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Fault-Tolerant Training of Neural Networks in the
Presence of MOS Transistor Mismatches

Arif Selcuk Ojrenci Member, IEEEGUnhan Dundar, and Sina Balk

Abstract—Analog techniques are desirable for hardware imple- site for training of the hardware whereas the latter requires a
mentation of neural networks due to their numerous advantages |arger chip area due to the extra circuitry for weight storage and
such as small size, low power, and high speed. However, these adtraining algorithm.

vantages are often offset by the difficulty in the training of analo e

neura(ﬁI:J network circuitry. Inyparticular, t?/aining of the £(J:ircuitry ’ ) Training of the analog neural network hardware on sof_tware
by software based on hardware models is impaired by statistical IS another a|ternatlve. In th|S method, n0n|dea| behaVIOI‘ Of
variations in the integrated circuit production process, resultingin  analog neural network circuitry is modeled based on simulation
performance degradation. In this paper, a new paradigm of noise or actual measurement results, which usually cannot be ex-
injection during training for the reduction of this degradation is y pressed analytically. The training software then employs these

presented. The variations at the outputs of analog neural networ . . . .
circuitry are modeled based on the transistor-level mismatches oc- models in the backpropagation learning [2], [8], [9], [16]. This

curring between identically designed transistors. Those variations type of modeling and training is usually required for obtaining
are used as additive noise during training to increase the faulttol- a suitable initial weight set to be used in chip-in-the-loop
erance of the trained neural network. The results of this paradigm  training. However, the inaccuracies present in these models
are confirmed via numerical experiments and physical measure- 4y jead to small deviations from the actual physical behavior,
ments and are shown to be superior to the case of adding random =~ . -
noise during training. WhICh in turn may cause the analog neural netwo_rk traln!ng
to fail. Although the training may be performed satisfactorily
on the software, outputs of the actual circuitry may deviate
heavily from those of the ideal training set [17]. In an effort to
alleviate this problem, SPICE models of the circuits that closely
|. INTRODUCTION approximate the actual behavior were used in the training to

T HE IMPLEMENTATION of analog neural networks provide the best starting point for chip-in-the-loop training in

(ANNSs) in VLSI remains to be an active research are[és]' - . - .
since they can be utilized in system-on-chip applications WhereAnother essential issue regarding proper training besides the
accuracy of the models involves statistical variations in the IC

high-performance classification, pattern recognition, functio focturi Th iati h touts of
approximation, or control tasks have to be realized in real timaanutacturing process. 1hese variations cause the ouputs o

Major advantages of using analog circuitry for neural networl'gentlcal bIOCk_S FO ex_h'b't |nterd_|e/|ntrad|e r_andom dlstnt_)u_-
are due to higher operation speed and less silicon area lans. Such variations impose serious constraints on the training

sumption as compared to their digital counterparts. The po orithm of the analog neural network. The requirement that

consumption of analog implementations is also preferab?@Ch individual chip-set has to be trained separately in order to

over digital [1]. On the other hand, analog implementatio void the effects of variations among identical blocks degrades
suffer from several shortcomings émd nonidealities Suchr_%geapplicability of chip-in-the-loop training. It has been shown

nonlinearities in the synapses, nonideal neuron behavi ,[2]’ 8], an_d [l t.h_at nonidealities do not form an obstacle
limited precision in storing the weights, limited dynami of the learning ability of neural networks if they are known

range for adding the synapse outputs, etc., whose effects 839 invariant during the training stage. Variations of a random

be minimized by various training and modeling strategiegaltu,re’tpn the'otht.-:‘rthatr;]d, panntot be 'FoLetrated. touts duri
Chip-in-the-loop training [2]-[6] and on-chip training [7]-[15] njecting Noise Into Ihe INpULs, WEIgNts, or Outputs during

are two such strategies that have appeared extensively in kpropagation training has also been utilized for generating

literature. However, the former requires a host computer gﬂfault-tolerant neural network [19], [20], which, by definition,

should also be tolerant to process variations. However, the ro-
bustness of training for the analog neural networks is not guar-
. . . . anteed by improved generalization since the problem for the
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against faults created by removal of synapses or by perturbatmnrent through the transistor. Any variations in these param-
of final weight values [22]. Clearly, such animprovement wouldters of two matched transistors would cause a difference in
also be beneficial where variations at outputs of building blockke currents of equally biased transistors. Variations in any pa-
are encountered. In [16], it is reported that an ANN hardwarameter may have systematic and random causes. Gradients in
has been modeled in software for faults, and the enhanced faide thickness and wafer doping cause systematic variations
tolerance of the network by means of weight noise is verified the parameters along a wafer and among different batches.
via simulations. However, the necessity to measure the relat®e the other hand, random, local variations in physical proper-
slopes of each multiplier in the neurons and the limited dynanties of the wafer cause mismatch between closely placed tran-
range as a hardware restriction prove to be prohibitive. sistors. Nonuniform distribution of dopants in the substrate and
It is necessary to overcome the problems due to hardwdired oxide charges are responsible for local zero-bias threshold
nonidealities and variations so that once a robust training \@fltage mismatches, whereas variations in substrate doping are
the system for a specific task is achieved, any chip of the sathe only cause foy mismatch. The mismatch in current factor
family can be directly utilized. To that end, these variations haigdue to edge roughness and local mobility variations [23]-[25].
to be incorporated into the training of analog neural networksthe mismatch in a parameter is modeled by a normal distribu-
In this paper, a novel approach to fault-tolerant training dion with zero mean, and the variance of the distribution for mis-
ANN in the presence of manufacturing process variations is pmatches can be expressed as [23], [24], [26]-[28]
sented. The focus is on multilayer perceptron neural networks
implemented in MOS technology and trained by backpropaga-

tion algorithm. However, the assertions and results can be ex- 2(AVio) = Ao L §2. D2 )
tended to other topologies, learning strategies, and technolo- ‘ 7= W VIoTs
gies as well. The following are combined into a robust training a2(AB) A &2 2 )
methodology. e =wr Tols (2)
1) Closed-form analytical expressions of statistical vari- ) Ag -
ations from the nominal output are derived for ANN o°(Ay) = WL +S5D; ©)

building blocks.

2) These theoretical variations are then compared to the véere Ayro, Ag, A, Svro, Sg, and S, are process-related
sults of measurements performed on sample integra@@nstantsi¥ and L are the length and width of the transistors,
circuits and to Monte Carlo simulations. and D, is the spacing between the matched transistors.

3) In order to incorporate the variations at the output, the As can be seen from (1)—(3), the variance of the mismatch
training algorithm (backpropagation) is modified. The&an be minimized by placing matched transistors close to each
building blocks are modeled according to their averaggher and by choosing large area transistors. However, the latter
outputs, whereas the variations are considered to be noiz@eases the total die area which should be avoided. A detailed
with a normal distribution. analysis of the circuitry is necessary in order to determine tran-

The outline of this paper is as follows. In Section II, transistofIStor pairs that have higher impact on mismatch behavior so that
level mismatch models are used to derive expressions for vdiey are designed accordingly. This requires that mismatches
ations at the block level. To demonstrate the validity of theg#d their cumulative effects on the circuitry have to be modeled.
expressions, they are compared with the results obtained frénstatistical MOS model has been developed in [29] and [30],
simulations and measurements. The training is carried out usi¥gich allows the designer to determine circuit output variance
“noisy” backpropagation where the outputs of the blocks afliie to mlsmatches in device parameters. However, the m_ethod-
calculated in a probabilistic manner, taking the noise into a@logy requires that a set of test structures have to be built and
count as outlined in Section ll. In Section IV, sample simyNeasured for each specific technology in order to gain knowl-
lations and measurements on several examples are condu€f#@f on the model parameters in question. Then, the modeling
to verify that this method of training allows a higher degree ¢tas t0 be incorporated into a simulation environment, which is
fault tolerance in the sense that noisy forward pass outputs 8£! @ straightforward task. Other studies on modeling the mis-
hibit better performance over outputs obtained from the netwdfi@tch based on the circuit structure also exist in the literature

trained without including the variations. Section V concludd$l=[33]- In this paper, the focus is primarily on mismatches
this paper. between pairs of transistors and the analytical derivation of their

effects on outputs.
The differential pair and current mirror are among the most
[I. MOS TRANSISTOR MISMATCH—MODELING AND frequently used structures in analog integrated circuits. This is
VERIFICATION also the case for the ANN considered in this paper, where the
building blocks are the synapse (Gilbert type, 4-quadrant, cur-
rent output multiplier as shown in Fig. 1), an op-amp (used for
Mismatch between parameters of two identically designediding synapse outputs and converting them to voltage), and
MOS transistors is the result of several random processes ttet sigmoid block. A prototype chip for testing purposes was
occur during the fabrication phase. The essential parametdesigned and manufactured in 24t CMOS technology. Ac-
of interest are the zero-bias threshold volta§feq), current cording to the experimental results of [24] and the data col-
factor (3), and substrate factor coefficient)( which affect the lected from the technology design kits, the process-dependent

A. Modeling of MOS Transistor Mismatch
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are five such current mirrors, and the output currgntan be

\%@IE—' %j % @ % expressed as a function
Z = f(AVr,1, AVp 2, AVp 3, AV g, AVp5)  (7)

" n for the mismatch analysis. Her&\Vr ; are considered to be
random variables with zero mean and variance, as given by (1).
{ Ejl’_i h Then, the variance it due to the zero-bias threshold mis-
N matches in current mirrors can be expressed as [34]

. af \?
x2 | ﬂ}_] a(mirror, Vre)y = ; <8AVT,i> TAvr, (8)

where the partial derivatives are computed with the zero mean

bias
——{ %— @ @ H—| value of the random variableSVr ;. Similarly, if the variation

due to the threshold voltage mismatches in the differential pairs
alone is considered, the output currehbecomes

Fig. 1. Circuit diagram of the synapse. /3 B,
constants are estimated as shown in Table I. Using the data, cal- 2
culation of the variance of the mismatch in matched transistor : (\/ ¢+ Vsp,x— ﬂ)) (Ay + AVro,y) (9)
pairs of differential stages and current mirrors is possible.
where
B. Modeling ANN Circuit Mismatches Az = (w2 — 1) input to the multiplier;
) ) o ] . Ay, mismatch of substrate factor for the

The aim of mismatch analysis is to predict the variances at the input differential pair;
outputs of the building blocks using the mismatches in the indi- AVyo , andAVy, , mismatches at the differential pairs of
vidual pairs. The analysis is carried out for two separate cases: ’ input and weight, respectively.

variations only in the threshold voltage (due to mismatches fthen, the variance & is cast as
zero-bias threshold voltagéro and substrate factoy) or in
the current factop? of the matched pairs. Mismatches in thes (diff-pair, Vo)

threshold voltage and current factor are shown to be indepen- 493,43, 9 9 2
dent [23]. Moreover, the correlation coefficients for transistor™ 2 Ay JAVTM +Aay (V ¢+ Vspo - ﬂ)

pairs with differenti?/ L ratios have been computed using the

empirical formulas of [28] between the three parameters, indi- - 0’3% + (Aw + Ve (\N/) +Vsp,o — \/%)) O'MTO y> .
cating that the variations in different parameters may be consid- (10)
ered to be independent.

In the following, the variance of output current for the synapse Similarly, variations at output current due to the mismatches
circuit of Fig. 1 is derived. In the case df, mismatches, the in the current factor3 can be computed for the existence of
total mismatch in the output curreftcan be attributed to mis- mismatch at current mirrors and differential pairs. If mismatches
matches in all of the current mirrors and differential pairs. Fat current mirrors only are considered pecomes

mismatches caused by the current mirrors, the analytical expres-
sion for output current is Z=7(1+Q3)(1+ QYU — (1 +Q5)T) (11)

where@,; = AS;/3; are the factors of mismatch in the current
mirror ¢ due to the mismatchk3;, and all the termgl — M)
will be replaced by(1 + @;) in (5)—(6). HenceZ becomes a
function of mismatches i as

Z = g(ABy, ABa, ABs, ABy. ABs) (12)

Z =7((1 = M3)(1 — MU — (1 — M3)T) (4)
where

U=3L(1-M)+3iL(01-M)

VB
— Ay 2 : (\/Il(l - M) - V(1 - M2)) (3)  and the variance if due tog mismatches in current mirrors is
T=LL(1-M)+355L(1- M) Z 99 \?
/B, o(mirror, 3)7 = <—> oA, (13)
+ Ay (ﬂl 1— M) — VI(1— MQ)) . (6) <\ 9AB;

Also the variance due t6 mismatches in differential pairs can

I, andl, are currents flowing through the transistors of the i mptg)e derived as

(z) differential pair,M; = (2AVr ;)/(Vas,i — Vro,) are the )
factors of mismatch in the current mirrodue to the mismatch _ 49A220% (5, 2 Pa o
_ g - N s (diff-pair, g)% = ——— TAg,2 T 7 TAB,,
AVr 4, By is the current factor of the transistors in the weight 8 /3 ’ By =Y
(y) differential pairs, andAy is the weight(y. — #1). There (14)
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TABLE |
PARAMETERS FORMISMATCH ANALYSIS
Avro Svro Ag S A, S,
(mVpm) | (uV/pm) | (%opm) | (107%/pm) | (V*Sum) | 107V /um)
NMOS 25 4 2.5 2 0.016 4
PMOS 30 4 3 2 0.012 4

TABLE I 150 T T T T T
MISMATCH IN THE CURRENT MIRRORS AND DIFFERENTIAL PAIRS OF i : ; ; -
THE SYNAPSE CIRCUIT

ML | M2 | M3 | M4 | M5 | difix | diff,y
ol MV | 78 | 78 | 72 | 11 | 26 | 27 15
o2 ,(uAJV)? 10.03 | 0.03 | 0.19 | 0.004 [ 0.07 | 0.36 | 0.005
AB

%, 00| 0] 0 | 0 [0633]| 0

50

put current [uA]

-50
where 3, and 3, are current factors of the input and Weighé
differential pairs, respectively. Finally, the total variation at th -100
output current can be expressed by

- i i
0% = o(mirror, Vro)} + o(diff-pair, Vzo)} I — o . o L
1t , v
+o—(mirror, [3)22 + rf(dif'f-pair, [3)2Z (15) Input voltage,x

. o . Fig. 2. Average of 100 Monte Carlo runs for the synapse with mismatched
under the assumption that the individual mismatches due to th&jel parameters.

parameterd’o andg are independent. In the same manner, an-
alytical expressions for the variance at the outputs of the op-ar=- 200

and sigmoid blocks can also be derived. g -
5

C. Verification of the Models with the Test Chip % 300

The structure of each neuron in the test chip is such that ch 250

rent outputs of five synapses are connected to an op-amp 513
ming node for current-to-voltage conversion. Voltage output <§. 200 |
the op-amp is then applied to the sigmoid block. The chips ha 2 150
been tested using an automated data acquisition environments

each step of the measurement for a neuron, four pairs of syna g 100

inputs and weights are set to 0 V, while the fifth synapse inp § 50 :

and weight values are swept over a range-6fV to+5Vand % WA T8

—2 V to +2 V, respectively. This procedure has been repeat” 0

for each of the 200 synapses to obtain characteristics of e: Input voltage,x [V]

synapse as seen at the neuron output (sigmoid input). Mean- _ _ , _
hile. outputs of the siamoid block are also measured for ch ig. 3. Variance in synapse output obtained from 100 Monte Carlo runs with
whi K .p 9 Rhismatched model parameters.
acterization.
The variance of mismatch for the parametéis, 5, and _ 450
~ are computed using (1)—(3), and they are given in Tablez

400

for current mirrors and differential pairs of the synapse circui2
One hundred Monte Carlo dc sweep runs are performed fo & 350
single synapse incorporating the mismatche¥ig, 3, and~, g 300

where each mismatch parameter has zero mean and the \ 8
ance as given in Table Il. The average of the Monte Carlo sir 4 ;
ulations is given in Fig. 2. The variance of the sample of siz%‘ 200 FhbHER
100 is computed for each input-weight pair, and the values z:_" 150
plotted in Fig. 3 for nonpositive weight values. The variance (°

250

the synapse curreut exhibits a symmetrical behavior as giver § 100

by 0% (x, w) = 0% (—z, —w). The theoretical mismatch in the - 50 : e L 0000
synapse output current is calculated using (4)—(15). The rest 2 0 L L L L i
are again plotted for nonpositive weight values in Fig. 4, sin -2 -1 0 1 2

. . . Input voltage,x [V]
the same symmetry also exists for the theoretical computations.

Itis evident from Figs. 3 and 4 that the mismatch in synapse Ciig. 4. Variance in synapse output obtained using the formulas.
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, ! ! ! )
0.05 |- d e e NOMARAL T

Mdnte Cario -
...measurement. -

Variance of output [V*2]

Variance of neuron output [V"2]

-2 -1 0] 1 2
Input voltage,x [V]

0.005 i i i i .
-3 -2 -1 0 1 2 3
Input voltage,x [V]

Fig. 5. Variance in neuron output obtained from 100 Monte Carlo runs Wiiﬁg 7. Variance in sigmoid output
mismatched model parameters. o '

I1l. | NCORPORATION OFMISMATCH INTO BACKPROPAGATION
TRAINING

In this paper, the ANN hardware blocks are modeled using
analytical expressions for their input—output relations in order
to be used in the backpropagation algorithm, which has also
been suggested previously [2], [9]. The synapse function can be
modeled as a polynomial function with less than 5% deviation
as follows:

wlz, w) =co + (1 + c2? + c3x® + C4.T4)
(esw + cgw? + crw® + cgw?) (16)

Variance of neuron output [V"2]

wherepu(x, w) is the output current for the input pait w and
the coefficientse; are determined using nonlinear regression,

-2 -1 0 1 2
Input voltage,x [V] which may take nominal or Monte Carlo simulations as input.

i . ) ) The op-amp [V conversion) block can be represented by
Fig. 6. Variance in neuron output obtained from actual measurements on the

chips. VDD, if —Ru>VDD
O(p)=< —Ru, fVDD>—-Ru>VSS a7
rent as computed by theoretical analysis and as simulated are in VSS, if —Ru<VSS

close agreement. Where

f Alggul\;lon tcwgwtl made up;]of five Sﬁ/ napsest |s.also sgng!;te VDD andVSS  positive and negative supply voltages;
or onte Carlo runs where each current mirror and differ- implemented resistance (the value is 100

ential pair in all of the five synapses and the op-amp are per- KQ):
turbed by the appropriate amount of mismatch. The variance f

: o L . ) total current supplied by the synapses.
obtained is given in Fig. 5, whereas Fig. 6 displays the Me8ar the sigmoid block, an exponential function with coefficients
surement results. The close agreement between the two fagﬁl- - -
. S o . ; IS employed in regression
lies of curves implies that the variations in the block outputs aré

due to device mismatches. Moreover, this also suggests that the P(x) =do + d . (18)
process-dependent parameters have been estimated close to the 1 + exp(daz + d3)
actual values. During backpropagation training, the variations are modeled

A similar analysis has also been carried out for the sigmoatcording to the mismatch analysis of the circuitry, and they
block. Three types of results are given in Fig. 7 for the varare considered as zero mean additive noise with known vari-
ance in sigmoid output: based on theoretical formulas, 100 rusasce depending on the input values of the blocks. For the vari-
of Monte Carlo simulations with mismatched model paramances in synapse and sigmoid blocks, regression is again em-
ters, and measurements on actual chips. These results indipddged based on the data obtained from theoretical computa-
that the presented approach forms a realistic way of predictitigns, Monte Carlo simulations, and measurements separately
block-level variations based on individual transistor-level mige fit the following polynomials:
matches. This type of theoretical analysis not only provides the » . 2 3 4 6
designer with a training methodology for ANN but also aids the Tul@, w) =co+(ar + e 4 egr” 4 e’ 4 )
designer in identifying the critical transistor pairs based on the -(esw + cgw? + crw’ + cgw?) (19)
sensitivity of the output to the individual pair mismatches. oi(x) =do + diz + dox” + dsz® + dya*. (20)
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The output of the op-amp is governed by the expression
O() = (R + AR)i + AVigeer (21)

where the implemented resistor has a certain variaiéh(ap-

277

fect of pulling a weight toward zero. This not only assures that
the blocks operate in their “close to ideal” region, but also de-
creases the variations. Moreover, it has also been reported in the
literature that employing smaller weight magnitudes enhances

proximately 5-10% for standard processes) and the outputtie fault tolerance of the neural network by distributing the com-

affected by the input offset voltag®V, g, of the op-amp only. putation evenly to the neurons and synapses [22].

Thus, the resulting expression for the variance at op-amp output
becomes
o5(1) = 120X R+ oAy, e (22)

Once the “noisy” behavior of synapse and sigmoid circuip
has been modeled based on analytical calculations (or Mo? e
Carlo simulations), the backpropagation algorithm can be mod-
ified in order to incorporate those variations at the outputs. F
this purpose, a scalar input—output multilayer perceptron struc-

IV. NUMERICAL EXPERIMENTS

The noisy backpropagation approach employing transistor-
ased mismatches has been tested on several examples. Five
&{fferent types of learning have been applied to each problem
I comparison purposes. In all of the training experiments, an
on-line weight update scheme is employed. The following are
the training types employing different types of models for the

neural network blocks.

ture is considered. The output of the multilayer perceptggn (
is the op-amp (neuron) outpGX;:) (a weighted sum of the out-
puts of a numberK) of hidden unitspet,), filtered through the
nonlinear sigmoid functiog(x) as follows:

1

h
net, = <Z (L, Hi(w)) + pn (13, Hi(w)) + (1o, 1)

i=1 2)
+ pn(To, 1)) (23)
y(z) = p(O(net,) + On(net,)) + ¢n(O(net,) + On(net,))
(24)
where
x input;
T;  weights associated with the outputs of hidden units; 3)
Ty  bias weight.

Note that the statistical variations at the outputs of the blocks
are represented by additive noise tegmgx, w), O, (1), and
¢n(x) for the synapse, op-amp, and sigmoid, respectively. The
output of each hidden unit is another similar expression. Given
a training set, the weights are updated using gradient descent
in the backpropagation algorithm. The learning method can be
implemented using any synapse and nonlinearity(if, w),
Ou/oz, du/ow, O, O, ¢, and¢’ can be computed. Hence,
backpropagation learning can be realized using the analytical
expressions of (16), (18), and (21). The noise terms are deter-
mined as follows. In each epoch of the training (forward pass), a
random number is generated from a normal distribution of zero
mean and variance as calculated by (19), (20), and (22) for each
synapse, op-amp, and sigmoid block. Those values are consid-
ered to be the statistical variations at the outputs.

Training of neural networks for analog hardware implemen-
tation utilizing the blocks discussed so far requires special mod-
ifications. The input—output values need to be scaled such that
they fall within the operational range of the analog circuitry. A
further modification in the update rules is applied to favor small
weight magnitudes so that the synapses operate in their linear
region and the variations in the outputs due to mismatches are
less severe. This is done by thiveight decayechnique, which
has shown to be effective in the improvement of generalization 5)
inthe presence of noise [35], [36]. In weight decay, weights with
large magnitudes are penalized. At each iteration, there is an ef-

4)

Nominal modelbased on simulations with nominal tran-
sistor model parameters (no noise terms added). The be-
havior of synapses and neurons were modeled based on
circuit simulations using these models, and the training
was done using these synapse and neuron models.
Monte Carlo without noisebased on average of simu-
lations with induced mismatches in the model parame-
ters (no noise terms added). The transistor models were
perturbed with technology variations, and an average be-
havior over Monte Carlo simulations was obtained for the
synapse and neuron blocks. This behavior was then mod-
eled and observed to be more realistic compared to the be-
havior obtained with nominal models. Training was per-
formed using these models.

Monte Carlo with noisebased on average of simulations
with induced mismatches in the model parameters and
noise terms added with variance obtained from Monte
Carlo simulations. In this type of training, not only the
models which are the average of many Monte Carlo sim-
ulations are utilized but also the variation in the models
for the synapse and neuron are calculated. These varia-
tions are called “noise” and added during training for ro-
bustness.

Measurements and noidggsed on average of simulations
with induced mismatches in the model parameters for the
synapse and op-amp and measurements for the sigmoid,
and noise terms added with variance obtained from the-
oretical formulas for the synapse and op-amp and mea-
surements for the sigmoid. This approach contains data
from various sources. For modeling the neuron behavior,
measurements on the chips were used. However, synapses
did not contain measurement facilities on the test chips.
Hence, simulations had to be employed for the synapses.
To model the noise to be added during training, the for-
mulas derived in the previous section were used for the
synapse and op-amp block. To demonstrate the flexibility
of this method, the variance obtained from the measure-
ments for the sigmoid was used for the noise in the sig-
moid block.

Weight noisebased on uniformly distributed random
noise expressed as a percentage added to weights, and
gradually reduced to zero as the network converges [16],
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TABLE 1lI
SUCCESSRATES IN % FOR XOR(3-BIT PARITY) PROBLEM FOR DIFFERENT TRAINING/FORWARD PASS TYPES

TRAINING using models obtained from...

Forward pass Nominal Monte Carlo Measurements | Weight

using models from... | simulation | without noise | with noise and noise noise
Nominal 100(100) 100(100) 100(100) 100(100) 100(100)
Monte Carlo 100(100) 100(100) 100(93) 100(100) 100(100)

Monte Carlo + noise 84(73) 60(59) 100(99) 100(100) 78(74)
Measurements +noise | 65(58) 72(66) 94(90) 100(100) 82.5(85)

[22]. The hardware model is based on Monte Carlo TABLE IV

Simulations fOf the Synapse and on measurements forSUCCESSRATES OF MEASUREMENTS ON THECHIPS IN PERCENTAGE FOR
. . . . . XOR PROBLEM
the sigmoid for the average behavior. This method is

included for comparison purposes. Training Method Success | Failure | Reject
For testing the performance of the above training methodolo- Nominal 49 29 22
gies, four different simulation sets were performed in addition = Monte Carlo without noise | 61 26 13
to chip measurements. The first forward pass is performed using _ Monte Carlo with noise 85 6 9
nominal transistor parameters and is just included to test the _Measurements and noise 85 10 5
validity of the training for the first approach. The second for- Weight noise 81 14 5

ward pass methodology is called Monte Carlo and is done using

models based on the average of many Monte Carlo runs. This 2-°>
forward pass corresponds to the case where there are proces 2
variations, but all synapses and neurons are actually identicalto 1.5
each other on the chip. The third forward pass methodology is 1
called Monte Carlot+ noise and corresponds to using average 5
models and noise during forward pass and is closer to the real 0
world. The fourth and the last forward pass methodology ap-
proximates the real chip most closely and is based on using mea-"" - >
sured behavior for the neuron. -1
Although design improvements can be carried out regarding -1.5
transistor geometries of critical components, variations at the -2 5 i : 5 : 5
outputs of blocks are still inevitable. In order to allow hardware _5 5 i i i i i I
training of analog neural networks without on-chip circuitry or -1 0 1 2 3 4 5

chip-in-the-loop training, proper modeling of those variations x1

is necessary. The examples below indicate that modeling thef g paa for the classification problem.
as additive noise based on transistor-level mismatches and per-

forming the training on software to include the random effeciSyr each one of the training methods, five different weight sets
of hardware enhances the performance of the ANN remarkablye sed to test theor operation. For each weight set, 30 com-
binations of chips have been used in the test; that is, the chip for

A. xorand 3-Bit Parity Problem the hidden neurons and the chip for the output neuron have been

Training has been carried out 30 times for #@R and 3-bit selected from ten chips in 30 different ways so that the effects of
parity check problems for each type of training mentionesgtatistical variations among different chips can be observed. In
above. The noisy forward passes using models fidonte this way, for each training method, a total of D6OR networks
Carlo with noiseand measurements and noisave also been have been constructed and tested. Although the weights and in-
run for 20 times (i.e., 600 different training-forward pass paifguts that are not used have been connected to ground to imply
have been simulated). This allows the derivation of statisticaigro input and zero weight, they still contribute to the output due
significant results for the problems. For theeight noise to variations.
training, three noise levels have been used: 10%, 20%, and he results of the measurements on the chips are given in
40%. Then, ten forward runs are performed for each noidgble IV. “Reject” denotes the case where the outputs are not
level. Regarding the network sizes2a3: 1 network is used “settled” (i.e., the output can not be identified as low or high).
for the xoRrR problem, whereas 8:6: 1 network is employed
for the 3-bit parity problem. The success rates for 600 (
for nominal and Monte Carlo without noise) forward runs are As a continuous input classification problem, two sets of data
given in Table Ill. The numbers in parentheses are the resymints are generated from a normal distribution with the fol-
for the 3-bit parity problem. lowing properties. The one labeled bhass-1has mean of- 0.5

In order to test the effectiveness of the training, sample mead zero for:1 andx2 coordinates respectively, where the stan-
surements have been carried out on the prototype chips as wadkd deviation for both coordinates is 0G3ass-2,0n the other

3% Two-Dimensional Classification Problem
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TABLE V
SUCCESSRATES IN % FOR CLASSIFICATION PROBLEM FOR DIFFERENT TRAINING/FORWARD PASS TYPES

TRAINING using models obtained from...
Forward pass Nominal Monte Carlo Measurements | Weight
using models from... | simulation | without noise | with noise and noise noise
Nominal 94(88) 96(86) 92(88) 90(86) 92(84)
Monte Carlo 46(44) 94(88) 96(92) 94(88) 96(88)
Monte Carlo + noise 32(38) 76(72) 88(92) 90(86) 82(79)
Measurements +noise | 29(26) 68(64) 90(88) 95(92) 78(74)

The entries are rates for the training set and the test set in parantheses.

TABLE VI
DISTRIBUTION OF WEIGHTS FORDIFFERENT TRAINING TYPES IN THE CLASSIFICATION PROBLEM

TRAINING using models obtained from...
Nominal Monte Carlo Measurements | Weight
simulation | without noise | with noise and noise noise
Mean -0.035 -0.033 -0.015 -0.05 0.001
Standard Deviation 0.14 0.24 0.73 0.54 0.64
hand, has mean of two and zero for and x2, respectively, V. CONCLUSION

where the standard deviation for both coordinates is one. Of thq
100 data points generated for each class, half are used as B
training set and the other half are used for test. Fig. 8 displays
data points. A 2: 14 : 2 structure is used for training. All types q@l
training are carried out until the root-mean-square training err
dropped below 1%. The training has been carried out 15 tim
for each type of training mentioned above. The noisy forwar
passes using models fradonte Carlo with noisandmeasure-
ments and noiskave also been performed ten times. The resu
are summarized in Table V.

n this study, building blocks of an analog neural net-
?k—namely, the synapse, op-amp, and sigmoid cir-
try—are analyzed for their mismatch characterization.
ismatches in the threshold voltaggér) and current factors
/§) are considered to be the causes of variations on matched
OS transistor pairs, which result in deviations at outputs
identically designed blocks. Closed-form expressions of
tatistical variations from the nominal output are derived for
E?ese circuits. These theoretical variations are compared to
actual measurements obtained from chips. It is evident from
the comparison that those variations can be attributed to mis-
C. Discussion matches. In order to incorporate the variations at the outputs,
the backpropagation algorithm is modified. The building
As observed from the results, incorporation of variations intllocks are modeled according to their average outputs, and
the training enhances the capability of the network strongly. Thige variations are considered to be noise with certain normal
comparison is performed with respect to the noisy forward padistributions.
using the models obtained from measurements, which resembl@&lext, the training is carried out using “noisy” backpropa-
the actual electrical characteristics of the analog circuitry. Fgation where the outputs of blocks are calculated in a proba-
thexoRr (3-bit parity) problem, training without noise results in &ilistic manner taking the noise into account. Sample simula-
high level of error. The degradation in the classification probletions and measurements are conducted to verify that this method
is more severe. Correct classification rates drop to 29% and 68%iraining allows a higher degree of fault tolerance in the sense
for nominalandMonte Carlomodels. Inclusion of weight noise that noisy forward pass outputs exhibit better performance over
improves the fault tolerance of the network as expected. Hoaudtputs after training without including the variations. The com-
ever, the performance of training witteight noisds worse in  parison of the modified backpropagation algorithm for different
comparison to training witlMonte Carlo with noiseandmea- types of modeling also indicates that incorporating variations
surements and nois€his implies that random injection of noisebased on mismatch model obtained through Monte Carlo sim-
is not capable of compensating the effects of hardware varidations and actual measurements also coincide. This verifies
tions fully. that noise (variations) can be estimated during the design stage
An investigation of the weight distributions also suggestsf the circuitry using the data on transistor geometries so that the
some hints for the enhancement of the fault tolerance. Theage of “noisy” backpropagation can be helpful for achieving
weights for the training types with noise exhibit a largea robust training for ANN.
standard deviation in comparison to weights obtained withoutThe following conclusions can be drawn from measurement
noise terms (see Table VI for the classification problem). Thif the chips. The measurement results do not coincide exactly
is in agreement with the results of [22] that the “informationivith the simulation results in Table Ill. This is mainly due to
is distributed evenly to the weights in training with noisaliscrepancies between the transistor-level simulation models for
injection. ANN and the fabricated circuits. However, they are correlated;
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that is, injection of noise during the training considerably im-[11] J.Hertz, A. Krogh, B. Lautrup, and T. Lehmann, “Non-linear back-prop-

proves the performance of the analog neural network. Mod- agation: Doing back-propagation without derivatives of the activation
. . . . . function,” IEEE Trans. Neural Networkwsol. 8, pp. 1321-1327, Nov.
eling the variations based on either Monte Carlo simulations 1997

or actual measurements on the chip do not differ with respegi2] A.J. Montalvo, R. S. Gyurcsik, and J. J. Paulos, “An analog VLS| neural
to the robustness of the training. However, both techniques per- network with on-chip perturbationfEEE J. Solid-State Circuitsvol.

L . 32, pp. 535-543, Apr. 1997.
form better than random noise injection. Itis observed that modn 3; 1" vorie, “Analog VLSI implementation of self-learning neural

eling the statistical variations using theoretical analysis, Monte  networks,” in Learning on Silicon: Adaptive VLSI Neural Systems
Carlo simulations, or measurement results yields similar perfor- G- Cauwenberghs and M. A. Bayoumi, Eds. Norwell, MA: Kluwer

. . o Academic, 1999, ch. 10, pp. 213-242.
mances, hence allowing the designer to have the flexibility of14] G M Bo D D. Cavig",pr Chiblé, and M. Valle, “Analog VLS|

choosing among these alternatives or their combinations. Even  on-chip learning neural network with learning rate adaptation,” in

though the success rate has been found to be 100% in the sim- Learning on Silicon: Adaptive VLSI Neural Syste@sCauwenberghs
. . . and M. A. Bayoumi, Eds. Norwell, MA: Kluwer Academic, 1999,
ulation using measurement-based variations, the actual success ¢, 14 pp. 305-330.

rate on the test chip has been 85% only. This may be due fas] F. Diotalevi, M. Valle, G. M. Bo, E. Biglieri, and D. D. Caviglia, “An

the fact that the precision of weights used during the measure- analqg on-ghip learning circuit architecture of th_e weight perturbation
. h L, . algorithm,” inProc. ISCAS200®0l. 1, Geneva, Switzerland, May 2000,
mentsis notas high as the precision of computed weights. More- ;7419455
over, electrical noise on the setup may have affected the outputss] P. J. Edwards and A. F. Murray, “Fault tolerance via weight noise in
slightly. analog VLS| implementations of mlp’'s—A case study with EPSILON,”
. . IEEE Trans. Circuits Syst. Ivol. 45, pp. 1255-1262, Sept. 1998.
The measurements |nd|cat_e that furtherwqu h.as tobe carriggh) A simsek, M. Civelek, and G. Dindar, “Study of the effects of non-
out in order to guarantee satisfactory operation in the presence idealities in multilayer neural networks with circuit level simulation,” in

of hardware nonidealities and variations. This can be achieved_ Proc. MELECONS6vol. 1, Bari, Italy, May 1996, pp. 613-616.
h hi t of th nal ircuitrv to decrease miS[_18] I. Bayraktar@lu, A. S. Ggrenci, G. Dundar, S. Balk and E. Alpaydn,
through improvement o € analog ¢ y “ANNSyS: An analog neural network synthesis systeidgural Net-

match-induced variations and through utilization of a simula-  works vol. 12, no. 2, pp. 325-338, Feb. 1999.

tion-based training, as offered in [18], thus enabling the training!®! K. Matsuoka, “Noise injection into inputs in back-propagation
. Lo . learning,” IEEE Trans. Syst., Man, Cyberrvol. 22, pp. 436-440,
of analog neural networks on software and possibly eliminating May/June 1992.
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