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LOG ANALYSIS WITH ANOMALY DETECTION

ABSTRACT

Detection of anomalies in the data is an important data analysis job for server
logs as they will reveal many benefits. Different types of methods can be used for
anomaly detection: supervised, semi-supervised, and supervised anomaly detection.
Similarly different algorithms exist for each category. In this work, four anomaly
detection algorithms are utilized and their performance metrics are compared for
a public Hadoop Distributed File System (HDFS) data. Among the others, the

support vector machines are identified as the best method for anomaly detection.

Keywords: Anomaly, anomaly detection, log analysis, SVM, supervised

and unsupervised methods




ANORMALLIK TESPITIYLE KUTUK COZUMLEMESI

OZET

Sunucu kiitiikler; i¢in veride anormallik yakalama getirecegi faydalar sebebiyle ¢ok
onemli bir veri igleme gorevidir. Anormallik yakalama i¢in farkl tiirde yontemler
kullanilabilir: gozetimli, yan gozetimli ve gozetimsiz. Benzer gekilde, her bir tir
igin farkh yontemler bulunmaktadir. Bu calismada, herkese agik bir Hadoop Dagitik
Dosya Sistemi (HDF'S) verisi i¢in dort adet anormallik yakalama y6ntemi kullanilmisg
ve basarimlari kiyaslanmistir. Otekilerin yaninda SVM anormallik yakalamada en

basarili y6ntem olarak ortaya cikmigtir.

Anahtar Sozciikler: Anormallik, anormallik yakalama, kiitiik coziimlemesi, SVM,

gozetimli ve gozetimsiz yontemler
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1. INTRODUCTION

The information age has witnessed the widespread use of computers for a variety of
jobs in every sector. Enterprise computing systems are designed to meet high levels
of service requirements. Those requirements can only be met by an appropriate
cooperation of hardware and software components. Servers are dedicated hardware
units that serve computing platforms. Usually, servers are built to work in a fault
tolerant manner where the software components (both the operating system and the
application software) are also designed with high expectations. Despite the advances
in technology, faults and errors are inevitable due to several reasons. Firstly, hard-
ware components suffer from fatique and random errors. Secondly, software may
contain bugs. Beyond these factors, modern computer systems are under attack of
hackers by means of several methods. As a consequence, all computers track the
events occurring in their hardware and software components including the network.

Those events are recorded as digital logs which can be investigated so as to make a

forensic analysis.

Nowadays, applications and servers produce log data in an enormous amount. As the
Internet grows and communication between computers constitute an integral part
of server activities, log data is structured into several categories such as processing,
operating system, database, networking, etc. Logging data is a normal daily routine
to register many events in the server and applications [1]. Therefore, a problem
in applications and servers can be found by analyzing these log data. A lot of
information is available in this log data. But this analysis is difficult even impossible
to do manually. On the other hand, real time event recognition is essential to
prevent data loss or hacking activities. However, real time log data analysis is

almost impossible in online systems with the data stream rates of today. Therefore,



there is a need for a structured methodology to do this analysis quickly [2].

Abnormalities of data in the logs can be an effective indicator for taking action as a
critical event may have happened. Hence, anomaly detection becomes an important
necessity in the computing industry. Anomaly detection supplies correct and un-
derstandable evaluation of the data. Anomaly detection is used to identify unusual
patterns in the rest of the data. There are many different names of anomalies in
the literature such as outliers, exceptions, peculiarities, etc. All these terms can be
used interchangeably as the common point is deviation from the normal operation.
However, the term outlier is most commonly encountered and used in the litera-
ture. There are three different types of anomaly in the literature. Firstly, the point
anomaly is generally called outliers anomaly. In point anomaly, a single instance of
data is anomalous if it’s too far off from the rest. Second one is contextual anomaly
that is common in time-series data. Third type of anomaly is collective anomaly.

This type of anomaly appears as a set of data instances collectively indicate an

anomaly [3].

Based on the extent to which the labels are available, anomaly detection techniques
can operate in one of the following three modes: supervised, semi-supervised and
unsupervised [4]. Supervised techniques assume that data instances are labeled as
normal or abnormal, that is, data is divided into two classes. On the other hand
unsupervised techniques don’t necessary have labeled data instances. They directly
learn from unlabeled data instances. Semi-supervised techniques need labelled data
instances for the normal class. Those three techniques used in machine learning are
also applicable for anomaly detection which is the main topic of this thesis. Different
anomaly detection approaches will be investigated for log data analysis. The next
chapter will define the anomaly types. Next, the methods of anomaly detection will

be highlighted and the real life dataset to be used, will be explained. The thesis will

conclude after the results of the experiments are analyzed.




2. PROBLEM DEFINITION

2.1 What is an Anomaly?

Anomalies are unexpected behaviors or previously unseen patterns in the outcomes
of a process. Regarding server systems, an anomaly can be identified by an unusual
data stream that does not appear in usual, normal operation. Abnormalities can
occur due to many reasons such as hardware faults, energy surges, software bugs,
and last but least by malicious acts of hackers. Detection of those abnormal be-
havior in the systems can be utilized for prevention of malware, network intrusion,
industrial damage, and faults in general. Video surveillance, manufacturing mon-
itoring systems, financial institutions tracking transactions, network analyzers etc.
are some of the systems where anomaly detection is applied. Detection of anomaly

is within the research area of many disciplines such as statistics, machine learning,

information theory, and data mining [5, 6].

2.2 Type of Anomalies

Anomalies are divided into three general groups as can be seen in Figure 2.1. Each

of them will be explained below.

2.2.1 Point Anomaly

This type of anomaly is also called a global outlier. Point anomaly is an individual
data instance which differs from the rest of the data. For example, an instant change
in credit card spending may indicate the possibility of fraud or that the credit card is

being stolen. It is a point anomaly to make an expenditure in a distant place than the
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routine expenses are made from credit card. Figure 2.2 displays a generic example
of point anomaly. Point anomalies can be identified and fixed quickly provided
that there exists enough data about the past history. Moreover, the clusters (types
of normal behavior) have to be separated from each other. A major risk in point

anomaly detection is the so called false positive where an abnormal event actually

represents a valid change in the behavior.

2.2.2 Contextual Anomaly

The abnormality is defined with respect to the context where the data appears.
These type of anomalies are commonly observed in time series data. In Figure 2.3

a periodicity can be seen in the context. In this graph, point t1 is an example of
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19 INFO dfs.FSDataset: Deleting block blk_-B213344469228111733 rile /mnt/hadoop/dts/data/current/subdird9/blk_—8213344449228111733
19 INFO dfs.FSDataset: Deleting block blk -6899869435641805946 tile /mnt/hadoop/dfs/data/current/subdirl2/blk -6899869435641885946
19 INFO dfs.FSDataset: Deleting block blk_-B191677345482862686 tile /mnt/hadoop/dfs/data/current/subdira3/blk -81916773645482862686
19 INFO dfs.FSDataset: Deleting block blk_-919439116365725384 file /mnt/hadoop/dfs/data/current/subdir3e/blk -919439116365725384
143 INFO drs.DataNcdeSDataxceiver: Received block blk_-1688999687919862986 Src: /19.251.215.16:52882 dest: /18.251.215.16:58618 ot
19 INFG dfs.FSDataset: Deleting block blk 459358181734787719 file /mnt/hadoop/dfs/data/current/subdir26/bik 459358181734787719

19 INFO dfs.FSDataset: Deleting block blk_4768256457847798996 file /mnt/hadoop/dfs/data/current/subdirze/blk 4768256457B47798996
19 INFO dfs.FSDataset: Deleting block blk_4827611386537849489 tile /mnt/hadoop/dfs/data/current/subdir26/blk 4827511386537849489
19 INFO dfs.FSDataset: Deleting block blk_-5679485126682834227 file /mnt/hadoop/dfs/data/current/subdir26/blk —-56794851266828364227

19 INFO dfs.FSDataset: Oeleting block blk:—0929280107803A21a76 tile /mnt/hadoop/drfs/data/current/subdir26/blk —6629288187883421476

Figure 2.4 Contextual anomaly in HDF'S log data.

normal behavior but point t2 is an anomaly, because it is different from the periodic
context as it deviates abruptly. As can be seen in Figure 2.4, the 'received block’
log may not be abnormal in the HDFS log data used in the thesis. However, if this

context occurs after 30 deletions, this indicates an anomaly. Hence the existence of

an anomaly is heavily dependent on the context [7].

2.2.3 Collective Anomaly

Collective anomaly is a group of éﬁomalous values in the data set. If a collection
of related data instances is anomalous with respect to the entire dataset, but not
among themselves (as individual values) then this is called a collective anomaly.
Breaking rhythm in ECG and web attacks are some examples of collective anomaly
as can be seen in Figure 2.5. Collective anomaly in HDF'S log data is presented in
Figure 2.6 . While appending to an "invalid set” may not be an anomaly, several

similar sequential appends to an "invalid set” may define a collective anomaly in

HDFS log data [8].
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Figure 2.5 Collective anomaly in ECG output.

BLOCK* NameSystem.delete: blk_-7731984648499906111 is added to invalidSet of 10.251.2082.209:50010
BLOCK#* NameSystem.delete: blk_5974111262061307773 is added to invalidSet of 10.250.9.207:50018
BLOCK* NameSystem.delete: blk_681839239152659399 is added to invalidSet of 10.250.14.38:508010
BLOCK* NameSystem.delete: blk_543049469610993836 is added to invalidSet of 10.251.39.179:50018
BLOCK* NameSystem.delete: blk_-5911878273886750645 is added to invalidSet of 10.250.11.53:5080180
BLOCK* NameSystem.delete: blk_-2887193698972165323 is added to invalidSet of 10.251.199.150:50010
BLOCK* NameSystem.delete: blk_-3987477245521920562 is added to invalidSet of 10.250.6.214:50010
BLOCK* NameSystem.delete: blk_-7969924975975364418 is added to invalidSet of 10.251.43.210:58010
BLOCK* NameSystem.delete: blk_-1969860458329121257 is added to invalidSet of 18.250.15.101:58018
BLOCK* NameSystem.delete: blk_5813424838919192724 is added to invalidSet of 10.251.203.179:50018
BLOCK* NameSystem.delete: blk_-5114399346914168800 is added to invalidSet of 1@.251.123.99:50018
BLOCK# NameSystem.delete: blk_B864B769525804190878 is added to invalidSet of 10.251.89.155:50010
BLOCK* NameSystem.delete: blk_B8899521512761756651 is added to invalidSet of 10.251.187.50:50810
BLOCK* NameSystem.delete: blk_-8072054884795354988 is added to invalidSet of 10.251.126.227:580180
BLOCK#* NameSystem.delete: blk_8@93422814437206016 is added to invalidSet of 10.250.15.101:58010

Figure 2.6 Collective anomaly in HDFS log data.
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Figure 2.7 Conceptual taxonomy of anomaly detection.

2.3 Anomaly Detection

Anomaly detection can be defined as finding the different patterns in a data set. Such
data points are called anomalies in machine learning, and outliers in statistics. These
nonconforming patterns can be difficult to detect. Anomaly detection is used in a
wide variety of applications such as fraud detection on credit cards, fault detection
of server systems, health care, cyber-security, and enemy activities on borders. The
taxonomy of anomaly detection is given in Figure 2.7 where the majority of efforts

have been spent in statistical and machine learning algorithms.




3. METHODOLOGY

3.1 Anomaly Detection Algorithms

Anomaly detection can be regarded as a subset of a machine learning task which
deals with a large data set. Depending on the existence of a ”"teacher” signal in the

data, the learning methods can be classified as follows (Figure 3.1).

3.1.1 Supervised Methods

Supervised anomaly detection methods require a labeled dataset. Labeled dataset
means that each instance is defined as normal or abnormal dividing the whole data
into two classes. Any unknown data instance is compared to the model to deter-
mine if it belongs to the normal class or the abnormal class. A supervised learning
algorithm analyzes the training data and produces an inference function, which is
called a classifier or a regression function [9]. Logistic regression, decision tree, and
SVM (SupportVector Machine) are examples of commonly used supervised anomaly
detection methods [10]. One of the advantages of these methods is that they ensure
reliable results when using a suitably large training data set. Another advantage is
related to the testing process. The success of a model trained with a labeled data set

can be predicted. The major disadvantage of supervised methods is that labelling

is sometimes deficient to detect anomalies [11].

3.1.2 Semi-Supervised Methods

Semi-supervised anomaly detection method is halfway between supervised method

and unsupervised method. Semi-supervised method assumes that the training dataset
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Figure 3.1 Anomaly detection approaches.

consists of labeled instances for the normal class, but the training dataset does not
require labeled anomaly instances. This means that semi-supervised methods will

only use normal instances to detect anomalies [12].

3.1.3 Unsupervised Methods

Unsupervised anomaly detection is one of the hardest types of anomaly detection
because there is no labeled dataset. The data set is not labeled at all, only the
inputs are present where there is no information about the output. This method
is used in real life applications because it is more applicable than the supervised
method as for many cases the different types of anomalies cannot be defined before
they actually occur. Many researchers work on unsupervised methods such as log

clustering, PCA (Principal Component Analysis), and invariant mining to develop

algorithms [13, 14].

3.2 Steps of Data Analysis

Several steps of data analysis are required to perform an efficient and effective ma-

chine learning task. They can be listed as follows:



3.2.1 Setting the Goal

For the given data set, the aims of the anomaly detection process and the targets
for performance have to be identified in order to accomplish the subsequent tasks
efficiently. This includes analysis of the problem domain, specification of anomaly
types and their occurrence frequencies, and determining parameters of the model
which is a possible generating process for the stochastic system. For the machine
learning task, the labeled log data of a Hadoop file system has been selected where

multiple algorithms are used to develop an anomaly detection system.

3.2.2 Data Preparation

The possibly big data exhibits numerous errors and inconsistencies which have to be
corrected. Sometimes the correction is impossible where data have to be discarded
or repaired depending on the need. Data preparation is an essential step for an
accurate training of the machine learning system. This step is divided into subtasks
as follows. Firstly, data have to be collected from the available sources. This task
specifies the amount of data to be collected which should be as large as possible
because machine learning algorithms perform better if there are more data. An
important decision has to be taken if data are segmented as this decision is effective
on the models generated later. Depending on the goals of the anomaly detection

process, all the attributes have to be included in the data set which seem to have

an impact on the outcome.

Then, data preprocessing will be carried out to transform the raw data (server log
data in our case) into a form that is suitable to be processed by the system. For-
matting of raw data will allow standardization of the attributes so that data can
be transformed into information. Next, data will be cleaned where inconsistencies
are identified and resolved. Missing data are either removed or interpolated. This
requires extreme attention as missing or no-care values may affect system perfor-

mance heavily. Lastly, data records in a standard format are sampled to reduce

10



the processing complexity. This can be done in two ways, either by down sampling
records to remove repeating elements in the data set, or by down sampling attributes

by principal component analysis where uncorrelated attributes (attributes without

effect on outcome) are removed.

3.2.3 Data Transformation

Collected and cleaned data will be processed further to fit the requirements of the
algorithms to be employed. This includes steps such as data scaling (normalization),

feature selection and feature generation (combining attributes or deriving new at-

tributes based on available ones).

Anomaly detection can be regarded both as a supervised or unsupervised process.
For our case, the data set is manually labeded, that is, each row (or groups of rows)
of data represents a normal or anomalous state. Hence supervised machine learning
algorithms can be employed for anomaly detection as we have both the input and
the desired output. In this research, we will apply multiple supervised learning
techniques such as decision trees, isolation forest, and support vector machines.

Also the log clustering method will be utilized. Further details of the architecture

will be explained in subsequent sections.

The novel approach to be employed in this work is to apply unsupervised methods
such as clustering and supervised methods for forming a decision support system
for anomaly detection. The clustering algorithm will divide the samples into a
predefined number of clusters based on their similarities. The algorithm (k-means
for benchmarking) will be run for different number of clusters and each cluster will
be analyzed for the proportion of anomalies. In case, the anomalous data samples
are predominantly clustered (more than a threshold value such as 90 percent) in
one class, then this information can guide us to label the points clustered here as
anomalous. Furthermore, autoencoder network can be used as a neural network

that aims to learn its inputs as its outputs. That is, the desired outputs for an

11



autoencoder is the input supplied. The network can be trained to mimic the inputs
at the output. Usually there will be three hidden layers of neurons where the first
and third hidden unit will have a larger number of neurons (between n and 2n for n
attributes at the input) and the second hidden layer will have smaller count of hidden
Units so as to represent the essential features of the input space. The output error
will be used as an indicator for anomaly: If the error for z certain sample is larger
than the threshold value (usually taken as a multiple of the average error) then, that
specific input sample will be considered as an anomaly because the network could

not encode it automatically.

In short, the work will include both supervised and unsupervised methods to form a
combined score for the samples. As usual, the data set will be divided into training,
validation and test sets where ratios of 70, 15 and 15 per cent will be used respec-
tively. The ultimate aim is to increase accuracy above 90 percent whereas the false

alarm rate will be kept below one percent.

12




4. DATASET

4.1 About the Dataset

This study is related to anomaly detection in the log data of a Hadoop server. Be-
cause of data privacy and security issues, it is quite difficult to obtain real world
data in spite of the fact that there are thousands of live production systems gen-
erating log data [15, 16]. By means of an extensive literature search, a public log
dataset has been identified (HDFS: Hadoop File System, a distributed filesystem)
which would enable us to carry out analysis of anomaly detection using machine

learning algorithms.

The HDFS dataset has been obtained from a production Amazon EC2 system and
it is well suited for anomaly detection. The dataset has 11,175,629 log messages
with 16,838 anomalies labeled by some domain experts which will be useful for
identifying correctness of the algorithms employed [17, 18]. There are 575065 blocks
in the HDFS log data of which 16836 are labeled as abnormal. The standard block
size is 128MB on Amazon EC2 servers. The HDFS log data has a unique block
ID for each block operation such as allocation, writing, replication, and deletion.

Further details about the dataset are given in Table 4.1.

Application | Range | Dataset Size | Log Messages Anomalies

HDFS 38.7 hours 1.47GB 11,175,629 16,838
Table 4.1 HDFS Dataset Information

4.2 Data Processing

The first step is data processing which means that long, raw log data are transformed

into features that can be used by anomaly detection algorithms. The raw log data

13
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1s unstructured data and it is used as input for the log parsing process. Log parsing
process removes application specific details or unrelated data from raw data [19].
Output of log parsing is used as input to the feature extraction process. In this part,
parsed log data are converted to structured data with numerical features. Output of
this step is used as input for anomaly detection algorithm [17]. Anomalies are then
cross-validated with the domain expert labeled list of anomalies for each dataset to
identify false positives, false negatives, true positives and true negatives in order to

derive precision, recall, and F1 score metrics as will be explained below. Figure 4.1

summarizes the data processing steps.

Application log records contain unstructured time series data. This log data need be
to converted to structured data. It is required to consolidate anomalies into single
events based on common criterion such as the block number for HDFS. Raw log data
file consists of raw log messages. Each raw log message has two parts: a constant

part and a variable part [19]. The constant part is a fixed plain text and it is not

14




contain runtime variables. The variable part contains runtime variables such as IP

adress, log type (INFO), and thread ID (145) as given below.

081109 203524 145 INFO dfs.DataNode$PacketResponder:

PacketResponder 2 for block blk_-9073992586687739851 terminating

081109 203524 145 INFO dfs.DataNode$PacketResponder:

Received block blk_-9073992586687739851 of size 11977 from /10.250.19.102
081109 203552 13 INFO dfs.DataBlockScanner: Verification succeeded for blk_-
9073992586687739851

After the log parsing process, data become ready to act as input to the feature
extraction phase as follows.

081109 203524 : PacketResponder * for block * terminating

081109 203524 : Received block * of size * from *

081109 203520 : Verification succeeded for blk *

As the second step, once all log events for a particular block are isolated, the fre-
quency of these events are counted in order to create an event count vector. For
statistical analysis, the data must be numerical. Therefore, it is necessary to create
event counts or a feature matrix which consists of feature matrix vectors. These
vectors are called event vectors or feature vectors. Each feature vector gives the
number of unique occurrences. in the set of variables. This means, for block -
9073992586687739851 the event count vector is like [ 2,2,3,0,0,0,0,0,0,0,...]. The
event vector (numerical features) represent two packet responder events, two received
block events and three verification succeeded events for block -9073992586687739851.
The zeros in the event count vector mean that no events did occur for block -
9073992586687739851. This step is repeated using the session window for log data
sets. Session windows are based on identifiers, they are not based on timestamps.
Identifiers are utilized to specify dissimilar paths in some log data. For example, in-

formation such as write, delete, copy, allocation in HDF'S logs is saved with block_id.
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Thus. descriptors, groups in which each session window has a unique identifier, can

be created. After that. the event count vector is created for input for the anomaly

detection algorithms [20)].

4.3 Performance Evaluation Metrics

This study will compare the accuracy of anomaly detection algorithms in HDFS
log data. Three metrics are used to evaluate the performance of anomaly detection

algorithms as described below [21].

4.3.1 Precision

Precision shows us knowledge about a model’s performance with relation to false
positives. This means, precision is the ratio of anomalous events that have been
correctly identified divided to the sum of true positives and non-anomalous events
that have been incorrectly identified as an anomaly [22].

For example in email spam detection, a false positive means that a non-spam email
(actual negative) is defined as spam email (predicted spam). This email will not be
in the user’s inbox, so the user won’t see an important email if the precision is not

high for the spam detection model. Equation 4.1 gives the formula of precision.

True Positive

True Positive + False Positive (4.1)

Precision =

4.3.2 Recall

Recall show us knowledge about a model’s performance with relation to false nega-
tives. Recall gives how much of the real anomalies are detected.

For example, in fraud detection, if a fraudulent transaction (Actual Positive) is pre-
dicted as non-fraudulent (Predicted Negative), the result can be bad for the bank.

Equation 4.2 shows the formula of recall.

True Positive (4.2)

Recall =
et True Positive + False Negative
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4.3.3 F1 Score

F-measure or the F1 score represenst the harmonic mean of the precision and recall
values. F1 score is a measure of a test’s accuracy. F1 score is the balance between
precision and recall. When F1 score approaches 1, it gives the best result and when
it approaches 0, it gives the worst result. Equation 4.3 shows the harmonic mean
calculation.

Precision x Recall (4.3)

Fl1=2
X Precision + Recall
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5. ALGORITHMS AND EXPERIMENTS

Four algorithms have been utilized and their performance have been compared for
anomaly detection. The HDFS log data with 12 million lines are parsed in 2 days, 2
hours and 12 minutes using an Apple Mac Air computer with 8GB memory, 1.7 GHz
Intel Core i7 processor and SSD disk. The algorithms are implemented using the

Loglizer package [23], a Python library, on the structured HDFS log data obtained

after parsing.

5.1 Log Clustering

Log clustering calculates the similarity value between two log sequences and im-
plements the agglomerative hierarchical clustering technique to group the similar
log sequences into clusters [24]. At the beginning of the agglomerative hierarchical
clustering, each log sequence belongs to its own cluster. Then, the closest pair of
clusters is selected and merged into a single cluster. To decide which pair of clus-

ters should be merged, the distance metric between the clusters should be defined

properly [25].

5.2 Isolation Forest

The isolation forest algorithm is among the most common algorithms. The algorithm
is based on the fact that anomalies are few and occur at different data points. As a
result of these features, anomalies are susceptible to a mechanism called isolation.
This method is very practical and is dissimilar from other methods[26]. It introduces
the use of isolation as a more effective and efficient method to detect anomalies rather

than the commonly used basic distance and density measures. In addition, this
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algorithm has a low linear time complexity and a small scale memory requirement. It

builds a performing model with a minimum number of trees using small subsamples

of fixed size, regardless of the size of the original data set.

5.3 Support Vector Machine

Support vector machine (SVM) is a supervised classification algorithm. SVM tries
to find the best line separating the two classes. The algorithm allows the line to
be drawn between classes to pass the across elements farthest away. SVM can also

classify linear and nonlinear data, but it is mostly used to classify the data in a

linear fashion [27].

5.4 Desision Tree

Decision tree is more suitable for outlier detection. This is one of the advantages
with respect to other classification methods. In a decision tree, every node crumbles
the feature space from its parent node into two or more separate subspaces and the
root node splits the complete feature space. The tree building process selects at

each node that split point, which divides the given subspace and the training data

best according to some impurity measure [28].

5.5 Result of Experiments

The performance of four anomaly detection approaches are compared in this study.
These are log clustering, isolation forest, SVM and decision tree. Table 5.1 show
a summary of anomaly detection algorithms for the training set of the data. For

the HDF'S log data, the decision tree algorithm performs best followed by the SVM

algorithm.

After the training, the result of the test is shown in Table 5.2. SVM algorithm
(Precision:0.814, Recall: 0.577, F1:0.675) beats the others.
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Model Precision | Recall | F1-measure
Log Clustering 1.000 0.438 0.610
Isolation Forest 0.984 0.460 0.627
Decision Tree 1.000 0.508 0.674
SVM 0.988 0.508 0.671
Table 5.1 Results for the Training Set
Model Precision | Recall | F1-measure
Log Clustering 0.793 0.505 0.617
Isolation Forest 0.781 0.467 0.584
Decision Tree 0.801 0.534 0.641
SVM 0.814 0.577 0.675

Table 5.2 Results for the Test Set

As a result of the comparison, it can be stated that the SVM algorithm was found

to be more successful than the other methods in detecting anomalies in HDFS log

data.
In this study, Python code in Appendix A is used for the initial parsing of HDFS

raw log data. After the first log parsing process, Python code in Appendix C is

used for creating structured log data. The feature template in Appendix B is used

to create structured log data.
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6. CONCLUSIONS

The primary goal of this work is to combine supervised and unsupervised methods to
form a decision support system for anomaly detection in server log data. A real life
big data set obtained from the logs of a HDFS system is utilized to perform anomaly
detection where several actions are regarded as anomalous such as repeated failed
login attempts, ping attacks, etc. The processing of the big data is followed by
the application of supervised and unsupervised machine learning efforts to learn the
behaviours of the system. The results of the algorithms will be used as a combination
to form a decision about the current state of the server. The detailed analysis of
logs is still required even if the system creates an alert as those systems can never
be trusted fully. The actual reason of an anomaly can be identified by analyzing
the stream log data generated by the system as online and inline. As a future work,

the algorithms can be tested on various similar server datasets so as to make a

generalization.
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APPENDIX A: LOG PARSING

import sys
import re
import pandas as pd
import numpy as np

import datetime as dt

data_pattern = r” (\d+)\s+(\d+)\s-+(\d+)\s+(\wh)\s +(.+7\:)\ s (\b.*)
(\bblk_.?\d+)(.x$)”

regex_obj = re.compile(data_pattern, re.VERBOSE)
hdfsfile = open(”./HDFS.log”, "r”)

#### Data Frame’s Columns define #H#H#

date=]]

Time=/[]

pid=]

level =[]

component =[]

content =[]

eventId=np.nan

eventTemplate=np.nan

block =]

label=np.nan

ettt Main Log to CSV dptttt

start_time = dt.datetime.now()

for strLineRead in hdfsfile:
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#—— remove leading and trailing whitespace—

strLineRead = strLineRead.strip ()

#—— split the line into fields —
parsed_log = ""

parsed_log = regex_obj.search(strLineRead)
if parsed_log:

date.append(parsed_log.group (1))
Time.append ( parsed_log . group(2))

pid . append(parsed_log.group(3))

level . append(parsed_log.group(4))

component . append ( parsed_log . group (5))

content .append(parsed_log.group(6)+parsed_log.group (7)
+parsed_log.group(8))

block . append( parsed_log.group (7))

#print (hdfsfile.readlines (5)[1]. strip())
hdfsfile.close ()
df=pd.DataFrame({ 'Date’:date,
’Time " : Time,
'Pid " : pid
"Level " level :
’Component ’ : component ,
’Content ': content ,
"Eventld ’:eventld
'EventTemplate ’: eventTemplate ,
"Block ’: block ,
’Label ":label

})
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df [[ 'Date’, ’Time’, Pid’, Level ', ’Component’ , ’ Content ’ , ’Block ’ ,
'Label’,’Eventld’, ’EventTemplate ’]] . t
o_csv(’./HDFS_parsed.csv’ ,encoding="utf-8’ ,index=False)

print (" First.log.parsing_end.:{end_time}” . format (

end_time=dt.datetime .now() — start_time )
Output: |
Block Component Content Date Eventid EventTempiate Label Level Pid Time ‘
0 bl 38865049084130660 dfs DataNode$PacketResponder: PackelRespondar 1101 DOk pg1109  NaN NaN NaN INFO 148 203615 1
i
1 bik_-6952205868487856571 dfs.DataNodeSPacketResponder: "%ﬁ 081109  NaN NaN NaN INFO 222 203807 |
2 b 7128370237687728475 dfs.FSNamesystem: BLOCK’ """’5”"‘“"""’3"““3‘”““@ 081108  NaN NaN NaN INFO 35 204005 3
i
3 bk, 8229183803249855061 dfs DataNode$PacketResponder: Pm&"’f 081109  NaN NaN NaN INFO 308 204015 !
4 Dik -6670958622368987958 dis.DataNode$PacketResponder: WW 081309  NaN NaN NaN INFO 329 204106
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APPENDIX B: HDSF_Template.csv

Eventld , RegContent
El,(Adding an already existing block blk_.x§)
E2 ( Verification succeeded for blk_.x$)
E3,(.x?Served block blk_.+ to .+)
E4, (
5,(Receiving block blk_.?\d+ src: .x7\sdest:.+)
(
(
(
(

x?Got exception while serving blk_.+ to .+)

o o

6,( Received block blk_.?\d+ src: .%7s\sof size.+)
E7,(writeBlock\sblk_.?\d+\sreceived\sexception\s.x)
E8,(PacketResponder\s\d+\sfor block blk_.?\d+\sInterrupted.)
E9,(Received\sblock\sblk_.?\d+\sof\ssize\s\d+\sfrom\s.+)
E10,( PacketResponder\sblk_.?\d+\s\d+\sException.+)
E11,(PacketResponder\s\d+\sfor\sblock\sblk_.?\d+\sterminating)
E12,(

E13,( Receiving\sempty\spacket\sfor\sblock\sblk_.?\d+)

E14 ,( Exception\sin\sreceiveBlock\sfor\sblock\sblk_.?\d+.4)
E15,( Changing\sblock\sfile\soffset\sof\sblock\sblk_.?\d+
\sfrom\s\d+\sto\s\d+\smeta\sfile\soffset\sto\s\d+)
E16,(.*?: Transmitted\sblock\sblk_.?\d+\sto\s.+)

E17,(.%?: Failed\sto\stransfer\sblk_.?\d+\sto\s.+)

.*%7: Exception\swriting\sblock\sblk_.?\d+\sto\smirror\s.x)

E18,(.*? Starting\sthread\sto\stransfer\sblock\sblk_.7\d+\sto\s.+)

E19,( Reopen\sBlock\sblk_.?\d+)

E20,( Unexpected\serror\strying\sto\sdelete\sblock\sblk_.?\d+.*?

\sBlockInfo\snot\sfound)sin\svolumeMap.*7?)
E21,( Deleting\sblock\sblk_.?\d+.x?\ sfile\s.+)
E22  (BLOCK\ *\sNameSystem . allocateBlock :. % blk_.?7\d+)
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E23, (BLOCK\*\sNameSystem . delete :.* blk_.?\d+\sis\sadded
\sto\sinvalidSet\sof\s.+)

E24 , (BLOCK\ *\sRemoving\ sblock\sblk_.?\d+\sfrom\sneededReplications
\sas\sit\sdoes\snot\sbelong\sto\sany\sfile.)

E25, (BLOCK\ *\sNameSystem . addStoredBlock : \ shlockMap\supdated :

\s.*?\ sis\sadded\sto\sblk_.?\d+\ssize\s\d+)

E26 , (BLOCK\ *\ sNameSystem . addStoredBlock : \ sRedundant\saddStored Block
\srequest\sreceived\sfor\sblk_.?\d+\son\s.*?size\s\d+)

E27, (BLOCK\ *\sNameSystem . addStoredBlock :\ saddStored Block
\srequest\sreceived\sfor\sblk_.?\d+\son\s.*?size\s\d+
\sBut\sit\sdoes\snot\sbelong\sto\sany\sfile .)

E28 ,( PendingReplicationMonitor\stimed\sout\sblock\sblk_.?\d+)

E29, (BLOCK\ *\sask\s.*7\sto\sreplicate\sblk_.?\d+\sto\sdatanode.+)
E30, (BLOCK\*\sask\s.*7\sto\sdelete\s+blk_.?\d+)
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APPENDIX C: CREATION OF STRUCTURED DATA

df_template=pd.read_csv(’./HDFS_templates.csv’)
chk_size=1000

count=0

first_time = dt.datetime.now()

for gm_chunk in pd.read_csv(”./HDFS_parsed.csv” , chunksize=chk_size):
start_time = dt.datetime.now()
count+=l1
for row_df_indx ,row_df in gm_chunk.iterrows ():
#print (gm_chunk. loc [row_df_indz , ’Eventld ’])
for row_df temp_index ,row_df_temp in df_template.iterrows():
if re.match(row_df_temp[1],row_df.Content):
#print (row_df. Content , row_df_temp [0])
gm_chunk.loc [row_df_indx , 'EventId’]=row_df_temp [0]
gm_chunk.loc[row_df_indx , ’EventTemplate ']
=row_df_temp [1]
break

gm_chunk. to_csv(”./HDFS_structured.csv”, index=False,
header=False , mode=’a’) |

#print (gm_chunk. head (2))

print (”{}.chunk.stop.:{end_time}” .format (

count ,end_time=dt.datetime.now() — start_time))

print (”{last_time}” .format
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(last_time=dt.datetime.now() — first_time))
Output:
Date Time Pid Level Component Content Block Label Eventid
Recaiving block
0 81100 203518 143 INFO dfs.DataNodeSDataXceiver: bk, -1608990887919862006  bik -1608900667519862906  NaN ES  {Receiving block bik_.Ad+
ST ...
BLOCK" LOCK\sN em.sllocs
1 81109 203518 35 INFO dfs.FSNamesystem: NameSystem.aliocateBlock: bik_-1608999687910862606 NaN  E22 © ameSyst
/mnt/hadoop/m...
Receiving block
2 81109 203519 143 INFO dfs.DataNodeSDataXceiver: ~ bik,-1608900687919862806 ik -1608009667919862906 NaN  E5  (Receiving bilock bik A\d+
S ...
Receiving block
3 81109 203519 145 INFO dfs.DataNodeSDataXceiver:  bik -1608999687819862906 bik_-1608990687919862806  NaN ES  (Recelving block bik.7\d+
SITC ...
Packetfesponder 1 for (PacketRespondens\d+\sic
4 B1109 203519 145 INFO dfs DataNodeSPacketResponder: block ik -1608999687919062908 NaN  EM
bik ~1608099687819.,,
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