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Fault-Tolerant Training of Neural Networks in the
Presence of MOS Transistor Mismatches

Arif Selçuk Öğrenci, Member, IEEE, Günhan Dündar, and Sina Balkιr

Abstract—Analog techniques are desirable for hardware imple-
mentation of neural networks due to their numerous advantages
such as small size, low power, and high speed. However, these ad-
vantages are often offset by the difficulty in the training of analog
neural network circuitry. In particular, training of the circuitry
by software based on hardware models is impaired by statistical
variations in the integrated circuit production process, resulting in
performance degradation. In this paper, a new paradigm of noise
injection during training for the reduction of this degradation is
presented. The variations at the outputs of analog neural network
circuitry are modeled based on the transistor-level mismatches oc-
curring between identically designed transistors. Those variations
are used as additive noise during training to increase the fault tol-
erance of the trained neural network. The results of this paradigm
are confirmed via numerical experiments and physical measure-
ments and are shown to be superior to the case of adding random
noise during training.

Index Terms—Backpropagation, neural network hardware,
neural network training, transistor mismatch.

I. INTRODUCTION

T HE IMPLEMENTATION of analog neural networks
(ANNs) in VLSI remains to be an active research area

since they can be utilized in system-on-chip applications where
high-performance classification, pattern recognition, function
approximation, or control tasks have to be realized in real time.
Major advantages of using analog circuitry for neural networks
are due to higher operation speed and less silicon area con-
sumption as compared to their digital counterparts. The power
consumption of analog implementations is also preferable
over digital [1]. On the other hand, analog implementations
suffer from several shortcomings and nonidealities such as
nonlinearities in the synapses, nonideal neuron behavior,
limited precision in storing the weights, limited dynamic
range for adding the synapse outputs, etc., whose effects can
be minimized by various training and modeling strategies.
Chip-in-the-loop training [2]–[6] and on-chip training [7]–[15]
are two such strategies that have appeared extensively in the
literature. However, the former requires a host computer on
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site for training of the hardware whereas the latter requires a
larger chip area due to the extra circuitry for weight storage and
training algorithm.

Training of the analog neural network hardware on software
is another alternative. In this method, nonideal behavior of
analog neural network circuitry is modeled based on simulation
or actual measurement results, which usually cannot be ex-
pressed analytically. The training software then employs these
models in the backpropagation learning [2], [8], [9], [16]. This
type of modeling and training is usually required for obtaining
a suitable initial weight set to be used in chip-in-the-loop
training. However, the inaccuracies present in these models
may lead to small deviations from the actual physical behavior,
which in turn may cause the analog neural network training
to fail. Although the training may be performed satisfactorily
on the software, outputs of the actual circuitry may deviate
heavily from those of the ideal training set [17]. In an effort to
alleviate this problem, SPICE models of the circuits that closely
approximate the actual behavior were used in the training to
provide the best starting point for chip-in-the-loop training in
[18].

Another essential issue regarding proper training besides the
accuracy of the models involves statistical variations in the IC
manufacturing process. These variations cause the outputs of
identical blocks to exhibit interdie/intradie random distribu-
tions. Such variations impose serious constraints on the training
algorithm of the analog neural network. The requirement that
each individual chip-set has to be trained separately in order to
avoid the effects of variations among identical blocks degrades
the applicability of chip-in-the-loop training. It has been shown
in [2], [8], and [9] that nonidealities do not form an obstacle
for the learning ability of neural networks if they are known
and invariant during the training stage. Variations of a random
nature, on the other hand, cannot be tolerated.

Injecting noise into the inputs, weights, or outputs during
backpropagation training has also been utilized for generating
a fault-tolerant neural network [19], [20], which, by definition,
should also be tolerant to process variations. However, the ro-
bustness of training for the analog neural networks is not guar-
anteed by improved generalization since the problem for the
analog hardware extends more into the randomness of the varia-
tions between identical blocks. It has been shown in [21] that in-
jecting analog noise to weights during the training dramatically
enhances the generalization of the neural network. The effect
of synaptic noise is to distribute the dependence of the output
evenly across the weight set [22]. The simulations with ideal
neural network elements reveal that injection of multiplicative
analog noise during training would yield a more robust network
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against faults created by removal of synapses or by perturbation
of final weight values [22]. Clearly, such an improvement would
also be beneficial where variations at outputs of building blocks
are encountered. In [16], it is reported that an ANN hardware
has been modeled in software for faults, and the enhanced fault
tolerance of the network by means of weight noise is verified
via simulations. However, the necessity to measure the relative
slopes of each multiplier in the neurons and the limited dynamic
range as a hardware restriction prove to be prohibitive.

It is necessary to overcome the problems due to hardware
nonidealities and variations so that once a robust training of
the system for a specific task is achieved, any chip of the same
family can be directly utilized. To that end, these variations have
to be incorporated into the training of analog neural networks.

In this paper, a novel approach to fault-tolerant training of
ANN in the presence of manufacturing process variations is pre-
sented. The focus is on multilayer perceptron neural networks
implemented in MOS technology and trained by backpropaga-
tion algorithm. However, the assertions and results can be ex-
tended to other topologies, learning strategies, and technolo-
gies as well. The following are combined into a robust training
methodology.

1) Closed-form analytical expressions of statistical vari-
ations from the nominal output are derived for ANN
building blocks.

2) These theoretical variations are then compared to the re-
sults of measurements performed on sample integrated
circuits and to Monte Carlo simulations.

3) In order to incorporate the variations at the output, the
training algorithm (backpropagation) is modified. The
building blocks are modeled according to their average
outputs, whereas the variations are considered to be noise
with a normal distribution.

The outline of this paper is as follows. In Section II, transistor-
level mismatch models are used to derive expressions for vari-
ations at the block level. To demonstrate the validity of these
expressions, they are compared with the results obtained from
simulations and measurements. The training is carried out using
“noisy” backpropagation where the outputs of the blocks are
calculated in a probabilistic manner, taking the noise into ac-
count as outlined in Section III. In Section IV, sample simu-
lations and measurements on several examples are conducted
to verify that this method of training allows a higher degree of
fault tolerance in the sense that noisy forward pass outputs ex-
hibit better performance over outputs obtained from the network
trained without including the variations. Section V concludes
this paper.

II. MOS TRANSISTORMISMATCH—MODELING AND

VERIFICATION

A. Modeling of MOS Transistor Mismatch

Mismatch between parameters of two identically designed
MOS transistors is the result of several random processes that
occur during the fabrication phase. The essential parameters
of interest are the zero-bias threshold voltage (), current
factor ( ), and substrate factor coefficient (), which affect the

current through the transistor. Any variations in these param-
eters of two matched transistors would cause a difference in
the currents of equally biased transistors. Variations in any pa-
rameter may have systematic and random causes. Gradients in
oxide thickness and wafer doping cause systematic variations
in the parameters along a wafer and among different batches.
On the other hand, random, local variations in physical proper-
ties of the wafer cause mismatch between closely placed tran-
sistors. Nonuniform distribution of dopants in the substrate and
fixed oxide charges are responsible for local zero-bias threshold
voltage mismatches, whereas variations in substrate doping are
the only cause for mismatch. The mismatch in current factor
is due to edge roughness and local mobility variations [23]–[25].
The mismatch in a parameter is modeled by a normal distribu-
tion with zero mean, and the variance of the distribution for mis-
matches can be expressed as [23], [24], [26]–[28]

(1)

(2)

(3)

where , , , , , and are process-related
constants, and are the length and width of the transistors,
and is the spacing between the matched transistors.

As can be seen from (1)–(3), the variance of the mismatch
can be minimized by placing matched transistors close to each
other and by choosing large area transistors. However, the latter
increases the total die area which should be avoided. A detailed
analysis of the circuitry is necessary in order to determine tran-
sistor pairs that have higher impact on mismatch behavior so that
they are designed accordingly. This requires that mismatches
and their cumulative effects on the circuitry have to be modeled.
A statistical MOS model has been developed in [29] and [30],
which allows the designer to determine circuit output variance
due to mismatches in device parameters. However, the method-
ology requires that a set of test structures have to be built and
measured for each specific technology in order to gain knowl-
edge on the model parameters in question. Then, the modeling
has to be incorporated into a simulation environment, which is
not a straightforward task. Other studies on modeling the mis-
match based on the circuit structure also exist in the literature
[31]–[33]. In this paper, the focus is primarily on mismatches
between pairs of transistors and the analytical derivation of their
effects on outputs.

The differential pair and current mirror are among the most
frequently used structures in analog integrated circuits. This is
also the case for the ANN considered in this paper, where the
building blocks are the synapse (Gilbert type, 4-quadrant, cur-
rent output multiplier as shown in Fig. 1), an op-amp (used for
adding synapse outputs and converting them to voltage), and
the sigmoid block. A prototype chip for testing purposes was
designed and manufactured in 2.4-m CMOS technology. Ac-
cording to the experimental results of [24] and the data col-
lected from the technology design kits, the process-dependent
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Fig. 1. Circuit diagram of the synapse.

constants are estimated as shown in Table I. Using the data, cal-
culation of the variance of the mismatch in matched transistor
pairs of differential stages and current mirrors is possible.

B. Modeling ANN Circuit Mismatches

The aim of mismatch analysis is to predict the variances at the
outputs of the building blocks using the mismatches in the indi-
vidual pairs. The analysis is carried out for two separate cases:
variations only in the threshold voltage (due to mismatches in
zero-bias threshold voltage and substrate factor) or in
the current factor of the matched pairs. Mismatches in the
threshold voltage and current factor are shown to be indepen-
dent [23]. Moreover, the correlation coefficients for transistor
pairs with different ratios have been computed using the
empirical formulas of [28] between the three parameters, indi-
cating that the variations in different parameters may be consid-
ered to be independent.

In the following, the variance of output current for the synapse
circuit of Fig. 1 is derived. In the case of mismatches, the
total mismatch in the output currentcan be attributed to mis-
matches in all of the current mirrors and differential pairs. For
mismatches caused by the current mirrors, the analytical expres-
sion for output current is

(4)

where

(5)

(6)

and are currents flowing through the transistors of the input
( ) differential pair, are the
factors of mismatch in the current mirrordue to the mismatch

, is the current factor of the transistors in the weight
differential pairs, and is the weight . There

are five such current mirrors, and the output currentcan be
expressed as a function

(7)

for the mismatch analysis. Here, are considered to be
random variables with zero mean and variance, as given by (1).
Then, the variance in due to the zero-bias threshold mis-
matches in current mirrors can be expressed as [34]

mirror (8)

where the partial derivatives are computed with the zero mean
value of the random variables . Similarly, if the variation
due to the threshold voltage mismatches in the differential pairs
alone is considered, the output currentbecomes

(9)

where
input to the multiplier;
mismatch of substrate factor for the
input differential pair;

and mismatches at the differential pairs of
input and weight, respectively.

Then, the variance at is cast as

diff-pair

(10)

Similarly, variations at output current due to the mismatches
in the current factor can be computed for the existence of
mismatch at current mirrors and differential pairs. If mismatches
at current mirrors only are considered,becomes

(11)

where are the factors of mismatch in the current
mirror due to the mismatch , and all the terms
will be replaced by in (5)–(6). Hence, becomes a
function of mismatches in as

(12)

and the variance in due to mismatches in current mirrors is

mirror (13)

Also, the variance due to mismatches in differential pairs can
be derived as

diff-pair

(14)
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TABLE I
PARAMETERS FORMISMATCH ANALYSIS

TABLE II
MISMATCH IN THE CURRENT MIRRORS AND DIFFERENTIAL PAIRS OF

THE SYNAPSE CIRCUIT

where and are current factors of the input and weight
differential pairs, respectively. Finally, the total variation at the
output current can be expressed by

mirror diff-pair

mirror diff-pair (15)

under the assumption that the individual mismatches due to the
parameters and are independent. In the same manner, an-
alytical expressions for the variance at the outputs of the op-amp
and sigmoid blocks can also be derived.

C. Verification of the Models with the Test Chip

The structure of each neuron in the test chip is such that cur-
rent outputs of five synapses are connected to an op-amp sum-
ming node for current-to-voltage conversion. Voltage output of
the op-amp is then applied to the sigmoid block. The chips have
been tested using an automated data acquisition environment. At
each step of the measurement for a neuron, four pairs of synapse
inputs and weights are set to 0 V, while the fifth synapse input
and weight values are swept over a range of5 V to 5 V and

2 V to 2 V, respectively. This procedure has been repeated
for each of the 200 synapses to obtain characteristics of each
synapse as seen at the neuron output (sigmoid input). Mean-
while, outputs of the sigmoid block are also measured for char-
acterization.

The variance of mismatch for the parameters , , and
are computed using (1)–(3), and they are given in Table II

for current mirrors and differential pairs of the synapse circuit.
One hundred Monte Carlo dc sweep runs are performed for a
single synapse incorporating the mismatches in, , and ,
where each mismatch parameter has zero mean and the vari-
ance as given in Table II. The average of the Monte Carlo sim-
ulations is given in Fig. 2. The variance of the sample of size
100 is computed for each input-weight pair, and the values are
plotted in Fig. 3 for nonpositive weight values. The variance of
the synapse current exhibits a symmetrical behavior as given
by . The theoretical mismatch in the
synapse output current is calculated using (4)–(15). The results
are again plotted for nonpositive weight values in Fig. 4, since
the same symmetry also exists for the theoretical computations.
It is evident from Figs. 3 and 4 that the mismatch in synapse cur-

Fig. 2. Average of 100 Monte Carlo runs for the synapse with mismatched
model parameters.

Fig. 3. Variance in synapse output obtained from 100 Monte Carlo runs with
mismatched model parameters.

Fig. 4. Variance in synapse output obtained using the formulas.
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Fig. 5. Variance in neuron output obtained from 100 Monte Carlo runs with
mismatched model parameters.

Fig. 6. Variance in neuron output obtained from actual measurements on the
chips.

rent as computed by theoretical analysis and as simulated are in
close agreement.

A neuron circuit made up of five synapses is also simulated
for 100 Monte Carlo runs where each current mirror and differ-
ential pair in all of the five synapses and the op-amp are per-
turbed by the appropriate amount of mismatch. The variance
obtained is given in Fig. 5, whereas Fig. 6 displays the mea-
surement results. The close agreement between the two fami-
lies of curves implies that the variations in the block outputs are
due to device mismatches. Moreover, this also suggests that the
process-dependent parameters have been estimated close to the
actual values.

A similar analysis has also been carried out for the sigmoid
block. Three types of results are given in Fig. 7 for the vari-
ance in sigmoid output: based on theoretical formulas, 100 runs
of Monte Carlo simulations with mismatched model parame-
ters, and measurements on actual chips. These results indicate
that the presented approach forms a realistic way of predicting
block-level variations based on individual transistor-level mis-
matches. This type of theoretical analysis not only provides the
designer with a training methodology for ANN but also aids the
designer in identifying the critical transistor pairs based on the
sensitivity of the output to the individual pair mismatches.

Fig. 7. Variance in sigmoid output.

III. I NCORPORATION OFMISMATCH INTO BACKPROPAGATION

TRAINING

In this paper, the ANN hardware blocks are modeled using
analytical expressions for their input–output relations in order
to be used in the backpropagation algorithm, which has also
been suggested previously [2], [9]. The synapse function can be
modeled as a polynomial function with less than 5% deviation
as follows:

(16)

where is the output current for the input pair and
the coefficients are determined using nonlinear regression,
which may take nominal or Monte Carlo simulations as input.
The op-amp (– conversion) block can be represented by

if

if

if

(17)

where
and positive and negative supply voltages;

implemented resistance (the value is 100
k );
total current supplied by the synapses.

For the sigmoid block, an exponential function with coefficients
is employed in regression

(18)

During backpropagation training, the variations are modeled
according to the mismatch analysis of the circuitry, and they
are considered as zero mean additive noise with known vari-
ance depending on the input values of the blocks. For the vari-
ances in synapse and sigmoid blocks, regression is again em-
ployed based on the data obtained from theoretical computa-
tions, Monte Carlo simulations, and measurements separately
to fit the following polynomials:

(19)

(20)
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The output of the op-amp is governed by the expression

(21)

where the implemented resistor has a certain variation(ap-
proximately 5–10% for standard processes) and the output is
affected by the input offset voltage of the op-amp only.
Thus, the resulting expression for the variance at op-amp output
becomes

(22)

Once the “noisy” behavior of synapse and sigmoid circuits
has been modeled based on analytical calculations (or Monte
Carlo simulations), the backpropagation algorithm can be mod-
ified in order to incorporate those variations at the outputs. For
this purpose, a scalar input–output multilayer perceptron struc-
ture is considered. The output of the multilayer perceptron ()
is the op-amp (neuron) output (a weighted sum of the out-
puts of a number () of hidden units, ), filtered through the
nonlinear sigmoid function as follows:

(23)

(24)

where
input;
weights associated with the outputs of hidden units;
bias weight.

Note that the statistical variations at the outputs of the blocks
are represented by additive noise terms , , and

for the synapse, op-amp, and sigmoid, respectively. The
output of each hidden unit is another similar expression. Given
a training set, the weights are updated using gradient descent
in the backpropagation algorithm. The learning method can be
implemented using any synapse and nonlinearity if ,

, , , , , and can be computed. Hence,
backpropagation learning can be realized using the analytical
expressions of (16), (18), and (21). The noise terms are deter-
mined as follows. In each epoch of the training (forward pass), a
random number is generated from a normal distribution of zero
mean and variance as calculated by (19), (20), and (22) for each
synapse, op-amp, and sigmoid block. Those values are consid-
ered to be the statistical variations at the outputs.

Training of neural networks for analog hardware implemen-
tation utilizing the blocks discussed so far requires special mod-
ifications. The input–output values need to be scaled such that
they fall within the operational range of the analog circuitry. A
further modification in the update rules is applied to favor small
weight magnitudes so that the synapses operate in their linear
region and the variations in the outputs due to mismatches are
less severe. This is done by theweight decaytechnique, which
has shown to be effective in the improvement of generalization
in the presence of noise [35], [36]. In weight decay, weights with
large magnitudes are penalized. At each iteration, there is an ef-

fect of pulling a weight toward zero. This not only assures that
the blocks operate in their “close to ideal” region, but also de-
creases the variations. Moreover, it has also been reported in the
literature that employing smaller weight magnitudes enhances
the fault tolerance of the neural network by distributing the com-
putation evenly to the neurons and synapses [22].

IV. NUMERICAL EXPERIMENTS

The noisy backpropagation approach employing transistor-
based mismatches has been tested on several examples. Five
different types of learning have been applied to each problem
for comparison purposes. In all of the training experiments, an
on-line weight update scheme is employed. The following are
the training types employing different types of models for the
neural network blocks.

1) Nominal model,based on simulations with nominal tran-
sistor model parameters (no noise terms added). The be-
havior of synapses and neurons were modeled based on
circuit simulations using these models, and the training
was done using these synapse and neuron models.

2) Monte Carlo without noise,based on average of simu-
lations with induced mismatches in the model parame-
ters (no noise terms added). The transistor models were
perturbed with technology variations, and an average be-
havior over Monte Carlo simulations was obtained for the
synapse and neuron blocks. This behavior was then mod-
eled and observed to be more realistic compared to the be-
havior obtained with nominal models. Training was per-
formed using these models.

3) Monte Carlo with noise,based on average of simulations
with induced mismatches in the model parameters and
noise terms added with variance obtained from Monte
Carlo simulations. In this type of training, not only the
models which are the average of many Monte Carlo sim-
ulations are utilized but also the variation in the models
for the synapse and neuron are calculated. These varia-
tions are called “noise” and added during training for ro-
bustness.

4) Measurements and noise,based on average of simulations
with induced mismatches in the model parameters for the
synapse and op-amp and measurements for the sigmoid,
and noise terms added with variance obtained from the-
oretical formulas for the synapse and op-amp and mea-
surements for the sigmoid. This approach contains data
from various sources. For modeling the neuron behavior,
measurements on the chips were used. However, synapses
did not contain measurement facilities on the test chips.
Hence, simulations had to be employed for the synapses.
To model the noise to be added during training, the for-
mulas derived in the previous section were used for the
synapse and op-amp block. To demonstrate the flexibility
of this method, the variance obtained from the measure-
ments for the sigmoid was used for the noise in the sig-
moid block.

5) Weight noise,based on uniformly distributed random
noise expressed as a percentage added to weights, and
gradually reduced to zero as the network converges [16],
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TABLE III
SUCCESSRATES IN % FOR XOR(3-BIT PARITY) PROBLEM FORDIFFERENTTRAINING/FORWARD PASS TYPES

[22]. The hardware model is based on Monte Carlo
simulations for the synapse and on measurements for
the sigmoid for the average behavior. This method is
included for comparison purposes.

For testing the performance of the above training methodolo-
gies, four different simulation sets were performed in addition
to chip measurements. The first forward pass is performed using
nominal transistor parameters and is just included to test the
validity of the training for the first approach. The second for-
ward pass methodology is called Monte Carlo and is done using
models based on the average of many Monte Carlo runs. This
forward pass corresponds to the case where there are process
variations, but all synapses and neurons are actually identical to
each other on the chip. The third forward pass methodology is
called Monte Carlo noise and corresponds to using average
models and noise during forward pass and is closer to the real
world. The fourth and the last forward pass methodology ap-
proximates the real chip most closely and is based on using mea-
sured behavior for the neuron.

Although design improvements can be carried out regarding
transistor geometries of critical components, variations at the
outputs of blocks are still inevitable. In order to allow hardware
training of analog neural networks without on-chip circuitry or
chip-in-the-loop training, proper modeling of those variations
is necessary. The examples below indicate that modeling them
as additive noise based on transistor-level mismatches and per-
forming the training on software to include the random effects
of hardware enhances the performance of the ANN remarkably.

A. XORand 3-Bit Parity Problem

Training has been carried out 30 times for theXOR and 3-bit
parity check problems for each type of training mentioned
above. The noisy forward passes using models fromMonte
Carlo with noiseandmeasurements and noisehave also been
run for 20 times (i.e., 600 different training-forward pass pairs
have been simulated). This allows the derivation of statistically
significant results for the problems. For theweight noise
training, three noise levels have been used: 10%, 20%, and
40%. Then, ten forward runs are performed for each noise
level. Regarding the network sizes, a2 : 3 : 1 network is used
for the XOR problem, whereas a3 : 6 : 1 network is employed
for the 3-bit parity problem. The success rates for 600 (30
for nominal and Monte Carlo without noise) forward runs are
given in Table III. The numbers in parentheses are the results
for the 3-bit parity problem.

In order to test the effectiveness of the training, sample mea-
surements have been carried out on the prototype chips as well.

TABLE IV
SUCCESSRATES OFMEASUREMENTS ON THECHIPS IN PERCENTAGE FOR

XOR PROBLEM

Fig. 8. Data for the classification problem.

For each one of the training methods, five different weight sets
are used to test theXOR operation. For each weight set, 30 com-
binations of chips have been used in the test; that is, the chip for
the hidden neurons and the chip for the output neuron have been
selected from ten chips in 30 different ways so that the effects of
statistical variations among different chips can be observed. In
this way, for each training method, a total of 150XOR networks
have been constructed and tested. Although the weights and in-
puts that are not used have been connected to ground to imply
zero input and zero weight, they still contribute to the output due
to variations.

The results of the measurements on the chips are given in
Table IV. “Reject” denotes the case where the outputs are not
“settled” (i.e., the output can not be identified as low or high).

B. Two-Dimensional Classification Problem

As a continuous input classification problem, two sets of data
points are generated from a normal distribution with the fol-
lowing properties. The one labeled byclass-1has mean of 0.5
and zero for and coordinates respectively, where the stan-
dard deviation for both coordinates is 0.3.Class-2,on the other
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TABLE V
SUCCESSRATES IN % FOR CLASSIFICATION PROBLEM FORDIFFERENTTRAINING/FORWARD PASS TYPES

TABLE VI
DISTRIBUTION OF WEIGHTS FORDIFFERENTTRAINING TYPES IN THECLASSIFICATION PROBLEM

hand, has mean of two and zero for and , respectively,
where the standard deviation for both coordinates is one. Of the
100 data points generated for each class, half are used as the
training set and the other half are used for test. Fig. 8 displays the
data points. A 2 : 14 : 2 structure is used for training. All types of
training are carried out until the root-mean-square training error
dropped below 1%. The training has been carried out 15 times,
for each type of training mentioned above. The noisy forward
passes using models fromMonte Carlo with noiseandmeasure-
ments and noisehave also been performed ten times. The results
are summarized in Table V.

C. Discussion

As observed from the results, incorporation of variations into
the training enhances the capability of the network strongly. The
comparison is performed with respect to the noisy forward pass
using the models obtained from measurements, which resemble
the actual electrical characteristics of the analog circuitry. For
theXOR(3-bit parity) problem, training without noise results in a
high level of error. The degradation in the classification problem
is more severe. Correct classification rates drop to 29% and 68%
for nominalandMonte Carlomodels. Inclusion of weight noise
improves the fault tolerance of the network as expected. How-
ever, the performance of training withweight noiseis worse in
comparison to training withMonte Carlo with noiseandmea-
surements and noise.This implies that random injection of noise
is not capable of compensating the effects of hardware varia-
tions fully.

An investigation of the weight distributions also suggests
some hints for the enhancement of the fault tolerance. The
weights for the training types with noise exhibit a larger
standard deviation in comparison to weights obtained without
noise terms (see Table VI for the classification problem). This
is in agreement with the results of [22] that the “information”
is distributed evenly to the weights in training with noise
injection.

V. CONCLUSION

In this study, building blocks of an analog neural net-
work—namely, the synapse, op-amp, and sigmoid cir-
cuitry—are analyzed for their mismatch characterization.
Mismatches in the threshold voltages and current factors

are considered to be the causes of variations on matched
MOS transistor pairs, which result in deviations at outputs
of identically designed blocks. Closed-form expressions of
statistical variations from the nominal output are derived for
these circuits. These theoretical variations are compared to
actual measurements obtained from chips. It is evident from
the comparison that those variations can be attributed to mis-
matches. In order to incorporate the variations at the outputs,
the backpropagation algorithm is modified. The building
blocks are modeled according to their average outputs, and
the variations are considered to be noise with certain normal
distributions.

Next, the training is carried out using “noisy” backpropa-
gation where the outputs of blocks are calculated in a proba-
bilistic manner taking the noise into account. Sample simula-
tions and measurements are conducted to verify that this method
of training allows a higher degree of fault tolerance in the sense
that noisy forward pass outputs exhibit better performance over
outputs after training without including the variations. The com-
parison of the modified backpropagation algorithm for different
types of modeling also indicates that incorporating variations
based on mismatch model obtained through Monte Carlo sim-
ulations and actual measurements also coincide. This verifies
that noise (variations) can be estimated during the design stage
of the circuitry using the data on transistor geometries so that the
usage of “noisy” backpropagation can be helpful for achieving
a robust training for ANN.

The following conclusions can be drawn from measurement
of the chips. The measurement results do not coincide exactly
with the simulation results in Table III. This is mainly due to
discrepancies between the transistor-level simulation models for
ANN and the fabricated circuits. However, they are correlated;
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that is, injection of noise during the training considerably im-
proves the performance of the analog neural network. Mod-
eling the variations based on either Monte Carlo simulations
or actual measurements on the chip do not differ with respect
to the robustness of the training. However, both techniques per-
form better than random noise injection. It is observed that mod-
eling the statistical variations using theoretical analysis, Monte
Carlo simulations, or measurement results yields similar perfor-
mances, hence allowing the designer to have the flexibility of
choosing among these alternatives or their combinations. Even
though the success rate has been found to be 100% in the sim-
ulation using measurement-based variations, the actual success
rate on the test chip has been 85% only. This may be due to
the fact that the precision of weights used during the measure-
ments is not as high as the precision of computed weights. More-
over, electrical noise on the setup may have affected the outputs
slightly.

The measurements indicate that further work has to be carried
out in order to guarantee satisfactory operation in the presence
of hardware nonidealities and variations. This can be achieved
through improvement of the analog circuitry to decrease mis-
match-induced variations and through utilization of a simula-
tion-based training, as offered in [18], thus enabling the training
of analog neural networks on software and possibly eliminating
the need for chip-in-the-loop or on-chip training.
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