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PROTEIN-PROTEIN INTERACTION NETWORK ALIGNMENT 

USING GPU 

Abstract 

The alignment of Protein-Protein Interaction Networks is becoming an imperative 

phenomenon in Bio-Informatics that leads to several vital results. These results can 

be used in numerous fields associated with Bio-Informatics including the 

prediction/variation of evolutionary relationships, finding cures for gene inflicted 

diseases (like cancer) and identifying probable therapies. However, with the 

introduction of fast sequencing and other technologies that spawn large amounts of 

data for computing (since the proteins are very large in size and have many nodes and 

edges), limiting dynamics arise. These include performance, scalability and time 

consumption. Recently, CPU versions of the alignment procedures and computations 

have been introduced. However, because of the large size of the proteins, they are very 

time-consuming. Therefore, in this thesis, I propose a GPU version for performing the 

computations quickly and efficiently. This thesis is based on improving the efficiency 

of SPINAL, a polynomial time heuristic algorithm introduced by [1] that finds the 

similarities between pairs of PPI-Networks. In this thesis, the sequential algorithm of 

SPINAL is converted into a parallel algorithm using Heterogeneous Programming 

Library (HPL) that performs the computations in a massively parallel fashion on a 

single GPU with 448 thread processors, a clock rate of 1.15 Giga Hertz and 6 Giga 

Bytes of DRAM. The modifications/enhancements to the algorithm result in a 

significant speedup as compared to the benchmark algorithms. 

Keywords: Protein-Protein Interaction Networks, Graphics Processing Unit, 

Scalable Protein Interaction Network Alignment, Parallel Programming, 

Heterogeneous Programming Library. 
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GPU KULLANARAK PROTEIN – PROTEIN ETIKILESIM AĞI 

HIZALAMA  

 Özet 

Protein protein etkileşim ağı hizalama problemi biyo-informatikte pek çok önemli 

çözüme öncülük eden kaçınılmaz problemlerden biridir. Bu sonuçlar biyo-

informatikle alakalı, evrimsel ilişkiler, kanser gibi gen ile alakalı hastalıklar ve 

muhtemelen terapilerin bulunması gibi pek çok konuyla ilişkilidirler. Buna ragmen, 

programlama için çok yüksek miktarda veri ortaya çıkaran hızlı dizilimler ve diğer 

teknolojiler (proteinler çok büyük olduklarından ve pek çok düğüm ve linke sahip 

olduklarından) bu alanda sınırlı kalmaktadırlar. Bu performans, ölçeklenebilirlik ve 

zaman tüketimini ilgilendirir. Alignment yöntemleri ve hesaplamalarının CPU 

versiyonları mevcuttur. Ama proteinlerin büyüklükleri nedeniyle çok zaman 

alıcıdırlar. Bu sebepten, bu tezde, hızlı ve etkili işlem yapan bir GPU versiyonunu 

sundum. Bu tez [1] tarafından geliştirilmiş SPINAL isimli PPI-Ağları çiftleri 

arasındaki benzerliği bulan bir polynomial time heuristic algoritmasının daha etkili 

hale getirilmesine dayalıdır. Bu tezde seri olarak yazılmış SPINAL, Heterogeneous 

Programming Library (HPL) kullanılarak paralel bir algoritmaya dönüştürülmüştür. 

HPL ile yoğun paralel işlem yapabilen 1.15 Ghz’de çalışan 6 GB DRAM içeren tek 

bir GPU’da 448 süreç işlemcisinden faydalanılmıştır. Ölçümlerden anlaşıldığı üzere 

algoritmadaki düzenlemeler ve geliştirmeler ciddi hızlanmaya sebep olmuştur. 

 

Anahtar Sözcükler: Protein-Protein Etkileşim Ağı, Grafik İşleme Birimi, 

Ölçeklenebilir Protein Etkileşim Ağları Dizilemesi, Paralel Programlama, Heterojen 

Programlama Kütüphanesi 
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Chapter 1 

Introduction 

The DNA (Deoxyribonucleic Acid) is a self-replicating substance that is present in 

approximately all living organisms as the fundamental constituent of chromosomes. 

It is also the carrier of genetic information. The DNA is a linear sequence of four 

nucleotides. When necessary, the DNA is translated into RNA (Ribonucleic Acid). 

The RNA acts as a messenger that takes instructions from the DNA and carries out 

those instructions for the synthesis of proteins.  

	

Figure	1:	Translation	of	DNA	into	RNA	and	then	into	Proteins. 

Proteins are made up of amino acid chains and are the focal machinery of the cell. 

They perform functions that are as complex as the functions of DNAs and RNAs. 

They are among the primary macromolecular players of the cell. They comprise of 

one or more extended chains of amino acids residues. Their functions include, but are 

not limited to, DNA replication, responding to stimuli, catalyzing metabolic reactions, 

and transporting molecules from one location to another. Proteins are also in charge 

of cell growth, nutrient uptake and morphology.  
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Figure	2:	A	Simple	protein.	

Proteins bind with each other via a number of combinations of salt bridges, 

hydrophobic bonding, and Van der Waals. These bindings occur at certain binding 

domains on each protein. The sizes of the domains can vary from small binding clefts 

to large surfaces. Also, they could be a few peptides long or spam hundreds of amino 

acids. The size of the binding domain impacts the strength of the binding. 

Protein-Protein Interactions take place when two or more proteins come in contact 

with each other as a result of bio-chemical events and/or electrostatic forces. Proteins 

typically act in groups. The PPIs organize a large number of proteins components and 

build molecular machines that carry out many processes inside a cell. The 

“interactions-system” of a living cell is reliant on the interactions of these proteins. 

Whereas, abnormal interactions are the source of many diseases (including cancer and 

Alzheimer’s disease).  

Even though the data on PPI Networks is developing steadily, thorough understanding 

of the “interaction surfaces” and their dynamics still remains partial. Currently 

available PPI-Networks, or also known as “interactome maps”, acquired with the 

high-tech methods of the new era, only cover a very small portion of the entire PPI-

Networks. In these partial networks, only a few proteins have a large number of 
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interaction partners. The rest of them rarely participate in any interactions [2]. Many 

researches and methodologies have been formulated to map PPI-Networks from 

different species onto each other to find out the similarities between them [3]. These 

similarities are useful for performing and formulating several other methodologies in 

the Bio-Informatics world which include, but are not limited to, finding cures and 

potential therapies for gene inflicted diseases [4]. The mapping of different PPI-

Networks onto each other is also knows as alignment. 

	

Figure	3:	Simple	Protein-Protein	Interaction	Network.	The	circles	depict	the	proteins,	
while	the	lines	between	then	represent	the	edges	(or	interactions)	between	the	proteins.	

Several alignment techniques have been proposed and executed. In this thesis, I will 

propose a modified algorithm for SPINAL (Scalable Protein Interaction Network 

Alignment) which was proposed by [1]. The modification is twofold: the first 

modification corresponds to converting the LEDA graph into simple array based 

structures; and the second one is implementing the algorithm using HPL 

(Heterogeneous Programming Language) performed on GPUs. 

Since GPUs use massively parallel architecture, the alignment algorithm runs much 

faster even for very large proteins. In [1], one of the major issues is the time-

consumption of the algorithm. Since the algorithm is defined only for CPUs, the time-

consumption problem increases with some input PPI Networks containing tens of 
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thousands of nodes and edges. With their algorithm, they have improved the trade-off 

between accuracy and scalability, but even then, the algorithm takes a very long time 

to execute. Therefore, we propose an optimum solution for the algorithm based on 

GPUs. Our algorithm optimizes the performance and increases the scalability while 

keeping the accuracy at an optimum level in hopes to provide solutions and answers 

to the users in a much faster way. 

1.1. Thesis Structure 

This thesis has two main parts. The first part is an overview of SPINAL that was 

proposed by [1], explanation of the algorithm and an array based solution to simplify 

and speed up the algorithm. 

 Overview of SPINAL. 

 Explanation of the algorithm. 

 Array based solution. 

 

The second part is about implementing the algorithm using HPL (Heterogeneous 

Programming Language) on a GPU. It consists of a little bit of introduction to GPUs 

and Heterogeneous Programming, OpenCL and HPL. And then our solution to make 

the algorithm parallel. 

GPUs and Heterogeneous Programming 

OpenCL 

 HPL 

 Performing SPINAL on GPUs using HPL 
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Chapter 2 

Overview of SPINAL 

	

Provided a pair of PPI-Networks from two different species, a pair-wise global 

alignment relates to the one-to-one mapping among their proteins. Assuming that pairs 

of functionally orthologous proteins are delivered precisely by such mappings, the 

outcomes of the alignment may then be used in comparative systems biology problems 

such as function verification/prediction or creation of evolutionary relations. 

[1] has provided a polynomial time heuristic algorithm, SPINAL, which consists of 

two main phases. The first one is coarse-grained alignment phase where all pairwise 

initial similarity scores are constructed. The next phase is fine-grained phase where 

the final one-to-one mapping is performed by iteratively growing a locally improved 

solution. For this thesis, I will concentrate only on improving the first phase, i.e. the 

course-grained alignment phase.  

2.1. The Algorithm: 

Let PPI-1 = (V1, E1) and PPI-2 = (V2, E2), be two networks where V1 and V2 correspond 

to the set of the nodes in the proteins and E1 and E2 correspond to the set of edges or 

interactions in the proteins. In the coarse-grained alignment, each node (V1) of PPI-1 

has a number of neighboring nodes that correspond to the neighbors of another node 

(V2) selected from PPI-2. The coarse grained alignment method keeps the score of the 

neighborhood pairs that have higher weight in another list and disregards the rest. It 

grows a list this way by iteratively going through each node of PPI-1 and compares it 

to each node of PPI-2. In the end, we get a neighborhood bipartite graph that has the 

maximum weights. 
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Figure	4:	SPINAL	global	alignment	algorithm.	

Here, in Figure 4, we can observe that for each node of V1 and each node of V2, a 

neighborhood bipartite graph (NBG) is produced that depicts the maximum-weight 

similarity matrix between all the nodes of PPI-1 and PPI-2. Then a contributor set C 

of NBG is created. And then the P matrix is calculated using equation from Figure 5. 
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Figure	5:	Equation	for	alignment	(SPINAL).	

In SPINAL, the initial coarse-grained alignment phase is the one where more than 95 

of the execution time is spent. The reason is because of the use of LEDA libraries for 

the execution of several graph/node related computations such as adding/deleting 

nodes etc. But that in turn proves to increase the execution time drastically. So we 

propose to make that crucial part, where the coarse-grained alignment takes place, 

LEDA-free. For that, we introduce simple arrays and HPL based arrays, both equally 

important, instead of LEDA nodes and lists. The usage of arrays gives us many 

advantages including better memory utilization which LEDA fails to achieve. 

2.2. Array Based Solution: 

Arrays are a collection of the identical types of elements stored in a contiguous 

memory location. It is index based. Meaning the first element is stored at 0th index, 

the second element at 1st index and so on.  

	

Figure	6:	Representation	of	an	array	of	length	5	in	memory.	
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To declare a simple array of length 5 of type integer, the following syntax is used: 

int array[5]; 

To access a specific element (let’s say third) in an array, the following syntax is used: 

int item = array[2]; 

Converting the LEDA dependent graphs into simple arrays was my first step towards 

modification of the algorithm. The conversions from LEDA dependent graphs and 

nodes was applied from step 3 till step 14 in Figure 4. The benefit of using arrays is 

that they are stored in contiguous memory locations unlike LEDA nodes. They are 

easily accessible and there is no overhead when accessing the next element of the 

array. We used arrays instead of LEDA nodes and edges. Copied the values of these 

nodes and edges and neighboring nodes of each node from the LEDA structures to 

arrays.  

The code iterates over all the nodes of PPI-1 and each node of PPI-1 iterates over all 

the nodes of PPI-2. The purpose of these iterations is to find the best similarity 

between the nodes of PPI-1 and PPI-2. We also created arrays of Tuples that have 

three values. The first value depicts the index of the first node from PPI-1, the second 

value represents the number of the second node from PPI-2 and the third value 

represents the score or the interaction value between them. This Tuple is iteratively 

updated until it finds the maximum weighted node pair from the two PPI-Networks 

(the nodes with the highest score). 
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Figure	7:	Algorithm	for	collecting	"heavy"	neighbor	pairs	in	tuples	

Then we applied a simple bubble sort method on the Tuples that we got and created 

sorted arrays which helps us easily figure out the Tuples with the highest and lowest 

scores for selection and elimination respectively. And then after a few more minor 

operations, we update the scores of the nodes that are calculated using the equation 

from Figure 5. We loop through this whole procedure several times until we get the 

best similarity scores. 

Since arrays are more memory efficient and the whole block is placed in one memory 

space together, just by changing the LEDA arrays into simple arrays drastically 

improved the performance of the program. All the nodes of the pairs of the PPI-

Networks were converted into arrays. At this stage, no significant changes were made 

to the algorithm. And just because of this small conversion from LEDA to array 

structures, the algorithm ran much faster than before. The time spent on the crucial 

part of the algorithm decreased. The results obtained were much better and this lead 

the path for us to apply parallel programming using HPL on GPUs. 
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Chapter 3 

Performing SPINAL on GPU 

3.1 GPU Architecture 

During the 1990s till early 2000s, there were substantial improvements in gates per 

die, clock speed and instruction level parallelism (ILP), that helped grow the rate of 

processor performance exponentially. However, the improvement in clock speed 

started to hit physical limits due to power consumption and heat effects in 2003. It 

was revealed that CPUs can’t get any faster. On the other hand, transistors kept on 

shrinking, which led to an increase in the transistor density (also known as gate count) 

on a single chip. Consequently, many manufacturers have reconfigured their 

improvement strategy to focus on gate count instead of pushing clock rate, in 

particular to making more cores (C. Boyd, Data-Parallel Computing, ACM Queue, 

vol. 6, no. 2, pp. 30-39, 2008.) and [5]. 

Afterwards, the processor chips were brought into parallel systems that are now 

regarded as multicore CPUs and many-core GPUs. In these systems, the cores are 

populated with multiple floating-point arithmetic logic units (ALUs), where each 

ALU performs the same operation on distinct pieces of data. Hence the parallelization 

of computations performed on a large data set, also known as SIMD (Single 

Instruction Multiple Data) approach. The architecture consists of a CPU and its own 

memory (Host), GPU part and the GPUs memory (the Device). Furthermore, the GPU 

consists of a set of a large number of streaming multi-processors (SMs). Each SM 

contains: 

• Thousands of registers 

• Several caches. 
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• Warp schedulers. 

• Dispatch units. 

• Execution cores. 

• Control Units 

• Local Memory 

 

	

Figure	8:	The	architecture	of	a	GPU.	The	arrows	define	the	flow/transfer	of	data	between	
the	host	(CPU)	and	the	device	(GPU).	

The SMs are general-purpose processors, but they are designed very differently than 

the execution cores in CPUs: they target much lower clock rates; they support 

instruction-level parallelism. Whereas, branch prediction or speculative execution is 

not supported; and they have a smaller amount of cache, if any at all. For codes that 

deal with massive amounts of data that needs to be parallelized, the CPU allocates a 

chunk of memory to hold the data and then copies the data onto the GPUs memory. 

Then, according to the programmers needs, the GPU divides the data between 
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different streaming multiprocessors. Each SM performs the same operation on a 

different chunk of data. Furthermore, the SMs can access the global memory and their 

own memory (local memory), but cannot access any other SMs memory. After all the 

instructions have been executed, the results are copied back to the CPU memory. This 

whole process can also be defined as offloading compute-intensive portions of the 

application to the GPU, while the remainder of the code still runs on the CPU. 

	

Figure	9:	Architecture	of	a	Streaming	Multiprocessor.	

GPUs nowadays have thousands of cores to process parallel workloads efficiently due 

to their massively parallel architecture and they are increasing day by day. They are 

extremely good for data parallelization. They can also perform task parallelization, 

but are not as efficient. 
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3.2 OpenCL: 

OpenCL (Open Computing Language) is a standard for programming a vast variety 

of heterogeneous platforms. These platforms are built from Graphics Programming 

Units (GPUs), Field Programmable Gate arrays (FPGAs), as well as Central 

Processing Units (CPUs), and many other processors and hardware accelerators. 

OpenCL is a C99-based programming language used for programming compute 

devices. When different types of processors are available in a single system, 

programmers can write task-parallel and/or data-parallel programs taking advantage 

of the processors. The main objective of OpenCL is to empower the programmer to 

use all the computational resources in the system. 

Explaining the anatomy of OpenCL; it has two main parts. The first one is the serial 

code which executes on the host. The serial code part is responsible for allocating and 

creating buffers for various variables including arrays that are to be sent to the device. 

The main purpose of this code is to prepare the data in proper OpenCL format to be 

sent into the device through a command queue. The command queue manages 

executions of kernels and accepts various commands including: kernel execution 

commands, synchronization commands and memory commands. The second part is 

the kernel code that is the basic executable code which runs on OpenCL devices. The 

code can either be data-parallel or task-parallel. This is the part where multiple kernels 

run concurrently [6]. 

	

The memory model of OpenCL can be described in the following manner: 

• Global Memory: Visible and accessible to all the kernels. Can be read and written 

to by any thread. Therefore, needs careful implementation. 
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• Constant Memory: Read only by kernels/threads. They do not have permission 

to write. Host can only read and write this kind of memory. 

• Local Memory: Read and written by only the kernels/threads in the same work-

group. 

• Private Memory: Only accessible to one kernel/thread. 

 

Figure	10:	OpenCL	host	side	code	for	preparing	the	devices,	context,	command	queue	
and	kernel	etc. 

	

Figure	11:	OpenCL	host	code	for	creating	input	and	output	arrays	in	device	for	
calculation.	

	

Figure	12:	A	Simple	OpenCL	kernel	side	code	that	returns	squares	of	the	elements.	
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Figure	13:	Memory	Model	of	OpenCL	

As you can see from the above code snippets (Figure 10, 11 and 12), OpenCL 

requires a lot of work. It requires the programmers to select the devices, create 

contexts, create a command queue that will en-queue and de-queue commands, 

compute the kernel etc. Along with this, there are a lot of other requirements to be 

met before a programmer can execute his code on the device. These include creating 

memory buffers for the data in the device. Copying the values from host to the 

device memory. Building the program info and then executing the kernel. It also 

has a special syntax for getting the results returned by the device. 
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3.3 HPL: 

HPL (Heterogeneous Programming Library) enhances the programmability of 

heterogeneous systems. At the same time, it allows lower level control to the 

programmer and provides performance synonymous to the likes of lower level 

approaches. The underlying architecture is mostly based on OpenCL, therefore, the 

memory model is the same between the two. 

HPL uses a two key concepts: 

• Arrays: special data-types that can be programmed in both the host side and the 

device side. They follow a special syntax format: 

Array<type, ndim [, memoryFlag]> 

Where “type” represents the normal standard of C++ contents. “ndim” represents 
the dimensions of the array. And “memoryFlag” (optional) represents one of the 
memory kinds that is supported (Global, Local or Constant). 

	

Figure	14:	Simple	declaration	of	Arrays	in	HPL	

• Kernels: these are functions that can be run on any device. 
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Figure	15:	Simple	'kernel'	call	in	HPL	using	“eval”	

The code inside the kernels can be written both in OpenCL C format as well as in any 

C++ embedded language provided by HPL. The library is responsible for converting 

the latter format into OpenCL, which enables execution on a variety of devices. The 

programmers are required to define all the data types and structures, which is to be 

used in the kernels, as HPL Arrays [7]. 

Unlike OpenCL, the programmer does not have to get the device ids or the memory 

context from the system. Neither does the programmer have to create memory buffers 

at the kernel for the data to be copied into the device. All these operations are handled 

by the HPL itself. The programmer just needs to declare arrays in proper HPL format 

and just call the kernel function using these arrays. The rest is HPL’s job. This is one 

of the reasons why it is much easier to code than OpenCL. 

3.4 Performing SPINAL on GPU 

HPL (Heterogeneous Programming Language) is based on OpenCL, therefore, most 

of the underlying architecture is the same between the two. The main difference is the 

tradeoff between performing more complicated work and being easily programmable. 
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OpenCL is complex and it gives programmers a lot of options on how to handle the 

data and memory etc. but is quite difficult to program since it requires programmers 

to allocate simple C based arrays and structures and then allocate memory buffers for 

these arrays so they can be sent to the device. On the other hand, HPL is easily 

programmable with just a few restrictions. HPL also doesn’t require the copying back 

of results that are obtained from the device side code (kernel code). Whereas, OpenCL 

requires special syntax and programming rules to be followed to copy back results 

from device to host and many other operations. 

SPINAL is programmed on CPU using LEDA library. The reason for using LEDA is 

that it makes certain operations on the nodes of the PPI networks easy, for example; 

adding new nodes, deleting nodes, etc. But the problem is poor utilization of memory 

space. The different nodes are placed in different parts of the memory and with each 

iteration to the next node, it has to jump to a new memory location to fetch the node 

attributes (e.g. number of neighbors, weight etc.), which makes the program run very 

slow and most of the time is spent in this part. The first main change we brought into 

the SPINAL program was that we converted the LEDA dependent PPI networks and 

nodes etc. into array based elements, since HPL can work only on simple C/C++ 

arrays. By doing so, each PPI network was represented by an array (e.g. PPI-1, PPI-2, 

neigh_ppi-1, neigh_ppi-2 etc.) and each element of the array represented a node. Since 

arrays are more memory efficient and the whole block is placed in one memory space 

together, just by changing the LEDA arrays into simple arrays drastically improved 

the performance of the program.  

After that crucial part of the program (that took 95 percent of the running time) was 

LEDA free, not only were we able to improve the time consumption, we also were 

able to apply OpenMP. OpenMP uses the many cores of the CPU. E.g. if a CPU has 
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4 cores, it breaks down the block, that it is applied to, into 4 smaller parts and assigns 

each CPU one part, so we get a 4-fold improved performance. 

After that, we created the required HPL arrays that use different notation than normal 

C/C++ arrays. We created other important HPL variables. And then called the “eval” 

function and passed the important HPL variables and arrays to it, such as PPI-1, PPI-

2, neigh_ppi-1, neigh_ppi-2 etc.  

Figure 16 is representation of how each thread works. We have two arrays of len1 and 

len2 where arrays represent the network of PPI-1 and PPI-2 respectively. Each element 

of the arrays corresponds to the nodes. Each element in itself has a number of 

neighbors where range of the number of neighbors is: 

R where (0 <= R <= max (len1 or len2)) 

And this list is being kept in different arrays. The lines of same length between the 

elements of PPI-1 and PPI-2 represent the interactions within the nodes of the 

networks. Whereas, the lines that are of different widths among the neighbors of V1 

and V2 represent the interaction/ similarities between the neighbors of V1 and the 

neighbors of V2. The different widths represent the different scores of the interactions. 

We create len1 * len2 threads where each thread is responsible for comparing a node 

V1 from PPI-1 to another node V2 from PPI-2 based on the similarities between their 

neighbors. 
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Figure	16:	Graphical	Representation	of	how	Threads	handle	the	PPI-Network	
arrays. 



`	

21	

	

The weights of the neighbors of V1 are calculated with respect to the neighbors of V2, 

only the corresponding neighbors that have the highest weights between them are 

considered, whereas the rest, if present, are discarded. By doing so, the neighboring 

elements of V1 have an almost one-to-one mapping with the neighboring elements of 

V2. This method is repeated for each node of PPI-1 and PPI-2 several times until 

enough iterations. Each thread performs comparison and sorting operations on the 

respective neighbors of each node. We then construct a NBG/array such that they are 

of the neighbors that have the highest weight/similarity score between them and the 

graph/comparison becomes almost a one-to-one mapping. 

3.4.1 Implementation Details 

One of the difficulties in writing programs with OpenCL language is the lack of 

“malloc()” (short for “memory allocation”) routine in the kernel code that runs on the 

GPU. Unfortunately, our application requires a variety of dynamic data structures 

such as linked lists, dictionaries and variable size arrays.  

We developed a two level strategy to solve this problem. First, we used static data 

structures in the kernel. If the graph vertexes construct a small neighbor lists, this may 

waste some valuable memory space but this may be acceptable since this path is only 

chosen for small sizes. Next, we allocated a fixed number of data structures in the 

device memory before kernel executions and we shared this fix number of data 

structure resources among many kernels by relying on mutual exclusion (mutex) locks 

of access to shared resources.  

	

Figure	17:	Implementation	of	`mutex`	locks.	
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In the current implementation, we have used 100 mutex locks to guard 100 data 

structures to allow 100 kernels to run concurrently. Our application has a potential 

len1 * len2 total of parallelism. There is almost no limitation for concurrent 

computations with available processing elements (PE) of GPU. However, GPU 

system memory cannot handle this much memory if each kernel requires a large 

memory. By using mutex locks, we are constraining device memory usage such that 

we could run the application on the GPU. Otherwise too much parallelism may 

consume too much memory and we may not be able to run our application because of 

the lack of memory resources. 
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Chapter 4 

Results 

SPINAL was implemented in C++ using LEDA [8], and was experimented on data 

from four different species: Saccharomyces cerevisiae, Drosophila melanogaster, 

Caenorhabditis elegans and Homo sapiens. I applied my algorithm on the same 

four species and examined two kinds of results. First one is the estimated time taken 

for the algorithm to run. Or also known as time-consumption. The second one is the 

accuracy of the results. Or in other words, how close our scores were to the scores 

obtained from SPINAL. 

4.1 Processing and Analyzing Results 

Time consumed for running the algorithm was drastically decreased after we 

removed all the LEDA dependencies and introduced and used simple C arrays 

instead. As explained earlier, LEDA places different nodes in different parts of the 

memory and with each iteration to the next node, it has to jump to a new memory 

location. It makes certain node operations (including node addition and deletion) 

easy. But it consumes a lot of time. This was the first milestone that we achieved. 

Just by converting the LEDA dependent algorithm into simple arrays, we got a 

maximum speed up of around 40%. Though it is not visible for pairs of PPI-

Networks with comparatively a smaller number of nodes, such as ce-dm 

(Caenorhabditis elegans - Drosophila melanogaster), ce-hs (Caenorhabditis 

elegans - Homo sapiens) and ce-sc (Caenorhabditis elegans - Saccharomyces 

cerevisiae). It is more evident for the results of larger pairs of PPI-Networks like 

dm-hs (Drosophila melanogaster - Homo sapiens) and dm-sc (Drosophila 

melanogaster - Saccharomyces cerevisiae). 
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Data Set SPINAL 

(Time)      (Score) 

ARRAYS 

(Time)      (Score) 

HPL 

(Time)        (Score) 

ce-dm 8m 15s      2310 5m33s       2369 1m 52s      2015 

ce-hs 11m 45s    2277 8m 38s      2318 2m 30s       2057 

ce-sc 9m 34s      2288 8m 1s        2341 1m 40s      1918 

dm-hs 41m 1s      5825 22m 6s      5894 8m 54s      0 

dm-sc 31m5s       5229 17m 39s    5322  6m 54s      5078 

Table	1:	Comparison	between	the	original	algorithm	(SPINAL),	after	conversion	to	simple	
ARRAYS	and	HPL	

After we got the results from simple arrays, we implemented the algorithm using 

HPL. We used a Tesla C2050/C2070 GPU as our experimental platform. The device 

has 448 thread processors with a clock rate of 1.15 GHz and 6GB of DRAM and it 

is connected to a host system consisting of 4xDual-Cores Intel 2.13 GHz Xeon 

processors. With HPL, we got a drastic decrease in the time consumption. The 

parallelization of the algorithm gave us 4-5 times speed up. But on the other hand, 

the resulting scores were not very good. Still, they were close to the original scores. 

For very large sized PPI-Networks, such as dm-hs (Drosophila melanogaster - 

Homo sapiens), we got a result of 0. Which means the device was not able to handle 

such a large amount of threads. 

 

 

 



`	

25	

	

	

Figure	18:	Time	Consumption	Comparison	between	SPINAL,	ARRAYS	and	HPL	

 

4.2 Explaining Results Using Amdahl’s Law: 

Amdahl’s law is used to discover the maximum enhancement in a complete system 

when only a portion of the system has been enhanced. In heterogeneous 

programming, this law is used to find out the maximum improvement in the speedup 

after some part of the code has been improved (parallelized). The equation for 

Amdahl’s law is:  

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
1

1 − 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑐𝑜𝑑𝑒 + 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙	𝑐𝑜𝑑𝑒
𝑡𝑖𝑚𝑒𝑠	𝑓𝑎𝑠𝑡𝑒𝑟 	

	 

Where ‘parallel code’ represents the portion of code out of on part that can be made 

parallel and ‘times faster’ represents the number of concurrent processors (ideal 

speedup). 
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If we apply Amdahl’s law to our system, we get the following results: 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 4

4	5	 6.89 	:	 ;.<== 	
= 4

6.69	:	6.48	
	= 4.16 

And for finding the percentage improvement: 

100	 1 − 4
?@AABC@

 = 76 % 

So theoretically, we should get an improvement of this much percent. But then 

again there are some parts which cannot be completely parallelized. Also a lot of 

other computations, such as copying to and from the original LEDA arrays occur. 

That is why it take a bit longer than expected and the speedup is a bit low. 
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Chapter 5 

Related Works 

The information obtained from the alignment of PPI networks can be used in 

identification and study of new genes and their properties, identifying disease 

related sub-networks and network based disease classification [4]. It can also be 

used in predicting functions of proteins with unknown functions or in verifying 

those with known functions [9]; [10] or in reconstructing evolutionary dynamics. 

Several methods/algorithms have been formulated and implemented for aligning 

PPI-Networks. These include PathBLAST [11]; NetworkBLAST [12], MaWISH 

[13], Graemlin [14], Graph match and split algorithm [15] that use the local network 

alignment where sub-networks that closely match each other both in terms of 

network topology and/or sequence similarities are identified.  

In Global Network Alignment, the networks are aligned as a whole rather than 

focusing on sub-networks. The recent GNA techniques include ISORank [10], 

PATH and GA [16], PISwap [17], MIGRAAL [18], NATALIE, NetAlignBP, 

NetAlignMR, [19], [20], [21]. [1]  shows that the problem is NP-Hard even for the 

case where the pair of networks are simply paths. It further provides a polynomial 

time heuristic algorithm, SPINAL, where the first phase is to construct all pairwise 

initial similarity scores and then employ these scores to achieve the final one-to-

one mapping by iteratively growing a locally improved subset.  Our contribution 

are based on the works of [1] where it was suggested to align the networks globally, 

providing unambiguous one-to-one mappings between the proteins of different 

networks.  

[22] uses a parallel algorithm for clustering PPI-Networks based on the parallel 

implementations of Girvan and Newmann (Girvan and Newman 2002). [23] uses 
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parallel architectures and procedures to implement general clustering algorithms for 

large scale biological data sets using MPI. Fast parallel Markov clustering [24] uses 

GPU computing based on CUDA implementation to perform parallel sparse matrix-

matrix computations and parallel sparse Markov matrix normalizations one of the 

most popular open source modular and distributed system that processes datasets 

by using parallel computing approaches. 
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Conclusion 

In this thesis, we present a GPU based solution for the alignment of Protein-Protein 

Interaction Networks. Our work is based on the algorithm implemented by [1] 

known as SPINAL. Firstly, we have provided some insight into the creation and 

functionality of proteins. Then, the mechanism of how proteins interact with each 

other and combine to form large strands. Then, the characteristics of Protein-Protein 

Interactions is described. Then, the working and algorithm of SPINAL is explained. 

Afterwards, our solution to speed up the algorithm is provided.  

The solution is twofold. First, converting the LEDA dependent graphs into simple 

C based arrays. And then implementing the GPU part using HPL. We get a decrease 

of 40% in time consumption just after converting LEDA dependent graphs into 

arrays. Then we get even a much better result with HPL. 

The scores (results) obtained from array based implementation are good and 

acceptable. They are quite close to the scores obtained from SPINAL. The problems 

occur with HPL. Though we get a very good speedup (approximately 8 times faster 

with some pair of PPI-Networks), the resulting scores are close to the ones obtained 

by SPINAL, but not very good. With the massively parallel computations that we 

are performing on the GPU, it is very easy to generate errors. For example: for a 

pair of two very large arrays of sizes approximately around 5000 and 7000, we are 

creating (5000 * 7000) threads. Some GPUs might not be able to handle these many 

threads. Others might handle them but not properly. Working on such large PPI-

Networks is a very complex operation. 

As a further research, the large arrays (PPI-Networks) could be broken down into 

smaller arrays and then sent to the GPU one by one. And then their results should be 
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collected in the end. This way the GPUs don’t have to handle an extremely large 

number of threads. 
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