1GB is used through gene query
module by the data processing system. The generation of this huge index file is done
by us (via identifier db generator.py) and uploaded on our servers to avoid the long
generation process by the users.

GO Tree Selection

Gene Ontology website provides GO Tree in XML format. We download go daily-
termdb.rdf.xml file, parse it and generate the GO Tree index file goinfo.sqlite3 via ter-
mdbparser.py script. User selects GO Categories from the GO Tree provided and GO
annotations ( category - gene associations ) are filtered according to these selections.

PPI Generation

We combine PPI Network data from BioGRID and Hitpredict and translate their pro-
tein names to Official Symbol. Interactions in Hitpredict contain reliability scores
whereas ones in BioGRID do not. So what we do is assigning 0.1 score to BioGRID
interactions and normalizing Hitpredict scores between 0.2 and 1.0. This way, in-
teractions with known confidence values are given more importance. The translation
operations are performed via Data Manager. In the first run of Robinviz, Data Man-
ager will show up, ask for downloading required sources and translate them to Official
Symbol. Then, in the PPI Network Selection step of the Execution Wizard, the selected
PPI Sources are integrated to one single PPI Network and assigned scores. User can
select multiple PPI Networks from various organisms and experiment types. What’s
more, interactions from BioGRID are represented with gray edges whereas other are
represented with black edges for easy discrimination.
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Figure 3.10: Data Preparation Flowchart
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Figure 3.11: Execution Wizard Flowchart. (Only important files are specified.)

36



Figure 3.12: Summary of the Calculation Mechanism
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Association Data Generation

There are various Gene Annotation sources for different organisms or set of organisms.
We let user select the sources she wants and integrate the selected ones. We perform
parsing, filtering and merging on these sources. The original Gene Annotation source
has one gene-category matching at a line. We convert this format to the format below:

Category 1: gene1, gene2, gene3, ...
Category 2: gene49, gene56, gene105, ...
...

After formatting the data, we perform naming conversion to each individual file.
Each source might have a different naming system so we developed an automatic nam-

ing detection system to intelligently detect the naming used in a file and convert it to
Official Symbol. The translated files are saved as files and we call them Association

Data as they give information about Category-Gene associations. One gene might
belong to more than one category and one category might have multiple genes. As-
sociation Data is generated once for each Gene Annotation source. In the following
runs, the already converted Association Data is used. Moreover, according to user
preferences, the generated Association Data files are merged, producing go.txt. This
file contains all the categories available. As we are interested in the categories the user
selected in the GO Tree, we perform a filtering on this go.txt and produce go slim.txt.
This operation is done through the wizard and may take a while .

GEO Data Generation

Gene Expression Matrices are obtained from Gene Expression Omnibus (GEO), re-
formatted and translated into Official Symbol. Then we upload these files to our server.
In the GEO Selection step of the Execution Wizard, the preferred GEO data will be
downloaded and used without any further processing needed.

3.3.2 Graphical User Interface

Main Window

When the user starts Robinviz, the Main Window will be displayed. This window
contains a central view in the middle with peripheral views around, a search panel
in the right (when at least one computation performed), three main menus named File,
View and Help. In the File Menu, you can execute Execution wizard which will initiate
the process of computing after user preferences are taken.
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Execution Wizard

Execution Wizard can be run through File Menu and will ask for user preferences about
data sources, algorithms and their parameters. If any of the data sources are missing,
Data Manager will show up and ask for downloading required sources by pressing the
download button(s). After all the preferences are taken, computations will start and
user will be asked to wait for a while until the process finishes. With the finish of the
computations, the resulting graphs will be displayed in the views.

Views

After the computations finish, central graph will be displayed in the central view and
the peripheral views will be empty. User can double click on a node (cluster) to display
its corresponding peripheral graph in an available peripheral view. Then any of the
peripheral views can be displayed in a bigger new window through the view’s right-
click menu.

3.3.3 Computation

Biclustering on Gene Expression Matrix

There are various techniques to analyze gene expression data to extract useful informa-
tion from this bulk of values [19, 30]. Biclustering is a popular one of these techniques
with several variations [10, 11, 29, 33, 42, 43, 48, 49, 52, 61]. See [54] for a survey
on topic. Biclustering extracts submatrices from a matrix such that each submatrix
shows significant correlation across both columns and rows. Its first appearance was
attributed to Hartigan under name of direct clustering [34]. Years later, biclustering
technique was applied for gene expression analysis by Cheng and Church [23] and
after that many other methods appeared [46]. With these methods, genes that are co-
expressed can be detected and this can yield valuable information about the nature of
the proteins produced from these genes.

In Robinviz, we employ three biclustering algorithms (Cheng & Church, Bi-
MAX, REAL) on Gene Expression data according to user’s preference. All of these
algorithms have different parameters that are provided by the user. As a result, sev-
eral biclusters which might be overlapping are produced. The genes in the biclusters
are expected to produce proteins that will likely interact with each other and all these
proteins can be said to be co-expressed. All biclusters contain genes but for the sake
of simplicity, we can assume that these biclusters contain the proteins that these genes
produce.
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Clustering the PPI Network

We have a large PPI Network and would like to partition it into clusters. We have two
concept options for partitioning: Co-Expression and Co-Ontology.

If Co-Expression is selected, Gene Expression Matrix of choice is biclustered
and each bicluster is represented as a central node in the central view. The peripheral
view corresponding to that central node will contain the intersection of proteins (i.e.
genes) in the bicluster and the proteins in the PPI Network.

If Co-Ontology is selected, the chosen categories are represented as central nodes
in the central view. The peripheral view corresponding to that central node will con-
tain the intersection of proteins associated with that category and the proteins in the
PPI Network. The list of proteins corresponding to a category is obtained from the
association data generated from Gene Ontology Annotations.

After these, the interactions between these set of proteins in the cluster are repre-
sented as edges between these nodes. Note that only the interactions within this set of
nodes will be represented. The edge and node weights are then calculated as follows:

Peripheral View: Peripheral nodes (proteins) do not have weights and peripheral edges
(interactions) have weights proportional to the interaction reliabilities.

Central View: Determining the contents of each peripheral view, weights of the edges
in the central view will be calculated by counting the sum of reliabilities of cross-
talks between central nodes. Let c1 and c2 be two central nodes, wc(c1,c2) be
the weight of central edge between c1 and c2, wp(p1, p2) be the weight of the
peripheral edge between p1 and p2. Then the central edge weight between these
two nodes will be wc(c1,c2) = ∑

u,v wp(u,v), where u ∈ c1 and v ∈ c2.

If the user has chosen Co-Ontology as the partitioning concept, weight of a cen-
tral node is defined as the PPI Hit ratio, a combined measure of the size of the related
peripheral graph and the density of high reliability interactions in it. If the concept
is defined as Co-Expression, then user is provided some alternative measures such as
H-value and functional enrichment values – common measures of biclustering corre-
lation.

In a submatrix bicluster AIxJ with I rows and J columns, the residue R of a cell
at ith row and the jth column can be calculated as

RI,J(i, j) = ai, j−aI j−aiJ +aIJ,

where aiJ is the mean of row i, aI j is the mean of column j and aIJ is the mean of the
submatrix. With the calculation of residue R of the entries, H-value of a bicluster can
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be calculated as
H(I,J) =

1
|I||J|∑i, j

(RI,J(i, j)2).

According to this definition, the lower h-value is, the more correlated the bicluster
is. Taking this into account, our node weights are assigned inverse-proportional to
H-Value. More correlated biclusters have higher weights.

With such visualization model, the weight of the central edges represent the
weighted sum of possible false-positive interactions according to the trusted verifi-
cation data (Gene Expression or GO Annotations in this case). Similarly, each discon-
nected pair of nodes give clues about possible false-negative interactions as proteins
in a cluster are more likely to interact. This way, a biologist can verify PPI Network
according to trusted Gene Expression or GO Annotation data.

On the other hand, this verification can be viewed from the reverse direction. A
biologist can verify Gene Expression or GO Annotation data according to trusted PPI
Network data.

Layout Computations

After the central view and the peripheral views are determined, graph layouts are com-
puted for each view (i.e. graph). The decision for the layout algorithm depends on
the structure of the graph. If there are no edges, circular layout is used. Otherwise,
spring embedder is the method of choice. We should note that the modified versions
of these algorithms are employed. The results of the calculations are written to graph
files in GML (Graph Modelling Language) format for future use. With the modifi-
cations applied on the layout algorithms, we obtained graphs in which neighborhood
of a heavy-weight node is not too cluttered, heavy-weight edges are not too long, and
crossings between heavy-weight edges are avoided.

3.4 Features

3.4.1 Visual Aids

Robinviz provides node coloring to enhance understanding of the meanings of the
visuals. User is asked to choose among the three main categories: biological process,
molecular function, cellular compartments or a combination of the three. The top 10
enriched (represented with the highest number of proteins) high-level GO Categories
are assigned colors. Then each peripheral node representing a protein is displayed as a
piechart with the colors representing the highlevel categories preferred. If the protein
is associated with a high-level category that is not as popular as the ones in top 10, its
pie will contain a slice with a specific color representing ’Not popular’. If the protein
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Figure 3.13: Central Node (top right) is represented with the colors of the correspond-
ing peripheral view.

is not associated to any of the high level categories, then it is colored gray, representing
’Unknown’.

In the central view, central nodes are also drawn as piecharts. The colors in the
piechart will be the colors of the nodes in the corresponding peripheral view. In Figure
3.13, the central node (mounted in the top right of the image) gets the two colors of the
corresponding peripheral graph.

Another visual aid is selection and hover focus. When the user hovers over a
node, node is highlighted. When she clicks on it, a dotted square covers the node
indicating the selection. One other interesting feature is the layout animation. User
can change the layout of a view from the right-click menu and the change of the layout
will be presented through an animation.

Moreover, interaction reliabilities are represented with edge thickness. The thicker
an edge is, the more probable the interaction is.

3.4.2 Other Visualizations

As we partition the PPI Network and display only subgraphs of it in the peripheral
views, user might want to see all the interactions a protein has, not just limited to that
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Figure 3.14: 1-Hop Neighborhood of the protein EPB41L3

Figure 3.15: 2-Hop Neighborhood of the protein RAPSN
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Figure 3.16: Heatmap of a sample Gene Expression Matrix

subgraph. For this reason, we are providing 1-hop and 2-hop neighborhood displaying
feature accessible through the right-click menu. This way, interactions of a specific
protein in the whole PPI Network can be visualized. Circular layout is used for this
purpose and coloring is still employed. See Figures 3.14 and 3.15 for sample screen-
shots.

If the user has opted the Co-Expression concept, Heatmap and Parallel Plots of
Gene Expression Matrix are generated. These visuals are available through the right-
click menu of the central nodes. See Figure 3.16 and 3.17 for samples.
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Figure 3.17: Parallel Plot of a sample Gene Expression Matrix

3.4.3 Analysis Information

Apart from visualization, Robinviz provides some analysis results. Each central node
has an Enrichment Analysis Report when right clicked on it. In this report (see Table
3.1 for an example), Enrichment ratios based on high-level GO categories (node distri-
bution among high level molecular function categories with their ratios with respect to
cluster gene space) and Bonferroni corrected p-values are given. Moreover, Proteins
in this cluster are listed categorized by their high-level categories.

Robinviz can also provide online information about proteins and GO Categories.
When a peripheral node (protein) is right clicked, Detailed Information (Online)

option will open a new window and navigate to BioGRID website to display more
information about the protein. This information includes interactors, GO categories
the protein is associated with, functions, external database linkouts, experiment types,
interaction types.

When a central node representing a GO Category is right clicked, Detailed Infor-
mation (Online) option will open a new window and navigate to AmiGO Browser. In
this page, definition, synonyms, ontology, accession, subset, community and child/parent
information are available.

3.4.4 Miscellaneous

There are some other features such as search panel, session save/load mechanism and
preconfigurations.
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Table 3.1: Enrichment Analysis for a bicluster

Categories Number of
Genes

Ratio Respect to GO
or Bicluster Gene
Space

P-values

antioxidant activity 2 0.100000 0.217713
binding 3 0.150000 0.291335
catalytic activity 6 0.300000 0.190744
channel regulator activity 0 0.000000 0.440096
chemoattractant activity 0 0.000000 0.540911
chemorepellent activity 0 0.000000 0.714925
electron carrier activity 1 0.050000 0.395625
enzyme regulator activity 1 0.050000 0.381637
metallochaperone activity 1 0.050000 0.313254
molecular transducer activity 0 0.000000 0.900289
nutrient reservoir activity 0 0.000000 0.772684
protein binding transcription
factor activity

0 0.000000 0.232152

protein tag 0 0.000000 0.462688
sequence-specific DNA bind-
ing transcription factor activ-
ity

1 0.050000 0.304754

structural molecule activity 1 0.050000 0.398044
transcription regulator activ-
ity

2 0.100000 0.242301

translation regulator activity 0 0.000000 0.873416
transporter activity 2 0.100000 0.300642
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Search Panel lists the proteins/clusters and allows quickly locating a protein/cluster
in a view including peripheral view, neighborhood view and even central view. In a
perpipheral view, user can type the complete or partial name of the protein she’s look-
ing for and press enter to locate the protein. While typing the name, the protein name
list will be filtered to fit the search query. When a protein name is selected from the list,
the protein node will be highlighted with a yellow circle. In a central view, user can
search for Bicluster or Category name or a protein name. If user chooses to search for
a protein, then the Biclusters/Categories containing that protein will be listed. When
double clicked on any Bicluster/Category in the list will display the details of it in a
peripheral view.

Robinviz also provides session save/load feature which allows saving a snapshot
of an execution for future analysis. One other feature is preconfigured settings. In the
execution wizard, user is expected to give lots of preferences if she’s chosen to move
on with Manual Settings. This may be confusing for a first-time user. So we prepared
some pre-defined settings to avoid this. User can choose one setting pack and run the
execution without any preference to give.
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Figure 3.18: Proteins associated with chemoattractant activity. Missing edges give
clue on false negatives.

3.5 Case Study

3.5.1 Introduction

We would like to introduce a sample run of Robinviz to show main features of our visu-
alization model and how we use the results for PPI Network visualization and analysis.
Details regarding other features can be discovered in A. Our dual central/peripheral vi-
sualization model provides global, abstract view via central view and details of the ab-
straction in the peripheral views. Construction of the abstract graph is performed using
biological data such as GO annotations and biclustered gene expression data. Depend-
ing on the trustworthiness of biclustering or annotation data, possible false positives
and false negatives can be observed. There are two main concepts for partitioning the
PPI Network: Co-Ontology and Co-Expression. We will provide a quick tour for each
one.

We start with opening the File Menu and running the Execution Wizard. If any
major data source is missing, Data Manager is shown and user is asked to download
the required data. We click on the download arrow buttons for the ones that are red and
wait for the download. Then we go on with Manual Settings and click Next button.

3.5.2 Co-Ontology

In the following dialog, PPI Network sources are listed each categorized by species and
experiment type. Considering the fact that we can select multiple sources, we check
the box next to Homo Sapiens and select all PPI Network sources for human. After
clicking Next button, Robinviz merges the specified networks into one ppi.txt file by
combining BioGRID and Hitpredict files. This may take some time depending on the
size of the PPI source selected.

We continue with the Verification Concept selection page. We choose Co-Ontology
to apply partitioning according to Gene Ontology annotations and click on Next but-
ton. Then we are asked to choose a node coloring mechanism. If we select Biological
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Process, then top 10 popular highlevel categories in Biological Process main category
will be assigned colors to be used on nodes. Colors of the piechart nodes in the pe-
ripheral views will represent the highlevel categories the node is annotated with and
colors of the piechart nodes in the central view will represent the ratio of color usage
(category distribution) in the corresponding peripheral view graph. For this tour phase,
let’s select Molecular Function and click on Next button.

In the GO Tree shown up, the categories to use for partitioning the PPI Network
will be selected. The tree can be expanded by clicking on the arrows next to the main
categories. Then the children in bold show the ones that also have child categories.
You can double click on them to see their children. For this session, we check all the
categories under molecular function and click on Next button.

Then we choose one or more GO Association source(s) from the list. There are
two types of annotations: filtered and unfiltered. Filtered ones have their contents fil-
tered for outdated or format-violating records. For this tour we choose Homo Sapiens
under Filtered and click on Next button. Robinviz will download required Homo sapi-
ens annotation file and perform format conversion operation on it. If we had chosen
multiple sources, they were going to be merged. Then the resulting file is filtered ac-
cording to the priorly selected GO Categories. Downloading and conversion steps may
take some time in the first usage but in the following runs, these steps are skipped as
the resulting files are stored on the disk.

Then we click on the Finish button and data acquisition/processing phase of the
Robinviz finished and computations start to perform partitioning, graph generation,
layout computations and visualization. During the computations, Robinviz will show
a Log Window to inform the user about the process. Same messages also are displayed
on the console for debugging.

After the computations are performed, the generated abstract graph is displayed
in the center view. In this abstract graph, each node represents a GO category we
had selected in the GO Tree Wizard page. We can also see these categories listed in
the search panel right hand side. Among these; metallochaperone activity, molecular
transducer activity, morphogen activity, protein binding transcription, receptor regula-
tor activity are struck implying that these categories have no associated proteins inside
them considering the PPI Network sources chosen by the user. This aid guides the user
about the investigatable categories. We can locate a category by clicking in its name
and the corresponding central node will be selected in the central view. We can dou-
ble click on a central node and display the associated PPI subnetwork in an available
peripheral view. For example, let’s double click on chemoattractant activity and see
that Robinviz displays the proteins (and their interaction network) associated with this
category in one of the available peripheral views. In Figure 3.18, it can be seen that
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Figure 3.19: Co-Expression - Central View
PPI Network: Saccharomyces cerevisiae from all experiment types
Coloring: Molecular Function
Association: Filtered Saccharomyces cerevisiae
GEO: Saccharomyces cerevisiae - GSE15352
Biclustering: CC with parameters Number of Bics:50, Max H-Value: 1000, Min Size
dim1: 500, Min Size dim2: 5.
Node Weights: H-Value with 0.65 edge removal ratio.
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Figure 3.20: Co-Ontology Central View - Trusted Association, Untrusted PPI Net-
work.
PPI Network: Homo Sapiens from all experiment types
Coloring: Molecular Function
Categories: High level molecular function categories
Association: Filtered Homo Sapiens

the selected category has 7 proteins and there’s no interaction between them. On the
other hand, it is known that proteins associated with the same category are more likely
to interact. If we have trusted Gene Ontology Annotation (association) data, it means
PPI Network source we used has missing interactions. This is a visual clue regarding
possible false negatives; see Figure 3.20.

User also can prefer to analyze a specific protein and its interactions. To enable
this, we can right click on a peripheral node and choose “Display Neighborhood in the
whole PPI” and 1-hop or 2-hop to see the interactions of this protein in the whole PPI.
Via the other menu option in the right click menu, user can obtain online information
about the protein.

In the Central View of Figure 3.20, edges between the central nodes represent
the cross-talks between categories. For example the node representing “structural
molecule activity” has a thick edge towards the node “binding”. This means that there
are lots of proteins in “structural molecule activity” with reliable interactions to pro-
teins in binding. Analogous to what is said for false negatives, these thick edges should
not exist as proteins should be interacting with proteins in the same category, leading
to visual clues regarding false positives. A careful and optimal categorization should
have minimized the weighted sum of cross-talks. So a biologist might decide to refute
the interaction foundings between those two different categories.
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Figure 3.21: Co-Ontology Central View - Trusted PPI Network, Untrusted Associa-
tion.
PPI Network: Homo Sapiens from all experiment types
Coloring: Biological Process
Categories: membrane coat, plasma membrane, outer membrane
Association: Filtered Homo Sapiens

It should be noted that this verification can be performed the way around, giving
rise to a bidirectional verification model. If the PPI network is trusted and the catego-
rization is not, we can verify the categorization (GO Annotation data). A central node
with many heavy edges connected to it gives clues regarding potential false positives
or negatives.

If the corresponding peripheral graph is dense with high reliability interactions,
then it can be concluded that this graph suffers only from false negatives as density of
the graph proves its good categorization and thick edge can be removed by transferring
the foreign interactor protein inside the mentioned category, making it denser. If the
corresponding peripheral graph is sparse then this peripheral graph (or category) is
thought to have false positives as the proteins inside deserve to be in another category.

In Figure 3.21 plasma membrane category and its contents can be seen in the
leftmost peripheral view. The peripheral view corresponding to plasma membrane
is dense, verifying the category annotation within the association source. But this
category also have a thick inter-cluster edge. This gives clue about false negatives and
means that some of the proteins in the neighboring membrane coat category should
exist in plasma membrane category. Moreover, if we were to look into the contents of
membrane coat category, we see a sparse graph. This gives clue about false positives
as these proteins should not exist here. combining these two clues, a biologist might
suggest a hyphothesis that the proteins in membrane coat should be moved into plasma
membrane.
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3.5.3 Co-Expression

For using Co-Expression as partitioning concept, similar steps in the wizard will be
followed until Association selection dialogue box. For this demonstration, we use
all Saccharomyces cerevisiae PPI Network in the PPI Network source selection page,
Co-Expression in the Verification concept page, Cellular Compartments in Color As-
signment, Filtered Saccharomyces cerevisiae in the Association selection page. Then
additionally, we are required to select a single GEO Expression Matrix data to apply
biclustering on. We select GSE15352 under Saccharomyces cerevisiae and click on
Next. Gene Expression Matrix data will be downloaded unless it has been downloaded
in the previous runs. Then we choose a biclustering algorithm, CC (Cheng&Church)
from the dropdown menu and define its parameters by clicking on CC tab below . Pa-
rameters are defined as follows: Number of Bics:50, Max H-Value: 1000, Min Size
dim1: 500, Min Size dim2: 5. We click on the Next button and Central Node Weights
dialog box appears. Now we have to select the method for assigning weights to nodes.
Let’s choose H-Value, a common correlation measure for biclustering and define a
removal ratio of 0.65. This ratio is a threshold for removing weak edges (unreliable in-
teractions). If we were to use 0.0, then all the edges were going to be displayed without
filtering. On the other hand if we were to use 0.9, only extremely reliable interactions
were going to survive to be visualized. Clicking on Next and Finish buttons we start
the required computations according to our preferences.

When the computations finish, Central View can be seen in Figure 3.19) with
integer labels representing the Bicluster numbers. Biclusters are listed on the right
search panel. It can be seen that there are lots of nodes without any edges and only a
few inter-cluster edges and interactions are imprisoned in clusters. This may show the
success of the biclustering algorithm. However, there are some central nodes with pro-
teins inside without much interactions. This may be a clue for both false positive and
false negative interactions, if we don’t trust our PPI Network and trust our biclustering
performance.

If we have trust our PPI Network (user may select the more reliable experiment
types to extract those with high reliability) but we don’t count on our biclustering
performance, then Robinviz also provides clues regarding the false positive and/or false

negative interactions analogous to the analysis we made in the subsection 3.5.2.
The gray dominated colors of the nodes show that most proteins do not have

high-level GO annotations. Only four nodes have the same high-level category anno-
tation.
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Chapter 4

Conclusion

Until now, field of Visualization of Protein-Protein Interaction Networks had a gap
in employing interaction reliability values into visuals. The existing works used re-
liability values only as visual clues which helped readability but did not reduce the
clutter of the visuals. With this work, we aimed to fill this gap by our modifications on
popular graph layout algorithms. With our modifications, clutter is reduced, reliable
interactions are emphasized and user is provided a chance to see the important inter-
actions of a possible huge PPI Network. This way, biological studies are expected to
advance faster as interaction analysis will be much more easier with our methods.

Moreover, we aimed to verify biological data using one another. We used trusted
Gene Ontology and Gene Expression data to verify PPI Networks. Experimental PPI
Networks suffer from noise and Predicted PPI Networks are not reliable in the na-
ture of prediction. We suggested following the natural relationships between Protein
Interactions-Gene Expression, Protein Interactions-Gene Ontology and verifying them
according to these relationships. To achieve this, we suggested a clustered dual visu-
alization model consisting of an abstract graph and peripheral sub PPI graphs. In this
model, huge PPI Network which is hard to read at single shot, is partitioned accord-
ing to biological semantics rather than graph-theoretical measures. Graph-theoretical
clustering is popular in visualization systems but our suggestion was to use natural re-
lationships in partitioning mechanism. We used Gene Expression and Gene Ontology
data claiming that proteins that are co-expressed or that are in the same category are
more likely to interact. Embedding Gene Expression data in PPI Visualization and
embedding Gene Ontology with a dual clustered model were novelties of Robinviz.
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Robinviz also does significant integration. We use give biological sources and inte-
grate them to perform verification and a better visualization. Our verification system
allowed user to see false positives and false negatives in a PPI Network. This way a
biologist can decide to further investigate specific interactions to obtain a more reliable
PPI Network. If we were to think the way around, with Robinviz we can also verify
Gene Expression or Gene Ontology data if we trust PPI Network.

Robinviz does not deprive users from visual aids that other tools provide. Among
them are edge thickness, node coloring, pie chart nodes, hover and selection focus,
animation. Visuals are supported with analysis information such as enrichment ra-
tio, Bonferroni corrected p-values and detailed online information via BioGRID and
AmiGO web sites. Moreover, biclustering results are visualized as heatmaps and par-
allel plots. Robinviz also can be used as a biclustering analysis tool.

With the user-friendly nature of Robinviz, user does not have to find or download
sources and give them to the software manually. Everything including updates is auto-
mated and preconfigurations for a quick start are provided for novice users. Graphical
User Interface also provides facilities that eases the usage such as search panel, session
saving/loading mechanism, color legend.

Robinviz has filled a gap in the field of visualization and verification of PPI Net-
works with its dual clustered model and reliability orientation. We expect future works
to consider reliability concept and partitioning mechanism we suggested to achieve
better advances in the field.
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Appendix A

Manual

A.1 Overview

We present our PPI network visualization system RobinViz (Reliability Oriented Bioin-
formatic Networks Visualization) which is designed to visually aid the prediction and
verification processes of such networks. Embedding both the reliability (confirmation)
values associated with the interactions and the verification data pertaining to them
within a visualization model is a novel feature of the system. RobinViz is a free, open-
source software protected under GPL. It is written in C++ and Python, and consists of
almost 30,000 lines of code, excluding the employed libraries. You can find up-to-date
version of this manual on http://code.google.com/p/robinviz/wiki/Manual

A.2 Installation

Here you can find instructions on how to install Robinviz.

Runtime Requirements: Python 2.7, PyQt 4.7

Library Requirements: LEDA 5.1+ Library from Algorithmic Solutions

Additional Windows Requirements: Windows XP SP3 / Vista (recommended),
Visual Studio 2005 C++ or over for compilation from source.

A.2.1 Linux Binary

1. Use the following command to install PyQt4:
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(a) sudo apt-get install python-qt4

2. Run the installer file: Robinviz-1.0.0-Linux-x86-Install. If it doesn’t run by
clicking, use the following command to give it executable rights and run it:

(a) chmod +x Robinviz-1.0.0-Linux-x86-Install

(b) ./Robinviz-1.0.0-Linux-x86-Install

3. After the installation, open a new terminal/konsole to run the program with up-
dated PATH variables. Move into the installation dir and run robinviz.exe

(a) cd ˜/robinviz

(b) ./robinviz.exe

A.2.2 Linux Source

1. Use the following command to install the required packages:

(a) sudo apt-get install python-qt4 g++ libX11-dev

2. Copy the distribution folder to anywhere you like (for example inside your home
dir):

(a) cp robinviz-1.0-source ˜/robinviz

3. Add the following lines to your ˜/.bashrc (Make sure that incl folder is inside this
LEDA ROOT):

(a) export LEDAROOT=/path/to/LEDA

(b) export PATH=$PATH:$LEDAROOT/Manual/cmd

(c) export LD LIBRARY PATH=$LD LIBRARY PATH:$LEDAROOT

4. Give the following command on console:

(a) source ˜/.bashrc

5. Move to the robinviz directory on console and run the following command:

(a) cd ˜/robinviz

(b) sh compile.sh

(c) ./robinviz.exe

62



APPENDIX A

APPE
NDIX

A.3. Quickstart

A.2.3 Windows Binary

1. Start the installation wizard to install the program under C:\Robinviz Double
click on the Robinviz icon on your desktop. Path should not include any spaces.

A.2.4 Windows Source

1. Follow the instructions at http://www.algorithmicsolutions.info/ leda manual/DLL s MS Visual.html

or

1. Use sample Visual Studio 2005 Solution Template located at src/cpp/Robinviz-
Windows-Installer.

2. Setup LEDA 5.1+ Library from Algorithmic Solutions

3. Follow the instructions at http://www.algorithmic-solutions.info/ leda manual/DLL s MS Visual.html
or if you use the template, you will need to add library path and include folder
from menu bar Tools→ Options→ Project and Solutions→ VC++ Directories.

A.3 Quickstart

A.3.1 Starting the program

When robinviz starts, you can follow debug information on the terminal (black win-
dow) that is opened aside and on the Log window that appears during the calculation. If
you encounter any freeze or problems, you can figure out the reason for that from these
sources. If you’d like to report any problems/bugs, please include debug information
you see here.

• Windows: From Start Menu→Programs→Robinviz, click on Robinviz. A black
window (terminal) and graphical user interface (GUI) of Robinviz will start.

• Linux: Start a new terminal/konsole. Change directory to robinviz installation
dir and run the executable:

– cd ˜/robinviz

– ./robinviz.exe

A.3.2 Running the Wizard

Follow the File Menu→Execute path.
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A.3.3 Preconfigured Settings

To have a quick run without messing with detailed configuration, you can run our
preconfigured parameter settings.

1. In the Execution Wizard opened, check Use preconfigured settings radio button.

2. Select a configuration from the dropdown menu.

3. Click on Finish button. Please wait for a while, this may take a few minutes.

A.3.4 Last Settings

For any reason, if you’d like to re-run the latest configuration,

1. Check the Use the last settings radio button.

2. Click on Finish button.

A.3.5 Manual Settings

If you want to define your own parameters for custom execution,

1. Check Define your manual settings radio button.

2. Click on Next button to follow the next steps of the wizard.

A.4 Tutorial

A.4.1 Introduction

RobinViz (Reliability Oriented Bioinformatic Networks Visualization) is a protein-
protein interaction (PPI) network visualization system designed to visually aid the pre-
diction and verification processes of such networks. Embedding both the reliability
(confirmation) values associated with the interactions and the verification data pertain-
ing to them within a visualization model is a novel feature of the system. RobinViz is a
free, open-source software protected under GPL. It is written in C++ and Python, and
consists of almost 30,000 lines of code, excluding the employed libraries.

Executable binaries of the system can be accessed via the Downloads link from
our website http://code.google.com/p/robinviz. These binaries can be downloaded and
executed directly without any problems on most of the systems. Additionally we pro-
vide the source code implementations of the system. If the user wants to compile the
source code and prepare her own executables we provide the necessary instructions
under the Installation section of the manual. In this tutorial, we introduce features of
Robinviz and how to make use of them and provide snapshots of a sample run.
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Figure A.1: Empty Robinviz MainWindow

A.4.2 Precautions

When switching between wizard steps, a progress bar is shown for user to understand
some processing is being done on the data. Please be patient until these kind of pro-
cesses ends. Just in case if no progress bar is shown, please follow the console mes-
sages to see the progress.

A.4.3 Main Window

When you run Robinviz, you will see an empty main window. In this window, the
central part is the Central View and the smaller rectangles around the Central View are
called the Peripheral Views. Window also has a menu bar and has menu options. (See
Figure A.1)

A.4.4 Menu

In the main window we have three main menus: File, View and Help.

• File

– Execute (Ctrl+X): Displays the execution wizard and lets you select your
inputs and perform the calculations.

– Load Session (Ctrl+O): Loads previously saved session data to the pro-
gram.

– Save Session (Ctrl+S): Saves current calculation results for future use.

– Display Last Session (Ctrl+D): Displays calculation results most recently
obtained on the screen.
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Figure A.2: PreConfiguration Page

– Update Local Data (Ctrl+U): Lets you download/update your database files.

– Exit (Ctrl+Q): Quits the program.

• View

– Color Legend (F6): Displays color legend for user to match the colors with
the most popular high level categories.

– Go To (Ctrl+G): Lets you quickly locate a bicluster by entering its number.

– Refresh(F5): Refreshes the drawings.

– Clear Views (Ctrl+L): Clears Central View and all the Peripheral Views.

– Fullscreen (F11): Toggles fullscreen mode.

• Help

– Manual: Displays download links for the manual.

– About: Displays the about dialog.

A.4.5 Execution Wizard

You can start this wizard following the File. There are three options you can select to
move forward:

• Use preconfigured settings: This option provides you pre-selected data sources
for execution so that you won’t be lost in manual settings that are unfamiliar to
you. It’s helpful for the users running Robinviz for the first time. If you’d like to
use this feature, please select this option and choose one pre-configured setting
from the dropdown menu. Then click on the Finish button.

• Use the last settings: This option lets you re-perform calculations with the most
recent settings without re-specifying them. Click on the Finish button after se-
lecting this option. Warning: If you just want to display last results without

re-calculating, use File-Display Last Session.
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• Define your manual settings: This option lets you do custom configuration and
input selection in the following wizard pages. Select this option and click on the
Next button.

If you select one of the first two options, Robinviz will start performing calculations
and display the results on the screen. But if you selected the Manual settings option,
then you will have to provide some more preferences. Here are the following wizard
pages:

1. PPI Network - Figure A.3

2. Verification Concept - Figure A.4

3. Color Assignment - Figure A.5

4. Central Nodes from GO Categories - Figure A.6

5. GO Association Sources - Figure A.7

6. GEO Expression Matrix - Figure A.8

7. Biclustering Algorithm - Figure A.9

8. Central Node Weights - Figure A.10

9. Ready Page - Figure A.11

Here are some screenshots from these pages:

A.4.6 Co-Ontology Results

Central View When you use Co-Ontology concept, Robinviz will display you a Cen-
tral View with Central nodes each corresponding to the GO Categories you selected in
the wizard (See Figure A.12).When you double click on a node, its contents (genes
associated with this category) are displayed on an available peripheral view. When
you re-double click, then the peripheral view will be cleared. These Central Nodes are
piecharts and have some colors. These colors and their ratios represent the ratio of the
highlevel categories of the inhabitants of this category. For example, peripheral view
corresponding to this category has 10 genes and 9 of them belong to “binding” high-
level category and 1 to the catalytic activity, then node will have 90% binding slice and
10% catalytic activity slice.. You can move the central nodes. When you select a node,
its edges are highlighted in red and its corresponding peripheral view is highlighted in
yellow. You can zoom in and out by scrolling.

When you right click on a Central Node, you’ll see 2 options:
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Figure A.3: In this dialog, you will see a list of organisms and experiment types under
each organism. Please select the PPI Network files you’d like to use here. If you select
nothing, the selection in your last execution will be used.

Figure A.4: In this dialog, you are required to select the verification concept. Robinviz
shall categorize genes according to their co-ontology or their co-expression informa-
tion by looking at this option.

Figure A.5: Nodes are colored to highlight their high level categories. You are asked
to select which categories you’d like to use for this purpose. Top 10 categories that
contain the most genes will be used for coloring.
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Figure A.6: In this part, you are asked to define the what the central nodes (categories)
will be in the central view. Genes will be categorized according to these categories
you select. Note that some categories are in bold. You can double click on those
categories to see its sub-category list. Selecting a highlevel category such as “binding”
does not include its sub-categories automatically. This is because that the central node
“binding” will cover all those sub-categories.

Figure A.7: In this part, you are asked to select a GO Association source. These
data tell us which gene is in which category. Multiple selection is doable but in this
screenshot, only Filtered Homo Sapiens data is used.
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Figure A.8: If you selected Co-Expression for verification method, you will see some
more dialogs such as this one. Here, you are asked to select one Gene Expression
Matrix data which will be downloaded from our servers. This data will be used for
biclustering.

Figure A.9: After GEO Expression Matrix selection, you are asked to select a biclus-
tering algorithm and provide its parameters. Each GEO file might require different
parameters so you might need to try different parameters to obtain to optimum biclus-
tering.
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Figure A.10: In this dialog, you are asked to define the method for calculating the cen-
tral node weights and the ratio of hidden central edges ratio. If you keep this ratio close
to 0, almost all the edges will be displayed which may result in cluttered graphs. If
you increase this ratio, weaker edges will be eliminated so that only edges representing
most reliable interactions will survive.

Figure A.11: This dialog shows data preparation has been finished and you may now
start Robinviz performing calcluations.

Figure A.12: Co-Ontology results for Homo Sapiens PPI Network and Association
data, categorized by molecular functions.
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Figure A.13: Detailed Category Information from AmiGO Browser.

Figure A.14: Enrichment Analysis for antioxidant activity.

• Detailed Information (Online): Provides detailed information about this category
from the AmiGO Browser. (See Figure A.13)

• Enrichment Analysis: Provides Enrichment Analysis tables for this category and
its contents. (See Figure A.14)

When you right click on an empty space on the central view, you’ll encounter
another menu with the following items:

• Open in new window: Opens the Central View in a separate, bigger window.

• Switch to Layout: Changes the current layout of the Central View.

• Save as Image: Saves the Central View as an image file.
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• Save as GML: Saves the Central View as a graph file.

• Print: Prints the Central View with your printer.

Peripheral Views When you double click on a Central Node, a preview of its con-
tents appear on a peripheral view. You can see its contents and even move its nodes.
When you right click on an empty space in a peripheral view, you’ll encounter such a
menu:

• Open a new window: Opens the Peripheral View in a separate, bigger window.

• Clear: Disassociates this peripheral window and its category (i.e. clears it).

• Enrichment Analysis: Displays Enrichment Analysis table for this category.

• Switch to layout: Changes the current layout of the Peripheral View.

• Save as Image: Saves the Peripheral View as an image file.

• Save as GML: Saves the Peripheral View as a graph file.

• Print: Prints the Peripheral View with your printer.

When you look at the nodes in the peripheral view in detail, you will see that these
nodes represent the proteins. They are in a piechart form and their piechart has colors
of the corresponding highlevel categories’ representation colors. For example, if a
protein node has two color, it means it belongs to 2 highlevel categories. When you
right click on an empty space, you will encounter the same menu as mentioned above.
But if you right click on a peripheral (protein) node, you’ll see this menu:

• Detailed Information (Online): Displays more information about the protein
from BioGRID website. (See Figure A.15)

• Display Neighbors in the whole PPI: Displays the other proteins in the whole
PPI (not just in this category) that interact with the protein in a new window.
(See Figure A.16)

When you hover on a protein node, you’ll see what highlevel categories it belongs
to. And when you display views in seperate windows, you will have File, View, Help
menus.
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Figure A.15: Detailed information for protein EBF3 on BioGRID website.

Figure A.16: Two-hop neighborhood is displayed for protein RAPSN. It has three
one-hop neighbors and many other two-hop neighbors.
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Figure A.17: Co-Expression results for Homo Sapiens PPI/Association data with Bi-
MAX Algorithm applied on Homo Sapiens GSE1000 GEO data.

Search Panel You can see a right panel in the main window and this panel lists the
categories you had selected. The ones struck demonstrate the ones that do not have
any genes associated. You can click on these categories to see which node they are
correspond. The single nodes that are apart from the main drawing correspond to the
struck categories. Clicking and double clicking on the panel items works as if you are
clicking on the actual nodes. Moreover, you can list the genes/proteins by clicking on
the Pro button. If you want to list the categories again, click on the Cat button. You
can search for a gene by typing in the text edit box. Robinviz has an autocompletion
feature that enables you to quickly locate your target. When you write a protein name
and press enter, the list will show you in which categories that protein resides in. You
can click/double click on those categories to dive in.

When you display peripheral views in a separate window, another search panel
will help you locate the proteins in that view quickly. Just press Pro button and see the
protein list in that view. If you look for a specific protein, type the protein name and
press enter or select it from the list. Protein node will be highlighted in yellow.

A.4.7 Co-Expression Results

Co-Expression results are similar to Co-Ontology results. We will discuss about the
differences in this part.

Central View You can see that Central Nodes this time have integer labels repre-
senting the bicluster number. When you right click on an empty space, you can see
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Figure A.18: Enrichment Table. Biclusters are on the left, highlevel categories are
listed on the top.

an extra option called Enrichment Table. Here you can see an extensive comparative
table on Enrichment Analysis. Each cell in a row tells us the number of genes/proteins
belonging to the category in the corresponding column (See Figure A.18)

When you right click on a Central Node, you’ll see an additional menu item
called Visualization. Here we provide two visualization: Heatmap and Parallel Plot.

When you hover on a node, you will see the corresponding biclustering (such as
H-value) score for that bicluster.

Peripheral View In a peripheral view right click menu on an empty space has an
additional Visualization item will appear.

Search Panel In the search panel, instead of categories, Bicluster numbers are dis-
played.
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Figure A.19: Heatmap representation of a bicluster. Black represents the median,
lightest green represents the lowest gene expression value, lightest red represents the
highest gene expression value. Dark colors represent values closer to the median.

Figure A.20: Parallel Plot diagram for a bicluster. y-axis represents the expresison
levels whereas x-axis represents the conditions. Each blue line represent a gene’s ex-
pression levels. Red line represent the average value for each condition.
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