

KADIR HAS UNIVERSITY

GRADUATE SCHOOL OF SCIENCE AND ENGINEERING

SOFTWARE COST ESTIMATION

IN THE SOA AGE

MASTER OF SCIENCE THESIS

ASLI YILMAZ TAġKIN

ĠSTANBUL, TURKEY

February, 2012

S
tu

d
en

t’s F
u
ll N

am
e: A

S
L

I Y
IL

M
A

Z
 T

A
ġ

K
IN

M

.S
c. T

h
esis

2
0
1
2

S
tu

d
en

t’s F
u
ll N

am
e

P
h
.D

. (o
r M

.S
. o

r M
.A

.) T
h
esis

 2
0
1
1

SOFTWARE COST ESTIMATION

IN THE SOA AGE

ASLI YILMAZ TAġKIN

Submitted to the Graduate School of Science and Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

 in

 Computer Engineering

KADĠR HAS UNIVERSITY

February, 2012

KADIR HAS UNIVERSITY GRADUATE SCHOOL OF

SCIENCE AND ENGINEERING

SOFTWARE COST ESTIMATION IN THE SOA AGE

ASLI YILMAZ TAġKIN

APPROVED BY:

Assistant Prof. Dr. Arif Selçuk ÖĞRENCĠ ___________________

Kadir Has University

(Thesis Supervisor)

Assistant Prof. Dr. Osman Kaan EROL ___________________

Istanbul Technical University

Assistant Prof. Dr. Taner ARSAN ___________________

Kadir Has University

APPROVAL DATE: / /2012

APPENDIX B

AP

PE

ND

IX

C

APPENDIX B

2

SOFTWARE COST ESTIMATION IN THE SOA AGE

Abstract

Many estimation models have been proposed to examine the accuracy of software cost

estimation. We focus on the development cost of services in SOA (Service Oriented

Architecture). We tried to find new factors that affect the development cost for SOA

projects. We defined a new framework which may help to find the development cost in

SOA.

The main point of our research is focused on this question: “What is the difference in

SOA age?” Today, in SOA age, many researchers try to define new frameworks,

because calculating cost estimation using old models such as COCOMO II gives

inaccurate results when it comes to service-based systems. SOA implication, analysis

and coding stages provide us to find new effective factors for calculating the cost

estimation.

In our research, we defined a new framework to calculate development cost of a

service. We used this framework in our experiments and we obtained different results.

We found the effect of I/O and Complexity metrics on development cost estimation.

We also took an advantage of COCOMO II model while we are creating our main

metrics to calculate cost.

During our experiments we created 50 different clusters with 100 or 200 different

service samples with Monte Carlo simulation. As a result of our experiments, we

found the optimal service for all clusters. We have shown services’ development costs

which are minimum and maximum in detailed graphs. Finally, we found that cluster

size of granulated services does not affect the development cost excessively.

Key Words: Development Cost Estimation, SOA, Estimation Models, Monte Carlo.

3

SOA ÇAĞINDA YAZILIM MALĠYETLENDĠRMESĠ

Özet

Günümüzde yazılım maliyetini hesaplamak için birçok yazılım maliyet tahminleme

modeli geliĢtirilmiĢtir. Yaptığımız araĢtırmada, servis odaklı mimarilerdeki servislerin

geliĢtirme maliyetine odaklanılmıĢtır. ÇalıĢmalarımızda servis odaklı mimari

projelerde yazılım geliĢtirme maliyetini etkileyecek yeni faktörler bulmaya çalıĢtık.

Servisin geliĢtirme maliyetini servis odaklı mimarilerde bulmamıza yarayacak yeni bir

yapı tanımladık.

Yaptığımız araĢtırmada, servis odaklı mimarideki farklılıkların neler olduğu konusuna

odaklandık. Günümüz servis odaklı mimari çağında, birçok araĢtırmacı COCOMO II

gibi eski maliyetlendirme modellerinin gerçeğe yakın olmayan sonuçlar verdiğinden

dolayı yeni yapılar tanımlamaya ihtiyaç duymaktadırlar. Servis odaklı mimarilerin

uygulama, analiz ve kodlama aĢamaları maliyetlendirme hesaplamasında

kullanacağımız yeni ve etkili faktörler bulmamıza yardımcı olmaktadır.

TanımlamıĢ oldugumuz geliĢtirme maliyetini hesaplayan yapıyı farklı deneylerde

kullanarak değiĢik sonuçlar elde ettik. Bu deneyler sonucunda, Input/Output ve

karmaĢıklık faktörlerinin yazılım maliyetlendirmesine olan etkisini saptadık.

ÇalıĢmalarımız süresince, maliyet hesaplamasında kullandığımız faktörleri COCOMO

II modelinden de faydalanarak tanımladık.

Yaptığımız deneyler süresince, Monte Carlo simülasyon programını kullanarak 50

kümeli (cluster) 100 – 200 örnekli empirik sonuçlar elde ettik. Deneylerimizin

sonucunda her küme için optimal servisi bulduk. Bu servisleri karĢılaĢtırmak üzere

çizdiğimiz grafikler ile gösterdik.

Sonuç olarak, parçalanmıĢ servislerin büyüklüklerinin yazılım maliyeti üzerindeki

etkisinin cok fazla olmadığını saptadık.

4

Acknowledgements

During the development of my graduate studies at Kadir Has University several people

have collaborated directly and indirectly with my research. Without their support it

would be impossible for me to finish my work. That is why I wish to dedicate this

section to recognize their support.

I want to start expressing a sincere acknowledgement to my advisor; Assistant Prof.

Dr. Arif Selçuk Öğrenci. He gave me the opportunity to research under his guidance

and supervision. I received motivation, encouragement and support from him during

my studies.

I also want to thank the motivation and support I received from my husband. Special

thanks I owe to my brother Assistant Prof. Dr. Alper Yilmaz for his support and

guidance during my studies.

At last, but the most important I would like to thank to my family for their

encouragement, inspiration and endless love.

Asli Yilmaz Taskin

5

Table of Contents

Abstract .. 2

Özet .. 3

Acknowledgements .. 4
List of Tables.. 7

List of Figures .. 8
1. INTRODUCTION ... 9
2. GENERAL VIEW OF SW COST ESTIMATION .. 11

2.1 Software Cost Estimation .. 11
2.2 Evolution of Software Cost Estimation ... 13
2.3 Description of Basic Software Cost Estimation Models 16

2.3.1 PRICE-S Model .. 16
2.3.2 SLIM Model .. 16
2.3.3 Basic COCOMO (COCOMO 81) Model .. 17

2.3.4 COCOMO II Model .. 17
3. COCOMO&COCOMO II COST ESTIMATION MODELS BY USING

COSTAR AND FUNCTION POINTS .. 19
3.1 Advantages of Using COCOMO ... 19

3.2 Using Costar .. 19
3.3 Using Function Points ... 20

4. PRINCIPLES OF THE COCOMO CALCULATION 21

4.1 Model Structure .. 21
4.2 Software Sizing ... 23

4.2.1 Inside the Line of Code (LOC) .. 23
4.2.2 Inside the Function Points ... 24
4.2.3 Unadjusted Function Points (UFP) ... 26

4.2.4 The Technical Factors ... 26
5. INTRODUCTION TO SERVICE ORIENTED ARCHITECTURE 27

5.1 Overview of SOA (Service Oriented Architecture) ... 27

5.2 Evolution of Service Oriented Architecture ... 29

5.3 How is Service Oriented Architecture different? ... 29
6. ADAPTATION OF SOFTWARE COST ESTIMATION FOR SOA PROJECT . 31

6.1 Number of Data Elements & Complexity of Data Storage Technology 32

6.2 System Complexity .. 32
6.2.1 Structural Complexity .. 33

6.2.2 Data Complexity .. 34
6.3 Service Complexity .. 36
6.4 Process Complexity .. 36
6.5 New Services ... 37

6

6.6 Enabling Technology .. 38

6.7 Potential Risks .. 38
7. A NEW POINT OF VIEW TO SERVICE ORIENTED ARCHITECTURE COST

ESTIMATION ... 39

8. GENERAL VIEW OF COMPONENT BASED SOA SYSTEMS........................ 41
8.1 Step by Step Cost Estimation in Component Based SOA Systems 41
8.2 Evolution of Decomposition in Software ... 42

9. APPLICATION SIZE USING FUNCTION POINT ANALYSIS (FPA) 44
9.1 Data Functions and Transactional Functions ... 46

9.1.1 Data Functions .. 47
(i) Internal Logical Files (ILF) .. 47
(ii) External Interface Files (EIF)... 48

9.1.2 Transactional Functions ... 51
(i) External Inputs (EI) .. 51

(ii) External Outputs (EO).. 53
(iii) External Inquiries (EQ) .. 55

10. THE PROBLEM OF USING COCOMO II IN SOA PROJECTS 57
11. WORK BREAKDOWN STRUCTURE (WBS) .. 59

11.1 Benefits of using Work Breakdown Structure ... 61
11.2 Cost Estimation Using Work Breakdown Structure in SOA 62

12. SIZE AND COST ESTIMATION OF SERVICE ORIENTED ARCHITECTURE

(SOA) ... 64

12.1 Previous Researches & Frameworks about Size and Cost Estimation of SOA

 .. 64
13. HOW TO DESCRIBE FUNCTION POINTS IN SOA BASED PROJECT'S

COST ESTIMATION .. 68
13.1 A New Solution For Cost Estimation in SOA ... 68

14. SERVICE GRANULARITY IN SOA ... 69
15. FINDING DEVELOPMENT COST IN A SOA PROJECT 70

15.1 Cluster Size Metric ... 71
15.2 Structural Complexity Metric .. 71

15.2.1 Line of Code (LOC) .. 71

15.3 Number of Input and Output (I/O) Metric ... 72
16. CASE STUDY: FINDING OPTIMAL SERVICE GRANULARITY BY

CALCULATING DEVELOPMENT COST IN A SOA PROJECT 73
17. MONTE CARLO METHOD ... 74

17.1 History of Monte Carlo Method ... 75

18. CASE STUDY: FINDING DEVELOPMENT COST OF A SERVICE 77
18.1 Motivation .. 77

18.2 SOA Development Cost Framework & Scenario .. 77

18.2.1 How to Estimate Complexity .. 79

18.2.2 How to Estimate I/O Cost ... 82
18.3 Prerequisites ... 84
18.4 Experiment 1 .. 85
18.5 Experiment 2 .. 86
18.6 Experiment 3 .. 88

18.7 Experiment 4 .. 90
19. DISCUSSION AND CONCLUSIONS ... 93
References .. 94
Curriculum Vitae .. 99

7

List of Tables

Table 1- ILF complexity matrix 47

Table 2 - ILF Complexity Matrix Weight. 48

Table 3- EIF Complexity Table 49

Table 4- EIF Complexity Matrix Weight 49

Table 5- EI Complexity Table 51

Table 6- EI Complexity Matrix Weight 52

Table 7- EO Complexity Table 53

Table 8- EO Complexity Matrix Weight 54

Table 9- EQ Complexity Table 55

Table 10- EQ Complexity Matrix Weight 55

Table 11- How metrics affect each other 72

Table 12- Complexity Ranges and Factors 79

8

List of Figures

Figure 1- Evolution of Software Cost Estimation 14

Figure 2- Basic Service Oriented Architecture 27

Figure 3-Why SOA? 28

Figure 4- System Complexity and its metrics 33

Figure 5- Simple call tree for one procedure 34

Figure 6- Description of process complexity metrics. 37

Figure 7- Evolution of decomposition approaches. 43

Figure 8- A high Level view of the abstract function point model with users and links

to other applications. 45

Figure 9- Data Functions and Transactional Functions 46

Figure 10- View of a software application from the eyes of a Function Point

practitioner. 46

Figure 11- EIF example Part-1: The service goes to another boundary to find and

take a Zip/Postal Code. 50

Figure 12- EIF example Part-2: The service takes Zip Code and states City and State

fields automatically. 50

Figure 13- Identification of items within the counting boundary. 51

Figure 14- EI example 52

Figure 15- EO example 54

Figure 16- EQ example 56

Figure 17- Example of WBS 60

Figure 18- Service Clustering 78

Figure 19- Main steps of our framework 79

Figure 20-Optimal Services of Experiment 1 with I/O and LOC Costs 86

Figure 21- Optimal Services of Experiment 2 with I/O and LOC Costs 88

Figure 22- Optimal Services of Experiment 3 with I/O and LOC Costs 90

Figure 23- Optimal Services of Experiment 4 with I/O and LOC Costs 92

9

1. INTRODUCTION

In recent years, software started to manage our lives. Thus, many of companies have to

arrange their budget to buy good software to use at their work. Today, software

companies are trying to give the best services to customers by developing new

services.

Software cost estimation is the process of predicting the effort required to develop a

software system.
1
 According to Hareton Leung and Zhang Fan [1]; “Accurate software

cost estimates are critical to developers and customers. Understanding the costs may

result in management approving proposed systems that then exceed their budgets, with

under-developed functions and poor quality, and lapse of time. ”

Calculation of software estimation consists of some actions. These actions start with

analysing and refining software requirements, SW architecture and programmatic

constraints. Then, we have to define software elements. By using lines of code, we can

calculate the estimated size of software according to existing methods. I/O size and

complexity of service are important metrics for the cost estimation.

Identifying project risks, estimating their impact and revise estimates are other steps

for finding cost estimation of software. But in our research we will focus on the

development cost. So, we will consider mainly the granularity of a service in

development cost estimation.

1
 Hareton Leung, Zhang Fan “Software Cost Estimation”, The Hong Kong Polytechnic University,

Japan.

10

Validation and verification are important concepts for estimation models. Developing

alternative effort, schedules and cost estimation help to improve accuracy of methods.

In our research, we defined a new framework to calculate development cost of a

service. We used this framework in our experiments and we obtained different results.

We found the effect of I/O and Complexity metrics on development cost estimation.

We also took an advantage of COCOMO II model while we are creating our main

metrics to calculate cost.

11

2. GENERAL VIEW OF SW COST ESTIMATION

2.1 Software Cost Estimation

Software cost is an important concept in development of software. Up to today, many

of researchers tried to find new models and look at new points of view to improve the

accuracy of cost estimation. These methods use some target parameters such as

human effort, size of project, timing and hardware and software costs during project

development.

Project cost estimation and project scheduling are normally carried out together. The

costs of development are primarily the costs of the effort involved, so effort

computation is used in both the cost and the schedule estimate.
2

Human effort is the dominant cost factor for cost estimation. Companies pay cost for

software engineers to develop new projects. Sometimes engineers have to travel during

the project while others working extra in the office. These all factors mean to extra

cost to bosses.

Misestimating cost of the project may cause many problems. These problems affect

budget directly.

During Development, managing the cost is very important. Cost estimation processes

consist of some management steps. Some of these important steps are;

 Resources that will be used by the project can be determined. Extra resources

mean extra payment. So, determining the resources and their cost to developers

2
 Ian Sommerville “Software Cost Estimation”, Software Engineering 7

th
 Edition, UK, 2004

12

will be definite before the project starts. Project cost is accurate if the resources

are enough for real needs.

 According to Hareton Leung and Zhang Fan [1]; “Spending more time than

determined may cause extra cost. During contract bidding, result in not

winning the contract which can lead to loss of jobs.”

 Effort is an important concept of calculating the software cost estimation.

Generally effort is measured in person in months of the workers. Workers may

consist of programmers, analysts and the manager of projects. They all earn

salary per unit time of staff involved. Multiplying the salary per unit time with

estimated effort required may give us the cost of project. But, there are external

factors that affect the cost of the project.

Except these steps there are some important attributes of a good software estimate
3
:

 It is conceived and supported by the project manager and the development

team.

 It is accepted by all stakeholders as realizable.

 It is based on a well-defined software cost model with credible basis.

 It is based on a database of relevant project experience (similar processes,

similar technologies, similar environments, similar people and similar

requirements).

 It is defined with enough detail so that its key risk areas are understood and

the probability of success is objectively assessed.

3
 W.Royce , “Software project management: a unified framework, Adisson Wesley”, 1998

13

2.2 Evolution of Software Cost Estimation

The evolution of software cost estimation tools have started to develop in early

1960’s. Today, there are a lot of papers that study methodology of cost estimation.

A time-line of the software estimation tools is shown in Figure 1.

14

 1960's first software estimation tools developed.

 1981 Dr. Barry Boehm published COCOMO algorithms.

 1983 Dr Howard Rubin developed ESTIMACS model.

 1984 Major revision of function points becomes basis of today’s standards.

 1985 Capers Jones developed the SPQR/20 estimation tool.

 1986 International Function Point Users Group (IFPUG) emerges globally.

 1986 Allan Albercht developed IFPUG certified course for function point counting.

 1986-2000 Huge growth in the software estimation tool market.

 2000 Dr. Barry Boehm developed COCOMO II.

 2002Approximately 50 commercial software estimation tools are marketed in the

 United States and approximately 25 in Europe.

 1973 Frank Freiman developed the PRICE-S software estimation model. It was the first

 commercial software estimation tool.

 1973 Capers Jones and Dr. Charles Turk developed IBM proprietary automated estimation

 tool.

 1973 Allan Albrecht developed function point metric in public domain.

 1979 Larry Putnam developed Software Life-Cycle Management (SLIM)tool.

Figure 1- Evolution of Software Cost Estimation

According to the NASA Johnson Space Center
4
 , In the late 1940’s, the DoD, and

the United States Air Force began a study of multiple scenarios concerning how the

country should proceed into the age of jet aircraft, missiles and rockets. The Military

saw a need for a stable, highly skilled group of analysts to help with the evaluation of

such alternatives.

In 1950, Rand’s successful studies represented one of the most systematic studies of

cost estimation in the airplane industry. Rand’s group proved to be prolific

contributors to the art and science of cost analysis.

The Cost Estimating Relationship (CER) was found by Rand in the mid 1950’s. CER

was a basic tool of cost estimation. Merging CER with the learning curve formed the

foundation of parametric aerospace estimating. This finding is still used today.

4
 NASA Johnson Space Center , “Parametric Cost Estimating Handbook”, NASA, United States of

America, 1995

15

 According to National Aeronautics and Space Administration[6] “For the first time,

cost analysts saw the promise of being able to estimate relatively quickly and

accurately the cost of proposed new systems. Rand extended the methods throughout

the 1950’s, and by the early 1960’s, the techniques were being applied to all phases

of aerospace systems.
5
”

After 1970, there were more robust models such as COCOMO [Boehm 1981]

Checkpoint [Jones 1997], PRICE-S [Park 1988], SEER [Jensen 1983], and SLIM

[Putnam and Myers 1992]. Even though the researchers started to develop these

robust models about the same time, they all faced the same problem.

This problem was about the size and importance of the software. Researchers found

that if software grew in size and importance means grew in complexity, making it

very difficult to calculate the cost of software development.

It was difficult to develop new parametric models that work efficiently and

accurately for software development in all domains because of the changing form of

software development.

To that end, most of the software estimation models have developed from 1981 to

1997 based on the leading efforts of researchers which are mentioned above.
6

5
 National Aeronautics and Space Administration [1995] “Parametric Cost Estimating Handbook”,

Department of Defense, USA

6
 Barry Boehm, Chris Abts, [Chulani 1998]“Software Development Cost Estimation Approaches-A

Survey1”, Sunita Chulani IBM Research, University of Southern California, Los Angeles

16

2.3 Description of Basic Software Cost Estimation Models

2.3.1 PRICE-S Model

Lockheed Martin Life Cycle Cost Estimating Systems' PRICE-S is a proprietary,

empirically-based cost model. Since it is a proprietary model, complete information

about the internals of the model are unavailable.

Some details, however, are available about the model. Unlike other models, PRICE-S

uses machine instructions, not source lines of code, as its main cost driver. You can

hire consulting services from Lockheed Martin to exercise PRICE-S. However, if

you need to use a consultant anyway to perform your estimates, the fact that PRICE-

S is proprietary and requires a consultant to utilize may not be a problem to your

organization. PRICE-S is one of the earliest and most successful models that have

been developed.
7

2.3.2 SLIM Model

Software Life Cycle Model (SLIM) is marketed by Quantitative Software (QSM).

SLIM was developed in 1979 by Mr. Larry Putnam. Originally developed from

analysis of ground-based radar programs, the SLIM tool has been expanded to include

other types of programs. It can be customized for the user's development environment.

SLIM supports all phases of software development, except requirements analysis, as

well as all sizes of software projects, but was especially designed to support large

projects.

Success in using SLIM depends on the user's ability to customize the tool to fit the

software development environment and to estimate both a Productivity Index (a

measure of the software developer's efficiency) and a Manpower Build up Index (a

measure of the software developer's staffing capability). SLIM also provides a life

cycle option which extrapolates development costs into the maintenance phase [7].

7
 Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R. “Cost Models for Future

Software Life Cycle Processes”,1995 http://sunset.usc.edu/COCOMOII/Cocomo.html

http://sunset.usc.edu/research/cocomosuite/index.html

17

2.3.3 Basic COCOMO (COCOMO 81) Model

The Constructive Cost Model (COCOMO) is the best known and most popular cost

estimation model. COCOMO was developed in the late 1970s and early 1980s by

Barry Boehm (1981).

This early model consists of a hierarchy of three increasingly detailed models named

Basic COCOMO, Intermediate COCOMO and Advanced COCOMO. These models

were developed to estimate custom, specification-built software projects.
8

2.3.4 COCOMO II Model

The COCOMO II research was started in 1994 at USC (The University of Southern

California).

COCOMO II was initially published in the Annals of Software Engineering in 1995

[Boehm et al. 1995]. There are three sub-models of COCOMO II model. These are

Applications Composition, Early Design and Post-Architecture. Every sub-model

can be unified in different ways for dealing with the today’s and future’s software

practices workplace.

According to Barry Boehm and Chris Abts [7] “The Application Composition Model

is used to calculate effort and schedule on projects that use Integrated Computer

Aided Software Engineering tools for rapid application development. These projects

are too scattered but sufficiently easy to be rapidly composed from interoperable

components.”

The Application Composition Model has several components. These are GUI

builders, database or objects managers, middleware for distributed processing or

transaction processing and domain components like financial or medical process

control packages.

8
 The Data & Analysis Center for Software “Modern Empirical Cost and Schedule Estimation Tools”,

https://www.dacs.dtic.mil/techs/estimation

18

Boehm
9
 shows that COCOMO II be used to identify the critical cost driver factor and

estimate the cost difference that would result due to change in the critical driver

factor.

9
 Boehm,B “Safe and Simple software cost analysis”, IEEE Software, 2000

19

3. COCOMO&COCOMO II COST ESTIMATION MODELS BY

USING COSTAR AND FUNCTION POINTS

3.1 Advantages of Using COCOMO

Today, thousands of people (SW project managers, etc…) use the COCOMO model

to calculate the cost of the project. COCOMO is an open model. This is the basic

difference of COCOMO model. There are some advantages of COCOMO model
10

;

 COCOMO estimates are more repeatable than estimates made by methods

relying on proprietary models.

 COCOMO can be calibrated to reflect your SW development environment,

and to produce more accurate estimates.

3.2 Using Costar

Costar is the implementation of COCOMO. Costar helps to define software structure

and it is used by small projects. Using the right COCOMO and COCOMO II

definition and assumption contributes to the accuracy of the Costar.

Assume that, at the first time of coding in project, analyst and developers decided to

start with 2000 line of code. At the coming days, these codes may be separated into

little pieces. So, there will be a system and other subsystems. Costar is used while

10

 Web Site; www.softstarsystems.com/overview.htm

20

code is separated into little pieces. Method allows defining components of each

subsystem. These processes keep on until project’s needs are received.

3.3 Using Function Points

Function point is a method that is used by the developers and managers to calculate the

cost estimation and it is developed by Allen Albrecht.

According to function points, estimation should be identified while forming the project

analysis. Important items for Function Points are [11];

 External inputs

 External outputs

 Logical internal files

 External interface files

 External inquiries

Function Point provides to estimate source lines of code.

Costar converts the Function point count into an equivalent number of SLOC (source

lines of code), and uses that in the COCOMO equations to make its estimates.

Function Point method separates all management tools in to several levels. These

management tools may be project risks, abilities of all project members, etc…

Method puts these levels in order. All levels have special coefficient. By using SLOC

and these coefficients, the spending person-month will be found.

21

4. PRINCIPLES OF THE COCOMO CALCULATION

4.1 Model Structure

According to Laren Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori

Khorrami and Erik Monson
11

; “Many parametric models compute effort in a similar

way, where estimated effort is proportional to size raised to a factor.”

 (1)

The expression is given in Equation (1) is COCOMO estimation effort formula where;

E is an estimated effort in work-months.

A is a constant that reflects a measure of the basic organizational / technology costs.

Size is the equivalent number of new logical lines of code. Most parametric tools are

able to compute the equivalent lines of code by using size and heritage percentage

inputs. Size may change by the code growth according to the requirement evolution.

B is a scaling factor of size. It is a variable exponent whose values represent

economies/ diseconomies of scale.

11

 Laren Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori Khorrami, Erik Monson

“Handbook for software cost estimation”, Jet Propulsion Laboratory, Psadena,California, 2003

E= [A (Size) (EM)]

22

EM is the product of a group of effort multipliers that measure environmental factors

used to adjust effort (E). The set of factors comprising EM are commonly referred to

as cost drivers because they adjust the final effort estimate up or down.

23

4.2 Software Sizing

The most important factor that affects the software cost is the software size of the

project. “Line of Code” and “Function Points” is the most important metrics for

calculating the cost estimation.

4.2.1 Inside the Line of Code (LOC)

Line of code is the number of lines of the delivered source code of the software. It is

not possible to obtain the actual LOC before the project has completed.

There is a technique to calculate the cost size(S). The technique for calculating the

size of project is called as PERT.

Actual size is calculated by taking the average of lowest possible size, highest

possible size and most likely size. According to the PERT analysis technique, cost

size is computed as;

 (2)

The expression is given in Equation (2) is a Pert Analysis Technique Cost Size

Equation where;

S1 is the lowest possible size,

Sm is the most likely size.

Sh is the highest possible size,

According to J.D. Aron
12

 “PERT can also be used for individual components to

obtain an estimate of the software system by summing up the estimates of all the

components.”

12

 J.D. Aron “Estimating Resource for Large Programming Systems”, NATO Science Committee,

Rome, Italy, 1969

S= (S1 +Sh+4Sm) / 6

24

Line of Code can be calculated with another method which uses unadjusted function-

point counts (UFC). UFC equation is shown in section 0

Linear formula for code-size estimation of the project is;

 (3)

The expression is given in Equation (3) is Pert Analysis Technique- Line of Code

Equation where;

LOC is Line of Code,

UFC is Unadjusted Function Point Counts

a and b can be derived from previously completed project data and can be obtained

using linear regression.

4.2.2 Inside the Function Points

According to the Function Points; there are 5 important classes to estimate source lines

of code. These are
13

;

 User-input types (data or control user-input types).

 User-output types (output data types to the user that leaves the system).

 Inquiry types (interactive inputs requiring a response).

 Internal file types (files [logical group of information] that are used and shared

inside the system).

 External file types (files that are passed or shared between the system and other

systems).

As we mentioned in section 3.3; Function Point method separates all management

tools in to several levels. By calculating the unadjusted function-point counts (UFC);

the complexity levels are shown in three groups; {1= Simple, 2=Medium,

3=Complex}.

13

 A.J Albrecht, and J. E. Gaffney, “Software Function, source lines of codes and development effort

prediction: a software science validation”; IEEE Trans Software Eng. SE-9 pp. 639-648, 1983

LOC= a* UFC +b

25

According to Albrecht, the unadjusted function-point count (UFC) equation is given

as;

 ((4)

The expression is given in Equation (4) is Albrecht’s Unadjusted Function Point

Count Equation where;

Wij is the weight of type class i with complexity j.

Nij is the number of class i with complexity j.

Also there is another equation for UFC;

 (5)

The expression is given in Equation (5) is UFC Equation without complexity factor

where;

Wi is the weight of i .

ni is the number of items of variety i where i stands for the number of items 1, items 2

etc..

Function Points for the system can be calculated by the following empirical formula;

 (6)

The expression is given in Equation (6) is Function Point Equation where;

(*)UFP is Unadjusted Function Point described in section 0.

(*)TCF is Technical Factor described in section 0.

5 3

UFC= Σ Σ Nij Wij
i=1 j=1





5

1

*
i

ii WnUFC

FP=UFP x (0.65+0.01xTCF)

26

4.2.3 Unadjusted Function Points (UFP)

The function point classes are the components of the system. The system components

have five types which are external or logical inputs, outputs, inquiries, external

interfaces to other systems and the logical internal files.

These components are further weighted as "simple", "average" or "complex"

depending on their characteristics. Then the sum of all components is called as

Unadjusted Function Points (UFP).
14

4.2.4 The Technical Factors

Technical Factor describes the size of the technical complexity involved in the

development and implementation of the system.
15

 Technical Factors is calculated by

the equation below;

TCF C1 C2 Fi
i1

n


 (7)

The expression is given in Equation (7) is Technical Factors Equation where;

C1  0.65

C2  0.01

Fi : is the factor valued from 0 to 5. 0 if it is irrelevant and 5 if it is essential.

14

 http://www.ii.metu.edu.tr/;“Software Quality Assurance”.
15

 G. Karner ; “Resource Estimation for Objectory Projects”; Objective Systems; Torshamnsgatan,

1993

27

5. INTRODUCTION TO SERVICE ORIENTED ARCHITECTURE

5.1 Overview of SOA (Service Oriented Architecture)

A Service Oriented Architecture is a collection of services. These services

communicate with each other by passing simple data. Also, communications between

services could involve two or more services coordinating some activity.

Before understanding the ability of service oriented architecture, we have to define

the meaning of a service. Service is a function that is well-defined, self-contained,

and does not depend on the context or state of other services.
16

Service is the endpoint of connection. The basic service oriented architecture is

shown in Figure 2.

Figure 2- Basic Service Oriented Architecture

16

 http://www.service-architecture.com/web-services/articles/service

oriented_architecture_soa_definition.html, “SOA Definition”

http://www.service-architecture.com/web-services/articles/service%20oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service%20oriented_architecture_soa_definition.html

28

At the figure above, Service Consumer sends service request to Service Provider.

The Service Provider sends back service response message to service consumer.

These connections between Service provider and consumer is providing by the web

services.

Services provider can also be services consumer and it may requests service from

other services providers. These connections form the basic structure of Service

Oriented Architecture.

There are 2 main reasons to choose SOA;

Figure 3-Why SOA?

Service approach provides to:

 Integrate sub-systems through services

 Ease uniqueness principle avoiding redundancies

 Build a core framework of services for future development

Process approach provides to;

 Separate business process from code

 Provide better visibility on business processes

 Ease maintenance and evolution of business processes

29

5.2 Evolution of Service Oriented Architecture

In the past, programmers had coded little units with a code pieces and system used

these code pieces in lots of positions. In old years, it was enough for people to do

their work. According to development of new technologies these methods became

unserviceable.

In recent years, new communication age damaged the component based architecture.

Programmers wanted to use the components of system at the remote machines. This

idea exposed new software concepts. These are Distributed Component Object

Model (DCOM) and Component Object Model (COM+).

After distributed systems are used, programmers coded little code pieces and put

them into only one place to use. So, lots of applications used only one component.

This procedure formed the application server.

The usage of software services continued to develop itself day by day. But there was

another problem: The coded component runs only on platforms of the same type.

Different type of platforms caused many problems. SOA developed to take up this

problem to serve best service to users.

5.3 How is Service Oriented Architecture different?

For understanding the difference of SOA from other approaches; first we have to

understand its structure. Once the structure is understood it is possible to compare

SOA and other approaches to understanding and organizing Information Technology

assets.

30

According to Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,

Rebekah Metz, Booz Allen Hamilton
17

 “SOA reflects the reality that ownership

boundaries are a motivating consideration in the architecture and design of systems.

This recognition is evident in the core concepts of visibility, interaction and effect.

However, SOA does not itself address all the concepts associated with ownership,

ownership domains and actions communicated between legal peers.”

The service descriptions and service interfaces inside SOA automatically provide

location references. This facilitates the reuse of frameworks and synergic systems

which are developed externally.

Additionally, SOA helps applying the lessons which are learned from commerce to

the organisation of Information Technology assets for facilitating the matching of

facilities and necessities. Thus, entities which league together inside the context of a

single interaction require the swap of some type of value.

According to Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,

Rebekah Metz, Booz Allen Hamilton

[22] “This is the same fundamental basis as

trade itself, and suggests that as SOAs evolve away from interactions defined in a

point-to-point manner to a marketplace of services; the technology and concepts can

scale as successfully as the commercial marketplace.”

We will see the effects of SOA on cost estimation in section 7.

17

 OASIS-Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown, Rebekah Metz, Booz

Allen Hamilton; “Reference Model for Service Oriented Architecture 1.0”, Committee Specification,

2006

31

6. ADAPTATION OF SOFTWARE COST ESTIMATION FOR SOA

PROJECT

Today, most companies ask the question “How much this SOA will cost?” for their

projects. This is an important question to obtain the funding of the company.

Obtaining the cost of the project is starting with understanding the domain.

Understanding the domain in detail includes;

 Number of Data Elements

 Complexity of Data Storage Technology

 System Complexity

 Service Complexity

 Process Complexity

 New Services needed

 Enabling Technology

 Applicable Standards

 Potential Risks

After this step we have to make a decision about required resources for the project

and understand their cost.

32

6.1 Number of Data Elements & Complexity of Data Storage Technology

Defining a unit of data for processing directly effects the project cost estimation

while you are creating the data structure of the system.

According to David Linthicum who is an internationally known application

integration and service oriented architecture expert, this formula may help to find the

data complexity depending on the number of data elements.
18

 (8) (8)

The expression is given in Equation (8) is Cost of Data Complexity Equation where;

Number of Data Elements being the number of semantics you are tracking in your

domain, new or derived.

Complexity of the Data Storage Technology, expressed as a percentage between 0

and 1 (0% to 100%).

Labor Unit, the amount of money it takes to understand and refine one data element

Clearly, if the number of data elements increases then the complexity of the structure

will increase as well.

6.2 System Complexity

System complexity is a composite measure of complexity inside procedures and

between them. It measures the complexity of a system design according to procedure

calls, data use and parameter passing.

18

 http://www.soainstitute.org/,David S. Linthicum; “How much will your SOA cost?”, 2007

Cost of Data Complexity = (Number of Data Elements) *
(Complexity of the Data Storage Technology) * (Labor Units)

33

The complexity of system is basically a time and design metric. Before the original

implementation exists it is possible to measure the difficulty of creating a designed

system.

Also, source code is another important factor for calculating system complexity. It is

another way of calculating the complexity of the system.

According to Card and Agresti;
19

 “System complexity is not suitable for the

evaluation of how difficult it is to change an existing system”.

System complexity contains two main metrics inside it. These metrics are structural

complexity and data complexity. We can use these two main metrics while we are

calculating the System Complexity.

Figure 4- System Complexity and its metrics

Now, we will see how to calculate system complexity according to the structural

complexity and data complexity.

6.2.1 Structural Complexity

Structural complexity is measured by the number of procedures. Structural Fan-in

and Fan-out values vary the complexity result directly.

19

 Card, D. N. and W. Agresti, "Measuring Software Design Complexity." The Journal of Systems

and Software 8, 3; 185-197. (Original definition of the metric),1998

Structural Complexity

 Data Complexity

SYSTEM COMPLEXITY

34

Structural fan-in (SFIN) and fan-out (SFOUT) values are used to evaluate the

interrelations between procedures and files. It is also possible to measure the

complexity of the static structure of code which includes design and time factors.
20

Figure 5- Simple call tree for one procedure

As you see in Figure-5, there are two coming calls to the procedure and when you

control the SFOUT we can say that the procedure calls four other procedures to run

in the system.

If you think there is more than one procedure in the system, the complexity of the

structure will increase according to the SFIN and SFOUTs.

SFIN might be zero thus that means no procedure callers were found in the system.

Being too many SFINs are not as desirable for a file.

6.2.2 Data Complexity

Data refers to a collection of information or facts usually collected as the result of

experience, observation or experiment, or processes within a computer system,

or a set of premises. For instance, data may consist of numbers and words.

20

 http://www.aivosto.com/project/help/pm-sf.html

http://en.wikipedia.org/wiki/Fact
http://en.wikipedia.org/wiki/Experience
http://en.wikipedia.org/wiki/Observation
http://en.wikipedia.org/wiki/Experiment
http://en.wikipedia.org/wiki/Premise

35

Reading and writing business data in some form or order is the main responsibility of

e-business applications. So, the storage, management and retrieval of the data always

have been a tough problem in all organizations.

Using different mechanisms increases the cost of data depending on the usage of

multiple databases.

According to SYS-CON Media’s research
21

 “Companies may have heterogeneous

data environments with different schemas and they may contain redundant data

elements. This data may be static reference data, such as personal customer

information or geographical data, common business data, or common external data

such as market data. This can lead to serious inefficiencies and consequently higher

costs because of the overhead in accessing/updating data in multiple databases using

different mechanisms.”

There are some problems that affect the cost estimation of the SOA via data

complexity.

These problems may be described as followed;

 Updating the data in multiple channels

 Difficulty of creating a common data spreading strategy for different

technologies.

 Data may need to be synchronized between data repositories

 The requirements of the data access performance are increasing through

the developing nature of business.

 The diversion of needs and usage patterns of data across systems

Data complexity directly affects the cost of project because of the time factor. If the

user spends much more time than usual this means the structure of SOA is not work

well. So, we have to develop a scalable strategy that can accommodate new

applications with minimal turnaround time.

On the other hand, data has multiple channels of update. Hence, data has to be

modified and controlled to make sure that updates are performed regularly.

21

 http://soa.sys-con.com, 2005

http://soa.sys-con.com/

36

6.3 Service Complexity

Service is the work done by one person or group that benefits another people. The

service complexity is related with the size of the project. The services that are given

to the customers can be measured by all processes that are served in the system.

There might be several factors that affect the service complexity. We can say that,

security is one of the main metric of the service complexity.

Today, companies want to provide a secure system service for their customers. So, if

the security of the services increases the service complexity may increases as well.

6.4 Process Complexity

Process Complexity is another factor while calculating cost estimation of the system.

There are some metrics of the process complexity:

 a contents facet including coverage and granularity attributes

 an abstraction facet

 a description facet including form and notation attributes

 a modularization facet
22

Figure 6 shows the description of these metrics:

22

 C. Roland, “A comprehensive view of process engineering, Proceedings of the 10
th

 international

conference ” and B. lecture notes in computer science, Italy, 1998

37

Figure 6- Description of process complexity metrics.

6.5 New Services

Services are changing day by day. Thus, companies should be able to give new

services to their customers to address much more people.

New technologies provide to add new customers to use your system. Needless to say

that, adding new customers to the system takes some time. Increasing user number

means the company of yours can earn much more money.

New standards bring new cost to your company and it is hard to raise the price of the

services. This problem may be solved by reducing the operating costs.

38

According to the description above, by understanding the needs of your users, you

can manage the cost of your system and give better service to customers. Otherwise,

the cost of the system may increases.

6.6 Enabling Technology

Enabling technology is another metric for understanding the domain. Developing the

domain of the system by using new technologies may decrease the development time

of the project. So, the cost of the project will be decreased automatically.

6.7 Potential Risks

Beside all of these factors, we should think about risks during the project

development. For example, economic crisis, decrease of the developer performance

or problems during analysis process. Especially, analysing process takes too much

time because of the misunderstanding between analyser and customer.

Unfortunately, most companies do not care about analysing process as much as it

needs. Because, the manager of the project thinks that it is a loss of time to analyse

deeply and they want to start development process immediately. However, analysing

process is the main factor of the cost estimation.

Disregarding the analysing process may cause more loss of time unlike the

manager’s thinking. Therefore the risk of project might be increased.

Project risk is considered low when all processes involve fairly simple operations.

Project risk is considered medium when the minority of the business processes under

automation is complex, involving multiple steps, exchanges with external systems or

significant validation/processing logic. Project risk is considered high when a

majority of the business processes under automation are considered to be complex.

39

7. A NEW POINT OF VIEW TO SERVICE ORIENTED

ARCHITECTURE COST ESTIMATION

The business conditions are changing day by day. SOA is developed to make IT

more flexible. By using SOA, IT becomes adapted to changing business conditions.

SOA provides some advantages like simplifying integration, managing complexity,

reducing costs and increasing reuse. As we mentioned, SOA is directly related with

cost.

Steghuis
23

gives useful major reasons to answer the question “Why SOA is better in

reducing costs?” These are:

 SOA implies a services mind-set and this anticipates shared use of services.

 SOA leads to monitoring and management of quality of the services so that

experiences of the shared services can be exchanged.

 Services encapsulate complexity and isolate changes by only exposing their

interface to the outside world.

 Standardisation of interfaces and the way they are exposed reduces cost and

promotes reuse

 Services architecture focuses on the end-to-end lifecycle instead on single

lifecycle stages.

On the other hand service granularity of SOA affects the whole system by changing

its complexity. "Service granularity is the scope of functionality exposed by a

service". [41]

23

 Claudia Steghuis, “Service granularity in SOA projects ” University of Twente, Netherlands, 2006

40

Modularity of a system can be reflected by its granularity. SOA needs to have well

designed services to provide flexible business processes. Well-designed services

provide low development cost.

Now, we can explore component based SOA systems to adapt new cost estimation

facilities into SOA cost.

41

8. GENERAL VIEW OF COMPONENT BASED SOA SYSTEMS

8.1 Step by Step Cost Estimation in Component Based SOA Systems

Component based system is a branch of software engineering. This system consists

of components that include data and functions inside it. These components are

modular and cohesive, because they are semantically related with the contents of

classes.

Each component may offer services from the system. The whole system finds the

related interface that is offered by the component. We can say that interfaces are the

signatures of related components. They find the services that will be used by the

component. Component can use other component by using their interfaces.

While designing Component-Based System; first of all, we have to define the

requirements of the system. These requirements help to generate the components of

the system.

During planning the structure of the system, we should find new ways to make it

flexible for using it in different platforms.

Decomposition of requirements is one of the most important processes before finding

function points for each component. Because, using a lot of unnecessary components

means much more line of code. So, it may affect the cost of the system. To determine

complexity; for each component, we have to find Function Point items to calculate

the cost estimation of service.

42

As we said before, we have to find external inputs, external outputs, logical internal

files, external interface files and external inquiries to determine the complexity of the

system.

If the number of components of the system increases than the UFP (Unadjusted

Function Point) will increase as well. Function points will be affected by the value of

UFP and technical factors. Technical factors are the total number of factors that

affect the technical complexity.

UFP can be used to find the line of code. Line of code is the value that affects the

cost of the system. Line of code will increase if the UFP increases. So, we have to

compose the components of the system carefully.

Before determining the complexity of system, we will see how to decompose the

SOA.

8.2 Evolution of Decomposition in Software

According to Boris Liblinsky; the first software decomposition approach introduced

in the early 1960s was splitting mainframe applications into separate jobs, each

implemented by a separate program. Later, as more insight into the program internals

was gained, each program itself was split into modules or subroutines, according to

their function.
24

In 1970’s decomposition adoption by introducing objects strengthened. These objects

was implemented a model of real thing. Bust, on the other hand, abstractions

provided by objects turned out to be too fine grained to have meaning on business

level.

24

 Boris Lublinsky; “Defining SOA as an Architectural Style”, www.ibm.com, 2007

http://www.ibm.com/

43

To find better designed paradigm, researchers continued searching to find different

approaches to decomposition in the late 1990’s. Researchers were thinking that

raising the level of abstraction and increasing granularity will help to fix the

problems of object oriented systems.

According to component based architecture, software applications were much more

flexible, better structured and more manageable. But, on the other hand it was

decomposing the enterprise IT functionality.

Figure 7- Evolution of decomposition approaches.[29]

44

9. APPLICATION SIZE USING FUNCTION POINT ANALYSIS

(FPA)

Function point analysis (FPA), is one of the most popular and usable approaches for

estimating the software size.

There are three main processes of FPA. These are;

 It quantifies the functionality requested by the customers and also provided

functionality to the customers.

 Measure software development and maintenance independently of technology

used for implementation.

 Across all projects and organizations, consistently measures the software

development and maintenance.

User’s view of the system can change the size of the project according to their

requirements. The inputs, reports, screens, stored data on the system will change the

size of the application. We can say that user interactions may be one of the important

inputs to change the size estimation of system.

FPA does not matter if it is an application written in .Net, Java etc… It is technology

independent.

Adding FPA to our system is not expensive and provides to measure the size of the

project to calculate the cost estimation of the system. FPA well works with use cases,

so it is useful for object oriented software as well.

45

FPA measures the cost, duration, staffing size of the project. It seems to be easy to

understand Cost per FP, FP’s per hour and project defect rate metrics by using FPA.

The benefits of PFA are,

 Difficulties of estimation using Lines of Code can be avoided by using

function point analysis.

 Sizing is important while determining the productivity of the system. FPs can

be used to size software applications accurately.

 FPA is easily understood by every people, so it helps communicate sizing

info to a user or customer.

 FPA is more productive than other methods, because it can be used to

determine whether an environment, tool and language.

 The time or person is not important, they can be counted by different people

at different times and they obtain the same measure within a reasonable

margin of error.

Thomas Fetcke, Alain Abran and Tho Hau Nguyen
25

 have used “o-o Jacobson

Approach”. Figure-8 gives details about their function model.

Figure 8- A high Level view of the abstract function point model with users and

links to other applications.

25

 Thomas Fetcke, Alain Abran and Tho Hau Nguyen, “Mapping the o-o JacobsonApproach into

Function Point Analyses”, IEEE, 1998

46

9.1 Data Functions and Transactional Functions

As we mentioned in function point section; there are five main functions to be

counted. Two of them are data functions and the other three are the transactional

functions.

Figure 9- Data Functions and Transactional Functions

Using this terminology one of the researcher has drawn a figure to understand

counted metrics during FPA.
26

Figure 10- View of a software application from the eyes of a Function Point

practitioner.

26
 Alvin J. Alexander; “How to Determine Your Application Size Using Function Point Analysis”,

2004

47

9.1.1 Data Functions

(i) Internal Logical Files (ILF)

ILF represents the data stored in the system. For counting ILF we have to make sure

that the data and group information are logical and user identifiable.

The group of data which is maintained through the beginning operation should be

counted. Tables in a database and flat files can be an example to the ILFs.

First of all we have to determine the complexity level of Low (L), Average (A), or

High (H). We can do this by counting number of Data Element Type (DET) and

Record Element Type (RET).

RET is user recognizable data elements within ILF and EIF (External Interface

File).DET is a unique, user recognizable and non-repeated field. You can find the

points by complexity by checking number of DETs and RETs.

RETS Data Element Types (DETs)

 1-19 20-50 51+

1 L L A

2 to 6 L A H

6 or more A H H

Table 1- ILF complexity matrix

For example, according to Table-1, we can say that, if there are 4 RETs and 25 DETs

then, that system would bear (A) Average Complexity. This example is based on a

real time project which is found on the internet.

48

Table 2 - ILF Complexity Matrix Weight.
27

As you can see in table 2, a Low complexity ILF is worth 7 points, an Average ILF is

worth 10 points, and a High is worth 15 in their example.

After finding complexity from the complexity table, we can determine the number of

FPs that will be counted for this ILF. According to our example, the complexity is

Average, so we can say that, the function points of this ILF will be 10FPs.

(ii) External Interface Files (EIF)

EIF represents the data that the application will use or refer. These data cannot be

maintained by the existing system.

The main difference between EIF and ILF is that the EIF uses data maintained within

the boundary of another application. ILF uses its own application. The data is not

maintained within the boundary of another application. You can find the points by

complexity by checking number of DETs and RETs.

As we mentioned on ILF section, checking the number of RETs and DETs will help

us to find complexity and weight of the application. According to the tables above

you can check the values and calculate complexity and weight.

27

 http://www.devdaily.com

Complexity Points

Low 7

Average 10

High 15

49

RETS Data Element Types (DETs)

 1-19 20-50 51+

1 L L A

2 to 6 L A H

6 or more A H H

 Table 3- EIF Complexity Table [27]

According to the table-3, we can say that, if we count 3 RETs and 21 DETs that

would be of (A) Average Complexity.

Table 4- EIF Complexity Matrix Weight [27]

According to our example, the complexity is Average, so we can say that, the

function points of this ILF will be 7 FPs.

We found real examples which are really useful to understand the transactional and

data files.
28

Now we can consolidate the information about External Interface Files (EIF).

Assume that our system goes to another boundary to find and take a Zip/Postal Code

then gets full address detail from another system and fills our address detail fields

automatically. You can find these examples in Figure 11 and Figure 12.

28

 http://www.softwaremetrics.com/examples/

Complexity Points

Low 5

Average 7

High 10

50

Figure 11- EIF example Part-1: The service goes to another boundary to find

and take a Zip/Postal Code.

Figure 12- EIF example Part-2: The service takes Zip Code and states City and

State fields automatically.[27]

In this example, we can see the combined effect of an EQ and EIF.

Here, External Inquiry has 3 DETs. These are zip code, city and state fields.

It references just one FTR. Zip code field is an EIF, because it uses another

application boundary. Now, we can say that the complexity of this EIF is Low and it

points to 5 unadjusted function points.

51

Every EIF must have at least one transaction against it. Also, one of the EI, EO and

EQ should refer to EIF.

9.1.2 Transactional Functions

According to Thomas Fetcke, Alain Abran and Tho Hau Nguyen
29

 “There can be a

one-to-one, one-to-many or many-to-many relation between deliverables visible to

the user and transactions”. Before describing transactional functions, it would be

better to understand the Figure-13 of these researchers.

Figure 13- Identification of items within the counting boundary.

(i) External Inputs (EI)

External input processes data or control information which comes from outside the

boundary of an application. Data entries and data or file feeds by external

applications can be an example to the EI.

To find the complexity of the application we have to determine the DETs and FTRs

(File Type Referenced). FTR can be either ILF or an EIF.

FTRs Data Element Types (DETs)

 1-4 5-15 16+

0-1 L L A

2 L A H

3 or more A H H

Table 5- EI Complexity Table [27]

29

 Thomas Fetcke, Alain Abran and Tho Hau Nguyen, “Mapping the o-o JacobsonApproach into

Function Point Analyses”, IEEE,1998

52

For example, according to the table-5, we can say that, if we counted 4 FTRs and 12

DETs that would be a (H) High Complexity.

Table 6- EI Complexity Matrix Weight [27]

After finding complexity from the complexity table we can determine the number of

FPs that will be counted for this EI. According to our example, the complexity is

High, so we can say that, the function points of this EI will be 6 FPs.

We can give another example to consolidate the information about External Inputs.

Here is an interface that shows Address Info page on the application.

Figure 14- EI example [27]

This external input shown in Figure-14,

 Rated as a low EI

 Valued at 3 unadjusted FPs

 FTR is 0

Complexity Points/Weight

Low 3

Average 4

High 6

53

 And has 15 Data elements(DETs) that create one ILF.
30

You can confirm the complexity is low by checking Table-5.

According to this example, we have to know that each field that is saved or invokes

the transaction will be counted as a data element. We can say that it is an External

Input which has 15 Data elements(DETs) that create one ILF.

The OK button here will be counted as a DET. After using OK button, all

information will be saved in an ILF file. Now we have a little more information

about EI, DEF and ILF.

(ii) External Outputs (EO)

External output is a beginning process that sends data or control information outside

the application boundary. According to the International Function Point Users

Group’s research
31

 “reports created by the application being counted, where the

reports include derived information can be an example to EO.”

Allocating FPs to EOs is very similar to the process for EIs.

To find the complexity of the application we have to determine the DETs and FTRs

(File Type Referenced) as an EO process.

FTRs Data Element Types (DETs)

 1-5 6-19 20+

0-1 L L A

2-3 L A H

4 or more A H H

Table 7- EO Complexity Table [27]

For example, according to Table-7, we can say that, if we counted 0 FTRs and 1

DETs that would be a (L) Low Complexity.

30

 http://www.softwaremetrics.com/examples/ei.htm
31

 www.ifpug.org

54

Table 8- EO Complexity Matrix Weight [27]

According to our example, the complexity is Low, so we can say that, the function

points of this EO will be 4 FPs.

Now, we can consolidate the information about External Outputs by giving a real

example. This is a 3 data elements (DET’s) interface. Also it references 4 FTR's (file

types referenced) and would be rated as an Average and valued at 5 unadjusted

function points.
32

 You can confirm the complexity Average by checking Table-8.

Figure 15- EO example [27]

We can say that, the Amount column is a derived data. It is not stated on FTR.

Description and Due date data elements can be found on FTR. According to this

information we can say that, External Outputs are the calculated data.

The due date does not take apart in this example. So, the due date counted as a DET

here.

32

 http://www.softwaremetrics.com/examples/eo.htm

Complexity Points/Weight

Low 4

Average 5

High 7

55

(iii) External Inquiries (EQ)

According to the description of the International Function Point Users Group

[30]“An external inquiry (EQ) is an elementary process that sends data or control

information outside the application boundary”.

To find the complexity of the application we have to determine the DETs and FTRs

(File Type Referenced).

Table 9- EQ Complexity Table [27]

For example, according to the table-9, we can say that, if we counted 3 FTRs and 15

DETs that would be a (A) Average Complexity.

Complexity Points/Weight

Low 3

Average 4

High 6

Table 10- EQ Complexity Matrix Weight [27]

According to our example, the complexity is Average, so we can say that, the

function points of this EQ will be 4 FPs. Now, we will consolidate the information

about External Inquiries by giving a real example.

FTRs Data Element Types (DETs)

 1-5 6-19 20+

0-1 L L A

2-3 L A H

4 or more A H H

56

Figure 16- EQ example [27]

This EQ has a Name field that has three different data elements. These are First

name, Initial name and Last name. (ex: Dan T. Miller).

Social Security number is another data element and comes from Employee (ILF). So

we can say that this is a 4 data elements (DET’s) interface. Also it references 1 FTR's

(file types referenced) and would be rated as a Low complexity and valued at 3

unadjusted function points. You can confirm the complexity of this EQ by checking

Table-9. The buttons that are named as an Employee, Activities and Reports will be

another transactions.

As we mentioned before, it is not possible to get accurate results by using COCOMO

models. Today, technology is changing day by day. As a result of this, we have to

describe new framework which is useful in SOA environment.

After we got some important information about function point analyses, now we can

start to describe the problem of using COCOMO II in SOA environment and Work

Breakdown Structure that we use in our development cost framework.

57

10. THE PROBLEM OF USING COCOMO II IN SOA PROJECTS

In SOA based structures, we can say that there are a lot of loosely coupled services

within the project. All of these services have their own communication protocols and

well defined interfaces. Each service contains technical details which are

technologically independent. It means that the platform and development language

are stand-alone in SOA projects.

The main problem of using COCOMO II cost estimation model in SOA based

structure is that, although COCOMO II model has scale factors and some other effort

multipliers, it is hard to calculate the most reasonable cost estimation for service

oriented architecture.

According to Stajanovic and Dahanayake
33

; COCOMO II model is not adequate to

estimate effort needed while reusing Service oriented resources. In SOA framework,

there are black box services which can be reused and also there are white box

services which are ported from legacy systems.

In the research of Sommerville
34

, it is mentioned that the black box reuse in the

scope of project the difference between code and service level reuse is important. If

the code level component is not for reuse, it should be described and understood by

using reverse engineering.

33
 Stojanovic Z. and Dahanayake, A. “Service-Oriented Software System Engineering: Challenges

and Practices”. Hershey, PA: IGI Global, Apr. 2005.

34

 Sommerville, I. Software Engineering, 8
th

 ed., London: Addison Wesley, Jun. 2006.

58

According to Oladimeji, Folorunso, Taofeek, Adejumobi
35

; the reusable and loosely

coupled service can be reused with service discovery techniques, such as semantic

annotation and quality of service.

35

 Oladimeji Y. L., Folorunso O., Taofeek A.A, Adejumobi A. I,Nigeria,September, “A Framework

for Costing Service-Oriented Architecture (SOA) Projects Using Work Breakdown Structure (WBS)”,

2011, Global Journals Inc. (USA)

59

11. WORK BREAKDOWN STRUCTURE (WBS)

Work breakdown is a concept that separates operations into small manageable

sections. It is a hierarchical decomposition of the project/scenario to be performed by

the project team. All sub-categories within the work breakdown structure provide

more details and definitions.

The key point of using WBS in the subject project is to process all sub-categories for

finding the overall effort and cost estimation of the project. Finding total cost and

effort starts from the smallest piece of sections then continues to upper stages. In this

way, the total effort and cost estimations can be calculated without any leakage.

Today a lot of companies use WBS structure to manage their projects. This

hierarchical structure provides to manage all sections deeply for project team to

understand these sections clearly.

In the figure below, it is possible to see the structure of WBS.

60

Figure 17- Example of WBS

61

In Figure 17; as the top level represents the entire “Web Site Development” project,

in the lower levels it is possible to see components' parts in detail. While creating a

new work breakdown structure, it is essential to make all sub-categories' outcomes

and deliverables measurable.

According to the structure of WBS, project team identifies the main functional

deliverables. After this process, project team divides these functional deliverables

into small sub-deliverables.

The granularity of all sub-deliverables must be assignable to one person. All tasks

within the sub-categories need to be completed by a specific time and effort that is

given by the project managers.

In cost estimation projects, using this structure, it is possible to assign all main

processes to specific departments which make projects more manageable.

It is expected that the costs and efforts may change during the project life cycle while

the main objectives remain constant.

Second and other levels of the WBS structure must be created carefully by the

managers as well as the planners of the project.

Upper levels must be completed before creating the bottom levels. It means that,

creating WBS structure starts from up levels and continues to bottom levels which

are totally reverse to the logic of the cost and effort estimation process in WBS.

11.1 Benefits of using Work Breakdown Structure

As it is mentioned in the previous section, WBS makes project more manageable

with its detailed structure.

 By using WBS in the project management, it is possible to divide project into

sub-categories which makes easier the calculation of the budget for every

62

departments throughout the company. By dividing cost and time estimates to

particular sections it becomes easier to develop project schedule and budget.

WBS helps project budget plans and schedule to be created effectively.

 By using WBS it is easier to control people who work within the project by

controlling assigned tasks for each person. Responsibilities can be assigned to

people easily.

 Changes during the project life cycle it is possible to add new tasks and sub-

categories to the project. In this way, it is possible to update project changes

while working on the project.

 Well-developed WBS can be used in the future projects.

11.2 Cost Estimation Using Work Breakdown Structure in SOA

WBS helps project managers to estimate the cost of projects easily. The performance

and budget estimations can be found by assigning pre-planned time-based cost

estimation to all WBS elements.

In today's world, SOA became more popular in the technology sector. Thus, the

calculation of big projects became tough.

For the medium and small scaled projects COCOMO and other cost estimation

models were able to calculate the most reasonable results in cost estimation. Then

they updated main COCOMO model into COCOMO II model for enabling old

model to SOA projects.

Stroulia and Tansey
36

 have tried to use COCOMO II in their research to make

estimation of cost for creating and migrating services.

36

 Tansey, B. and Stroulia, E. “Valuating Software Service Development: Integrating COCOMO II

and Real Options Theory,” The First International Workshop on the Economics of Software and

Computation, IEEE Press, May 2007, pp. 8-8, doi: 10.1109/ESC.2007

63

At the end of their research, they indicated that the cost estimation with COCOMO II

should be extended to be able to find the most reasonable results in new

characteristics of SOA based development and COCOMO II model was inadequate

for calculating the total cost estimation.

64

12. SIZE AND COST ESTIMATION OF SERVICE ORIENTED

ARCHITECTURE (SOA)

All cost estimation models up to now find the cost by using case points, function

points, line of codes etc.

In SOA methodology, the sizing method has to be customized. Function points can

be described as functionalities provided to the user by using inputs, outputs, inquires,

and files.

SOA based software architectures differ from other traditional software programmes.

In SOA based project, the service function should show a real-world self-contained

business activity.

There are problems that occur when applying IFPUG to software system size

measurement. For example, the effort of wrapping legacy code and data to work as

services cannot be assigned to any functional size. [40]

12.1 Previous Researches & Frameworks about Size and Cost Estimation of

SOA

According to Linthicum
37

 time is one of the main factors that affects cost estimation

in SOA based software. It has been said that the equations below can be used for

project management as well as project costing method;

37
 Linthicum, D., “How Much Will Your SOA Cost?”

http://www.soainstitute.org/articles/article/article/how-muchwill-your-soa-cost.html, March 2007.

65

 The Cost of the SOA = (Cost of Data Complexity+ Cost of Service

Complexity + Cost of Process Complexity + Enabling Technology Solution)

Then, he gives the equation of “Cost of Data Complexity”;

 Cost of Data Complexity = (Number of Data Elements) * (Complexity of

Data Storage Technology) * (Labor Units)

-Where the Complexity of the Data Storage Technology: is shown as a percentage

from 0% to 100% where Relational is 30%, Object-Oriented is 60% and ISAM is

80%

-The Labor unit: is the amount of money it takes for understanding and refine one

data element.

There is no additional information about Linthicum's equations that proves the

results of these formulations are reliable.

In the research of Conte, Iorio, Meli, and Santillo
38

; they claimed that, the size of the

SOA based software can be found by using the service points instead of function

points. Thus, the size estimation of SOA based project can be calculated by summing

up the size of service points.
39

 (9)

Equation 9- Size Estimation of SOA based project

The expression is given in Equation 9 is Size of SOA based project Equation where;

Pi : Infrastructure Factor (This is an experimental value)

38
 Conte M., Iorio T., Meli R., and Santillo,“An early and quick approach to functional size

measurement methods”. Software Measurement European Forum (SMEF). Rome, Italy, 2004.

39
 Liu, J., Xu, Z., Qiao, J., and Lin, S. “A Defect Prediction Model for Software Based on Service

Oriented Architecture using EXPERT COCOMO,” Chinese Control and Decision Conference

(CCDC), IEEE Press, Jun. 2009, pp. 2591-2594

66

P: is an estimated size of a single service.

Infrastructure factor can be described as a set of technology, management processes

and supporting infrastructure.

Some services can be created from existing resources while others can be built from

scratch. There are also existing services. All of these describe the type of services.

Different types of services make harder to calculate the size estimation in SOA based

projects.

After the research of Conte, Iorio, Meli, and Santillo, O'Brien described SMAT-AUS

framework in his research
40

. They give the details of this framework and its effects

on the scope, cost and effort of services. SMAT-AUS framework discloses technical,

social, cultural and organizational dimensions of SOA project. Service mining,

service development, service integration and SOA application development are

classified as separate SOA project types when applying SMAT-AUS framework.

They used several methods, cost models, templates and also functions to assist cost

and effort estimation process for each project time. Then, they used that project times

to calculate the total cost of SOA based project.

Oladimeji, Folorunso, Taofeek, Adejumobi created a new framework by using work

breakdown methodology while calculating the cost estimation of the SOA based

project. They allocated SOA based software development cost estimation into sub-

categories as shown below [40],

 The cost of service discovery

 The cost of service migration (service wrapping)

 The cost of service development

 SOA Cost Estimation(component service)

 The cost of service integration for component services in the highest level

(top level) service.

40
 O' Brien, L. “A Framework for Scope, Cost and Effort Estimation for Service Oriented

Architecture (SOA) Projects” Software Engineering Conference” IEEE Press, April 2009.

67

Total cost estimation can be found by summing all of these elements. Li and Keung

described another framework that uses divide and conquer approach
41

. They used

several metrics within their framework study. By using divide and conquer approach

they tried to find the overall solution by dividing size of the SOA project problems

into sub-problems. By decomposing “problem of size N” into “sub-problems” they

tried to solve each sub-problem.

According to principle of divide and conquer approach, it is possible to produce

“sub-solution” for each sub-problem. By composing each sub-solution, it is possible

to find the overall solution. Li and Keung's work concentrating on cost estimation for

service integration. They focused on the development process in their research by

using 4 different service types. These types are [46];

 Available Service (basic service type): This is the service already existing.

For instance, service provided by a third party or inherited from legacy SOA

based systems.

 Migrated Service (basic service type), is the service to be generated through

modifying or wrapping reusable traditional software component(s).

 New Service (basic service type), is the service to be developed from scratch.

 Combined Service: This is the service which is created by the combination of

“Available Service”, “Migrated Service”, “New service.” or other combined

services.

41
 Li, Z., Keung Jacky “Software Cost Estimation Framework for Service-Oriented Architecture

Systems using Divide-and-Conquer Approach” Sydney, Australia IEEE Press, September 2010

68

13. HOW TO DESCRIBE FUNCTION POINTS IN SOA BASED

PROJECT'S COST ESTIMATION

13.1 A New Solution For Cost Estimation in SOA

After the needs of SOA projects' cost estimation increased, some researchers have

analysed new frameworks and new calculations to become familiar with the current

technologies. When it comes to services, it was hard to use function points in their

calculations. Thus, they studied on projects to find the cost of the services not only

the requirements on the project. They described new frameworks which are usable

for different types of services.

In our study we will use work breakdown structure while calculating the

development cost of the SOA project. We will try to find development cost for

optimal granularity of services by using the work breakdown structure (WBS). We

will use WBS while we are calculating the development cost for every single

services that we created by Monte Carlo Simulation method. Then we will see if this

framework gives us detailed cost of service development results in a SOA project.

In service oriented architecture it is faster to develop and implement IT and it lowers

the development cost. The important question is that: “How services should be

modelled to make them flexible?” There is no accurate solution to answer this

question.

69

14. SERVICE GRANULARITY IN SOA

SOA based-projects provide reusability and composability of services within the

project. A high level of granularity provides system to be flexible and extendible. At

Papazoglou et al.'s research
42

, he described service granularity as the unit of

modularity of a system. Modularity means the amount of functionality of service.

Another researcher Feuerlicht and Wijayaweera
43

 mentioned that, coarse grained

services implement high level business functions while fine grained services

implement a single atomic operation which exchange limited amounts of data in the

SOA project.

Today, most researchers describe the importance of finding a right service

granularity in SOA while others mention the importance of optimum service

granularity.

42
 Papazoglou M., Van den Heuvel W. “Service-Oriented Design and Development Methodology”.

International Journal of Web Engineering and Technology 2006

43
 Feuerlicht, G., Wijayaweera, A. “Determinants of Service Reusability, New Trends in Software

Methodologies, Tools and Techniques”, IOS Press, 2007

70

15. FINDING DEVELOPMENT COST IN A SOA PROJECT

As we mentioned before, there were several approaches to the SOA cost estimation.

Some of them tried to find overall cost while others try to find new solutions for

management cost or development cost.

Current research shows the cost estimation of SOA project is still argumentative. By

considering previous studies carefully, we will try to find development cost in our

research while using work breakdown structure to simplify the estimation of

development cost.

We will do our research based on 3 metrics and we will use these service points in

our calculation:

 Cluster Size

 Structural Complexity

 Number of Input and Output (I/O)

In the next section, we will describe these metrics in detail.

In our case study, we will have several services. We will cluster these services into

number of groups. The number of groups can be decided by the Monte Carlo

simulator user. Clustering these services into sub-groups will give us different

grouping sizes and different development costs with new services. We will start to

calculate development cost according to WBS work flow. We will use mentioned

metrics: Cluster size, Structural complexity and number of I/O while we are

calculating the development cost of new services.

71

15.1 Cluster Size Metric

Cluster size will be measured as a number of services that is included by one cluster.

By grouping clusters, we will obtain different fine grained or coarse grained service

sets which give us different development costs according to their cluster size. By

clustering services into several groups it is possible to create new services with

different sizes.

Using work breakdown method in our research, cluster groups which are created by

using Monte Carlo simulation programme may include one or more services. For

instance, if we try to cluster services into two groups, it is possible for first group to

include just one service while another group includes all of the other services

throughout the process.

This will change the cluster size and service complexity. We will give examples of

different scenarios to have different values which help us to find the optimal service

clustering.

By creating new services with clustering may give us different development costs.

For instance; if we put all services into one group, it will increase the line of code

(LOC). Thus, complexity will be increased as well as development effort will be

higher. Furthermore, if cluster size rises, number of I/O will be decreased oppositely.

15.2 Structural Complexity Metric

For calculating the service development cost, we can use structural complexity as

another metric. We can say that, line of code can be the main factor of the structural

complexity metric. We will use LOC size while we are calculating the complexity.

15.2.1 Line of Code (LOC)

In our case study Line of Code will be measured as a number of lines that is written

by developers per service. The development effort will be increased when the

Project's line of code increases. Increase of the LOC will affect the development

72

cost. More LOC means more effort and more complexity. LOC may be different in

different programming languages for the same program.

For instance, developing in C may be shorter than developing in Cobol. Therefore,

programming language may affect the number of lines while estimating the project

cost.

15.3 Number of Input and Output (I/O) Metric

I/O size can be measured by the number of input and output within the service.

Having more I/O means more complexity of a service. In other words, the

development cost will be less if there is not a lot of I/O in the service.

The table below shows how metrics may affect each other and our main service

metrics.

I

F

Cluster Size ↑ THEN LOC ↑ EXPECTED

RESULT

DEVELOPMEN

T COST

↑

I

F

Cluster Size ↑ THEN I/O Size ↓ EXPECTED

RESULT

DEVELOPMEN

T COST

↓

I

F

LOC ↑ THEN Structural

Complexity

↑ EXPECTED

RESULT

DEVELOPMEN

T COST

↑

I

F

Structural

Complexity

↑ THEN LOC ↑ EXPECTED

RESULT

DEVELOPMEN

T COST

↑

I

F

I/O Size ↑ THEN Structural

Complexity

↑ EXPECTED

RESULT

DEVELOPMEN

T COST

↑

Table 11- How metrics affect each other

73

16. CASE STUDY: FINDING OPTIMAL SERVICE

GRANULARITY BY CALCULATING DEVELOPMENT COST IN

A SOA PROJECT

In our case study we will try to find the optimal service granularity by calculating the

development cost. Development cost of a new service will be calculated by using

Service line of code, service I/O size, and structural complexity.

We will try to create new services by granulating services into several groups. These

groups will be named as “cluster”. We will create 100 samples of each cluster to find

different results. According to these results our simulation programme will find the

optimal service which is produced with the lowest development cost.

Now we will give some information about Monte Carlo Method that we used during

generating random numbers in our experiments for finding the optimal service

granularity.

74

17. MONTE CARLO METHOD

Monte Carlo Methods are based on the use of random numbers and probability

statistics to investigate problems. Monte Carlo Methods are used in many areas from

finance to physics. Obviously, they are applied in variety ways from field to field.

But, definitely, to call something as a Monte Carlo experiment you need to

investigate the problems.

A large system can be sampled in a number of random configurations by using

Monte Carlo Methods. So, the data which has been extracted can be used to define

the system as a whole.

We use Monte Carlo Method in our experiments while sampling clusters with

random services. Also, we distribute services into clusters with random services and

random number of services. The main patterns of Monte Carlo Method may contain

following steps:

STEP 1: Define possible inputs

STEP 2: Generate random inputs from possible combinations over the set.

STEP 3: Performing deterministic computation on the given inputs.

STEP 4: Accumulate the results.

Assume that we will calculate the cost of a project in SOA.

For estimating the cost, we will probably need to know the factors which may affect

the cost. These factors can be defined by user manually.

75

In the next step, we should generate inputs randomly from the domain. The inputs

and defined factors will be used by Monte Carlo Simulation to generate different

variations which helps to obtain possible conditions or states.

On the following step, we should perform a deterministic computation using our

inputs. Different states may give us different results while estimating the software

cost.

In the final step, we should accumulate our individual inputs. To bring every little

data together, we have to calculate every possible domain and the possible cost

scenarios.

This simple sample describes how to use Monte Carlo methods in our case study. As

we talked about cost calculation, we can also make other calculations by using

different frameworks or methods.

17.1 History of Monte Carlo Method

The development of Monte Carlo method started in 1940’s. Many reserchers used

Monte Carlo Methods in their researches.

Neumann, Metropolis and other researchers started to systematic development of

Monte Carlo Method after years. They did some statistical sampling using

Computing Techniques. After years, in 1953, Metropolis, A. Rosenbluth, M.

Rosenbluth, A. Teller, and E. Teller described Metropolis Algorithm.
44

Stanislaw Ulam used Monte Carlo Method for calculating complicated mathematical

integrals in the theory of nuclear chain reactions.

44

 Nucleonica, “ Introduction to Monte Carlo method”, European Commission Directorate –General

Joint Research Centre, 2008

76

Rosenthal used Monte Carlo algorithms for parallel computing in 2000. They

showed that the Monte Carlo algorithms are useful in parallel computing.
45

. At the

end of their experiments, they found that is not hard to run Monte Carlo and Markov

chain Monte Carlo in parallel computing.

Researchers believe that, Monte Carlo method will become popular in the future

when computers become more numerous and better networked.
46

45

 J.S. Rosenthal, “Analysis of the Gibbs sampler for a model related to James-Stein estimators”

Statics and Computing, 6, 269-275, 1996

46

 J. S. Rosenthal, “Parallel computing and Monte Carlo algorithms”, Far East Journal of Theoretical

Statistics 4, 207–236, 2000

77

18. CASE STUDY: FINDING DEVELOPMENT COST OF A

SERVICE

18.1 Motivation

In our research we will try to find optimum service granularity by clustering services

into small pieces. By using Monte Carlo Simulation method we will generate random

services with different inputs and outputs then we will be able to calculate the

development cost of every single service to find optimal service granularity with

accurate results. In our framework, we will use service points instead of using

function points. You can find the metrics that we have used during our experiments

in Section 15. We will use these metrics in our framework and calculations.

At the end of our research we will try to find the optimal clustering size that gives the

most reliable development cost of a service and we will be able to see the effect of

granularity on service development cost.

18.2 SOA Development Cost Framework & Scenario

Framework that we created is based on three main metrics Cluster size, Structural

complexity and I/O size. Now we will describe how we used these service points in

our framework.

We assumed that there is a scenario with 50 services. We assigned random

complexity value for all services which can be a decimal number. Actually, this

complexity value corresponds to LOC size for each service.

78

Figure 18- Service Clustering

As you see in Figure 18, we have used 50 services for service clustering. All clusters

contain one or more groups that use our existing services which are distributed

randomly into these groups. We assumed that there are 30 inputs and 25 outputs in

our project. Figure 19 illustrates the main steps of our framework.

50 Services

(Each cluster contains 50 services)

(For every cluster, we generated new service groups to create new

services from existing services.)

C1 C2 C3 ……… C50

FOR C1 FOR C2 FOR C3 FOR C50 ………

Group 1 Group 1

Group 2

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3

.

.

.

.

.

Group 50

79

Figure 19- Main steps of our framework

18.2.1 How to Estimate Complexity

We created 3 complexity categories for calculating the complexity of services. These

are low, high and average.

 Low Average High

Number of services in cluster 1-5 6-45 46-50

Complexity Factor 1.10 1.13 1.15

Table 12- Complexity Ranges and Factors

80

First of all, we check the number of services inside the cluster. Then the complexity

of this cluster is found if it is low, average or high. For instance, in cluster-4 there

are 4 groups. The total of services is always 50. When we look inside these groups,

we can see that the existing services are distributed into these four groups randomly.

Each group contains different or the same number of services. We can describe it

clearly;

Cluster 4

Group1 {22, 1, 30, 2, 37, 3, 46, 4, 32, 5, 47}

Group 2 {21, 6, 48, 7, 8, 23, 24, 30, 31, 25}

Group 3 {35, 9, 40, 10, 11, 41, 12, 13, 49, 14, 34, 15, 38, 16, 42, 17, 18, 43, 19, 20

28, 45, 29, 33, 39, 44}

Group 4 {50, 26, 27, 36}

As you see above, Group 1 contains 11 services which make cluster complexity

“Average”. If the complexity of a group is average then we have to use 1.13 as a

complexity factor of this group. As we said before, we assigned random complexity

value for all services which can be a decimal number between 2 and 4. For our

example in Group 1, assume that;

For 22 the complexity value is 2

For 1 the complexity value is 3.3

For 30 the complexity value is 2.1

For 2 the complexity value is 4

For 37 the complexity value is 3.8

For 3 the complexity value is 2.5

For 46 the complexity value is 3

For 4 the complexity value is 2

For 32 the complexity value is 3.7

For 5 the complexity value is 2.2

For 47 the complexity value is 3.9

If you look into the groups of cluster 4,

81

The Complexity Factor of Group 1 is 1.13 (Average)

The Complexity Factor of Group 2 is 1.13 (Average)

The Complexity Factor of Group 3 is 1.13 (Average)

The Complexity Factor of Group 4 is 1.10 (Low)

So the Complexity of Group 1 will be;

Group 1 Complexity= (Total Service Complexity Value of Group 1)*

Complexity Factor of Group 1

Group 1 Complexity= (2+ 3.3+ 2.1 + 4+ 3.8 +2.5+ 3+ 2+ 3.7+2.2+3.9) * 1.13 =

36,725

If we do the same calculations for Group 2, Group 3, Group 4; we will find different

group complexities. Then we can find the total complexity of Cluster 4. So we can

calculate it like this:

CLUSTER 4 TOTAL COMPLEXITY= ((Total Service Complexity Value of

Group 1* Complexity Factor of Group 1) + (Total Service Complexity Value of

Group 2* Complexity Factor of Group 2) + (Total Service Complexity Value of

Group 3* Complexity Factor of Group 3) + (Total Service Complexity Value of

Group 4* Complexity Factor of Group 4))

These calculations continue until all cluster’s complexities are found.

We generate 100 samples for each cluster to find optimal service with reliable

development cost. So, we will have 5000 samples in our experiments.

82

We choose the cluster with minimum complexity in 100 samples. Think that, Sample

5 has the minimum complexity in our 4
th

 Cluster. We do this process for all cluster

samples. We take Sample 5 and other samples with the minimum complexity into

account while we are calculating total development cost. This information can be

found in the experiment section of this paper.

18.2.2 How to Estimate I/O Cost

In the framework we defined, there are 4 service types. These are;

 NO Input OR Output

 NO Input JUST Output

 JUST Input NO Output

 BOTH Input AND Output

We assigned different inputs and outputs for all services that we defined at the

beginning of our project. We have used 4 different service types as we mentioned

before. Some of our services do not contain input and output. This provided us to

find different I/O costs during our experiments.

Also, we determined an I/O factor which affects the I/O cost of a service. There are

some probabilities while clustering services into several groups. For instance, some

groups may have services which have same inputs. On such an occasion, there is no

point to define the same inputs or outputs twice. Thus, this will be a profit for

reducing our development cost. We should take into consideration this issue while

we are calculating the I/O cost. So, we thought that we have to make our calculations

in this order:

Firstly, we find the total of all inputs and outputs within the cluster. Then we

compare all inputs and outputs within the group to know if there are same inputs or

outputs in different services. For instance;

Cluster 4 for Group1 {11, 24}

For service 11, input set is {1, 5} and output set is {10, 21, 7, 12}

83

For service 24, input set is {1, 13, 5, 7} and output set is {20, 10}

Now, we will compare service 11 and service 24’s I/O values.

Common I/O for service 11 and 24 is; Input {1; 5} and Output {10}

We do this process for all services within the group. The Input and Output factors

decrease if there is common I/O in the group.

In our first experiment, an initial factor of Input and Output is 0, 90. We decrease

this factor if there are common inputs or outputs. So, at the end of calculations, input

and output values can be different.

Now, we will use the same example that we used above;

There were two common inputs and one output in Group 1, {1; 5} for inputs and

{10} for output.

Input Cost Factor calculation for Group 1:

Common Inputs: {1; 5} 2 common inputs.

Input Decrease Factor= 0, 1

0, 90- (0, 1 + (0, 1÷2)) = 0, 75

Group 1 Input Cost= (Total inputs of Group 1) *(Input Cost Factor)

 = 6* 0, 75= 4, 5

If there were 3 common inputs then we have to calculate it with this equation;

0, 90- (0, 1 + (0, 1÷2) + (0,1÷4)) = 0, 725

Output Cost Factor calculation for Group 1:

Common Outputs: {10} 1 common output.

If the common inputs are more than one; for each common inputs that follow the

first common input, we divide decrease factor by multiple of two (twin or

couple).

84

Output Decrease Factor= 0, 1

0, 90- (0, 1) = 0, 80

Group 1 Output Cost= (Total outputs of Group 1) *(Output Cost Factor)

 = 6* 0, 80= 4, 8

Group 1 I/O Cost= Group 1 Input Cost + Group 1 Output Cost=

 = 4, 5 + 4, 8= 9, 3

We should perform the same calculation for all groups within the cluster to find the

total cluster I/O Cost.

18.3 Prerequisites

During our experiments we have used:

 Method 1 : Monte Carlo Model

 Method 2 : Work Breakdown Structure

 Computer Processor: Intel Core i5, 2.27 GHz

 RAM: 6GB

 Computer Operating System: Windows 7, 64-bit

 Server (For experiments): Intel Xeon 2.40 GHz, 4GB RAM. Operating

System is Windows 2008 64-bit

 Microsoft Excel for reporting

 Development environment: MS Visual Studio 2010

 Programming Language : C#

 Database: SQL Server 2008

If the common outputs are more than one; for each common outputs that follow

the first common output, we divide decrease factor by multiple of two (twin or

couple).

85

18.4 Experiment 1

Duration: 9 Hours (Generating clusters and distribute services into clusters)

Description: This example illustrates the effect of granularity on service

development cost.

Parameters & Factors:

 Number of Samples 100

 No of Services 50

 Complexity Cost

Range 2-4

 Complexity Cost

Factor 1

 Complexity Levels LOW AVG HIGH

 1.1 1.13 1.15

IO Cost Factor 1

IO Cost Levels

If the common inputs or outputs are more

than one; for each common inputs and

outputs that follow the first common input

or output, we divide decrease factor by

multiple of two (twin or couple) for each

common inputs and outputs.

Graph 1- Experiment 1 (Total Development Cost of 50 clusters)

86

In graph 1, x axis illustrates the clusters that we have used during our experiments

while y axis shows the total development cost of these clusters.

Result:

As a result we can say that;

 Cluster 9 is the optimal cluster which has the lowest development cost with

251, 76.

 Cluster 44 has the highest development cost with 257, 39.

 The difference between these two clusters is 5, 63.

 Development cost line goes crinkly. So, we can say that clustering services

affect the development cost but there is not a significant difference between

clusters to take into account.

Figure 20-Optimal Services of Experiment 1 with I/O and LOC Costs

18.5 Experiment 2

Duration: 9 Hours (Generating clusters and distribute services into clusters)

Description: This example illustrates the effect of granularity on service

development cost. We changed the I/O Cost levels calculation method.

87

Parameters & Factors:

No of Samples 100

 No of Services 50

 Complexity Cost

Range 2-4

 Complexity Cost

Factor 1

 Complexity Levels LOW AVG HIGH

 1.1 1.13 1.15

IO Cost Factor 1

IO Cost Levels

If the common inputs or outputs are

more than one; for each common

inputs and outputs that follow the

first common input or output, for the

first 3 inputs and outputs decrease

factor is 0, 1. If there are more

common inputs and outputs (more

than 3), we divide decrease factor by

multiple of two (twin or couple) for

each common inputs and outputs.

Graph 2- Experiment 2 (Total Development Cost of 50 clusters)

88

In graph 2, x axis illustrates the clusters that we have used during our experiments

while y axis shows the total development cost of these clusters.

Result:

As a result we can say that;

 Cluster 2 is the optimal cluster which has the lowest development cost with

236, 41.

 Cluster 48 has the highest development cost with 263, 16.

 The difference between these two clusters is 26, 75.

 Development cost line increases constantly. So, we can say that clustering

services do not affect the development cost significantly.

Figure 21- Optimal Services of Experiment 2 with I/O and LOC Costs

18.6 Experiment 3

Duration: 9 Hours (Generating clusters and distribute services into clusters)

Description: This example illustrates the effect of granularity on service

development cost. We changed the complexity cost range.

89

Parameters & Factors:

 No of Samples 100

 No of Services 50

 Complexity Cost

Range 1-5

 Complexity Cost

Factor 1

 Complexity Levels LOW AVG HIGH

 1.1 1.13 1.15

IO Cost Factor 1

IO Cost Levels

If the common inputs or outputs are more

than one; for each common inputs and

outputs that follow the first common input

or output, for the first 3 inputs and outputs

decrease factor is 0, 1. If there are more

common inputs and outputs (more than 3),

we divide decrease factor by multiple of

two (twin or couple) for each common

inputs and outputs.

Graph 3- Experiment 3 (Total Development Cost of 50 clusters)

In graph 3, x axis illustrates the clusters that we have used during our experiments

while y axis shows the total development cost of these clusters.

90

Result:

As a result we can say that;

 Cluster 2 is the optimal cluster which has the lowest development cost with

236, 87.

 Cluster 49 has the highest development cost with 263, 55.

 The difference between these two clusters is 26, 68.

 Development cost line increases constantly. So, we can say that clustering

services do not affect the development cost significantly.

Figure 22- Optimal Services of Experiment 3 with I/O and LOC Costs

18.7 Experiment 4

Duration: 18 Hrs (Generating clusters and distribute services into clusters)

Description: This example illustrates the effect of granularity on service

development cost. We changed the complexity cost range and number of samples.

We repeated Experiment 1 with 200 samples.

91

Parameters & Factors:

No of Samples 200

 No of Services 50

 Complexity Cost Range 2-4

 Complexity Cost Factor 1

 Complexity Levels LOW AVG HIGH

 1.1 1.13 1.15

IO Cost Factor 1

IO Cost Levels

If the common inputs or outputs

are more than one; for each

common inputs and outputs that

follow the first common input or

output, we divide decrease factor

by multiple of two (twin or

couple) for each common inputs

and outputs.

Graph 4- Experiment 4(Total Development Cost of 50 clusters with 200

samples)

In graph 4, x axis illustrates the clusters that we have used during our experiments

while y axis shows the total development cost of these clusters.

92

Result:

As a result we can say that;

 Cluster 12 is the optimal cluster which has the lowest development cost with

257, 68.

 Cluster 50 has the highest development cost with 262, 2.

 The difference between these two clusters is 4, 52.

 The maximum development cost is in cluster 50. So, we can say that

clustering services do not affect the development cost significantly.

Figure 23- Optimal Services of Experiment 4 with I/O and LOC Costs

93

19. DISCUSSION AND CONCLUSIONS

During our experiments, we found empirical results for different samples. The

framework that we created in our research can be adapted to other real-time projects

to get reliable results.

At the end of our experiments we found an optimal service granularity with different

development costs. It is possible to see the effect of I/O Cost and Complexity metrics

while calculating the development cost of a service.

According to our results, we can say that; I/O Cost and Complexity metrics do not

affect the development cost of a service excessively when you generate different

service granularities.

Of course there are possible factors which may decrease the cost estimation in SOA

projects but in our case study, we tried to show the development cost of service

granularities.

We noticed that the Work Breakdown Structure is not only for management

processes but also useful for calculating development cost of a service. We have used

this structure while we are calculating the complexity and I/O costs of a service. We

defined Complexity and I/O cost as a sub-problems of the project. Then we found

solutions to these problems by calculating the development cost for all services.

In the future, researchers should create new frameworks which are compatible with

service oriented architecture. Defining new frameworks with different service points

may help us to calculate more reliable development cost in our SOA projects.

94

References

[1] Hareton Leung, Zhang Fan “Software Cost Estimation”, The Hong Kong

Polytechnic University, Japan.

[2] Ian Sommerville “Software Cost Estimation”, Software Engineering 7
th

 Edition,

UK, 2004

[3] W.Royce, “Software project management: a unified framework, Adisson

Wesley”, 1998

[4] NASA Johnson Space Center, “Parametric Cost Estimating Handbook”, NASA,

United States of America, 1995

[5] National Aeronautics and Space Administration “Parametric Cost Estimating

Handbook”, Department of Defense, USA, 1995

[6] Barry Boehm, Chris Abts, [Chulani] “Software Development Cost Estimation

Approaches-A Survey1”, Sunita Chulani IBM Research, University of Southern

California, Los Angeles, 1998

[7] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R. “Cost

Models for Future Software Life Cycle Processes”, 1995

http://sunset.usc.edu/COCOMOII/Cocomo.html

[8] The Data & Analysis Center for Software “Modern Empirical Cost and Schedule

Estimation Tools”, https://www.dacs.dtic.mil/techs/estimation

[9] Boehm,B “Safe and Simple software cost analysis”, IEEE Software, 2000

http://sunset.usc.edu/research/cocomosuite/index.html

95

[10] Web Site; www.softstarsystems.com/overview.htm

[11] Laren Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori Khorrami, Erik

Monson “Handbook for software cost estimation”, Jet Propulsion Laboratory,

Psadena,California, 2003

[12] J.D. Aron “Estimating Resource for Large Programming Systems”, NATO

Science Committee, Rome, Italy, 1969

[13] A.J Albrecht, and J. E. Gaffney, “Software Function, source lines of codes and

development effort prediction: a software science validation”; IEEE Trans Software

Eng. SE-9 pp. 639-648, 1983

[14] http://www.ii.metu.edu.tr/; “Software Quality Assurance”.

[15] G. Karner ; “Resource Estimation for Objectory Projects”; Objective Systems;

Torshamnsgatan, 1993

[16]http://www.service-architecture.com/web-services/articles/service-

oriented_architecture_soa_definition.html, “SOA Definition”

[17] OASIS-Matthew MacKenzie, Ken Laskey, Francis McCabe, Peter F Brown,

Rebekah Metz, Booz Allen Hamilton; “Reference Model for Service Oriented

Architecture 1.0”, Committee Specification, 2006

 [18] http://www.soainstitute.org/,David S. Linthicum; “How much will your SOA

cost?” 2007

[19] Card, D. N. ,W. Agresti, "Measuring Software Design Complexity." The Journal

of Systems and Software 8, 3; 185-197. (Original definition of the metric), 1998

[20] http://www.aivosto.com/project/help/pm-sf.html

[21] http://soa.sys-con.com, 2005

[22] C. Roland, “A comprehensive view of process engineering, Proceedings of the

10
th

 international conference” and B. lecture notes in computer science, Italy, 1998

http://www.ii.metu.edu.tr/
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
http://soa.sys-con.com/

96

[23] Claudia Steghuis, “Service granularity in SOA projects” University of Twente,

Netherlands, 2006

[24] Boris Lublinsky; “Defining SOA as an Architectural Style”, www.ibm.com,

2007

[25] Thomas Fetcke, Alain Abran and Tho Hau Nguyen, “Mapping the o-o Jacobson

Approach into Function Point Analyses”, IEEE, 1998

[26] Alvin J. Alexander; “How to Determine Your Application Size Using Function

Point Analysis”, 2004

[27] www.devdaily.com

[28] http://www.softwaremetrics.com/examples/

[29] Thomas Fetcke, Alain Abran and Tho Hau Nguyen, “Mapping the o-o

JacobsonApproach into Function Point Analyses”, IEEE, 1998

[30] http://www.softwaremetrics.com/examples/ei.htm

[31] www.ifpug.org

[32] http://www.softwaremetrics.com/examples/eo.htm

[33] Stojanovic Z. and Dahanayake, A. “Service-Oriented Software System

Engineering: Challenges and Practices”. Hershey, PA: IGI Global, Apr. 2005.

[34] Sommerville, I. Software Engineering, 8
th

 ed., London: Addison Wesley, Jun.

2006.

[35] Oladimeji Y. L., Folorunso O., Taofeek A.A, Adejumobi A.

I,Nigeria,September, “A Framework for Costing Service-Oriented Architecture

(SOA) Projects Using Work Breakdown Structure (WBS)”, Global Journals Inc.

(USA), 2011

[36] Tansey, B. and Stroulia, E. “Valuating Software Service Development:

Integrating COCOMO II and Real Options Theory,” The First International

http://www.ibm.com/
http://www.softwaremetrics.com/examples/eo.htm

97

Workshop on the Economics of Software and Computation, IEEE Press, May 2007,

pp. 8-8, doi: 10.1109/ESC.2007

[37] Linthicum, D., “How Much Will Your SOA Cost?”

http://www.soainstitute.org/articles/article/article/how-muchwill-your-soa-cost.html,

March 2007.

[38] Conte M., Iorio T., Meli R., and Santillo,“An early and quick approach to

functional size measurement methods”. Software Measurement European

Forum(SMEF). Rome, Italy, 2004.

[39] Liu, J., Xu, Z., Qiao, J., and Lin, S. “A Defect Prediction Model for Software

Based on Service Oriented Architecture using EXPERT COCOMO,” Chinese

Control and Decision Conference (CCDC), IEEE Press, Jun. 2009, pp. 2591-2594

[40] O' Brien, L. “A Framework for Scope, Cost and Effort Estimation for Service

Oriented Architecture (SOA) Projects” Software Engineering Conference” IEEE

Press, April 2009.

[41] Li, Z., Keung Jacky “Software Cost Estimation Framework for Service-Oriented

Architecture Systems using Divide-and-Conquer Approach” Sydney, Australia IEEE

Press, September 2010

[42] Papazoglou M., Van den Heuvel W. “Service-Oriented Design and

Development Methodology”. International Journal of Web Engineering and

Technology 2006

[43] Feuerlicht, G., Wijayaweera, A. “Determinants of Service Reusability, New

Trends in Software Methodologies, Tools and Techniques”, IOS Press, 2007

[44] Nucleonica, “Introduction to Monte Carlo method”, European Commission

Directorate –General Joint Research Centre, 2008

[45] J.S. Rosenthal, “Analysis of the Gibbs sampler for a model related to James-

Stein estimators” Statics and Computing, 6, 269-275, 1996

98

[46] J. S. Rosenthal, “Parallel computing and Monte Carlo algorithms”, Far East

Journal of Theoretical Statistics 4, 207–236, 2000

[47] S. Brin, L. Page, R. Motwami and T. Winograd, “The PageRank citation

ranking: bringing order to the Web”, Stanford University Technical Report 1998,

http://dbpubs.stanford.edu:8090/pub/1999-66.

99

Curriculum Vitae

Aslı Yılmaz TaĢkın was born on 22 July 1984, in Izmir. She received her B.Sc.

Degree in Computer Engineering in 2006 and M.Sc Degree in 2012 in Computer

Engineering both from Kadir Has University. She worked as a research assistant at

the Department of Computer Engineering of Kadir Has University from 2007 to

2008. She also worked in a private software company as a system analyst. After

years, she started to run her own company in the United Kingdom.

