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ABSTRACT

GLOBAL ALIGNMENT OF METABOLIC PATHWAYS AND

PROTEIN-PROTEIN INTERACTION NETWORKS

Metabolic pathways and protein interaction networks are essential at almost every func-

tion for living organisms. Simply, while reactions produce life energy within cells, protein

interaction networks provide biological functions. Also, abnormal reactions or interactions

cause various disorders. Thus, in bioinformatics, most of the studies are based on these net-

works in order to find hopeful results for these disorders and biological challenges. Solving

alignment problem is one of these studies such that it tries to find similar reactions, proteins

or functions. In this thesis, we focus on that problem within both metabolic pathways and

protein interaction networks. Firstly, we propose a constrained alignment algorithm, CAM-

Pways, for one-to-many alignment of metabolic pathways and we extend the framework,

CAPPI, for one-to-one protein interaction network alignment with necessary changes. Af-

terwards, we provide the computational intractability of the problem and finally we compare

our algorithm with different algorithms on actual metabolic pathways and protein interaction

networks.
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ÖZET

METABOLİK YOLAKLARIN VE PROTEİN ETKİLEŞİM

AĞLARININ HİZALANMASI

Metabolik yolaklar ve protein etkileşim ağları yaşayan canlıların neredeyse tüm fonksiy-

onlarnda hayati önem taşmaktadır. En basit haliyle, reaksiyonlar hücre içinde yaşam enerjisi

üretirken, protein etkileşim ağları biyolojik fonksiyonların gerçekleşmesini sağlamaktadır.

Ayrca, normal olmayan reaksiyonlar ya da etkileşimler çeşitli hastalıklara neden olmak-

tadır. Bu nedenle, biyoinformatik alanındaki bir çok çalışma, bu hastalıklara ve biyolo-

jide çözülmesi gereken sorunlara umut verici sonuçlar alabilmek amacıyla, bu ağlara dayan-

maktadır. Hizalama probleminin çözülmesi, bu çalşmalardan biridir ve bu problem, ben-

zer reaksiyonları, proteinleri ya da fonksiyonları bulmaya çalşır. Bu tez kapsamında, hem

metabolik yolaklar hem de protein etkileşim ağları için hizalama problemi ele alınmaktadır.

Öncelikle metabolik yolakların bire-çok hizalanması için kısıtlandırılmış bir algoritma (CAM-

Pways) sunulmakta, daha sonra bu algoritma protein etkileşim ağlarının bire-bir hizalanması

için geliştirilmekte (CAPPI) ve gerekli değişiklikler uygulanmaktadır. Problemin işlemsel

karmaşıklığı verilip, gerçek veriler üzerinde diğer algoritmalar ile karşlaştırmaları yapılmaktadır.
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1. INTRODUCTION

The main purpose of biology is to understand the cell system such that the fundamen-

tal questions can be answered: How the cellular functions happen and which interactions

are established, in particular, how the proteins interact with each other to perform proper

functions and how the reactions occur to maintain essential processes in the cell.

In this introductory chapter, there exist three main sections such that in the first

section, the definition of metabolic pathways is given in order to indicate the significance of

the subject. Afterwards, the notions that are used for the implementation of these pathways

in the alignment problems are given. In the second section, protein-protein interaction

networks and their notions are defined as well, and finally in the third main section, network

alignment problem is described as a summary for a better understanding of the subject.

1.1. Metabolic Pathways

In this section, we give definitions of metabolic pathways, reactions and metabolic

networks with the significance of them in the bioinformatics and we define the notions for a

better understanding of the next problem sections.

1.1.1. Metabolism and Metabolic Reactions

In order to show the big picture of the metabolism by providing the important aspects

of the subject, we first need to begin from the smallest piece of the metabolism: A chemical

reaction is an occurrence of the interaction of two or more chemical substances that have

accurate characteristic properties, and a transformation of them to others. Generally, the

transformation separates the reactions as catabolic and anabolic. Whereas catabolic reactions
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provide Adenosine triphosphate (ATP) that refers to chemical energy is usually used for the

occurrence of new reactions such as anabolic reactions within cells and metabolism of living

organisms by breaking down the complex organic molecules into smaller ones such as breaking

down the sugar to obtain energy, anabolic reactions use the provided energy by catabolic

reactions and gather the small molecules together to obtain complex organic molecules such

as attaining protein by gathering the amino acids together. Both catabolic and anabolic

reactions can happen at any moment but when the living organism is young, the number of

anabolic reactions is greater than the number of catabolic reactions for growth and the living

organism gets older, firstly the number of catabolic reactions balances with the number of

anabolic reactions and afterwards, exceeds anabolic reactions number.

Normally, the chemical reaction happens due to some important components such as

physiological pH and temperature. The temperature is the vital component for many living

organisms and it helps to maintain life and carry out some medical procedures. For instance,

even if many animals have stable body temperature, some of them are affected from the cold

temperature that decreases the metabolism significantly and causes the hibernation. Also,

for the important surgeries such as heart and brain, the temperature of the operating room

is reduced to slow up the metabolism.

The biochemical reaction is usually catalyzed by an enzyme that is a protein or RNA.

Of course, each enzyme does not perform same tasks. Whereas several mechanisms affect the

catalytic action of the enzyme such as the interaction or the shape of the molecule, there are

two major tasks of enzymes such as increasing the rate of the reaction and helping to produce

product by providing high activity [3]. Also, when the enzyme catalyzes the reaction, it uses

the substrates. A substrate refers to a required molecule for the cell and is used as a input

by the reaction. Also substrates transform to products when the reaction is completed.

Both a substrate and a product is defined as a molecule that can be in one of three major

categories: Carbohydrates, fats and proteins. But in some cases, the nucleic acids such as
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ribose and deoxyribose can be the substrate or the product. Hereby, the important point

is the products of the reaction can be the substrates of the functionally-related reactions

and the series of reactions are created. Because these series are essential to grow, repair,

reproduce and respond to environmental conditions, they are one of the most interesting and

popular topics in the bioinformatics.

The metabolism that is sometimes called intermediate metabolism is the set of all these

chemical reactions and biological processes on them and refers to a connection between

phenotype and genotype of the species. In general, the metabolism is divided two categories

such as catabolism and anabolism. It is possible to see that while catabolism is the set of

catabolic reactions, anabolism consists of anabolic reactions.

1.1.2. Significance of Metabolism

As it is mentioned before, the reactions within the metabolism keep cells and organisms

alive by producing energy for growth and maintaining the life. They are used in the essential

processes such as growing and repairing damages. Besides, the determination of the sub-

stances as nutritiuos or poisonous is made by the metabolic system of the living organism

and this determination helps to life-sustaining reactions. For example, whereas hydrogen

sulfide is nutritiuous for prokaryotes, it is poisonous for animals [4].

The knowledge of all reactions and their interactions within the metabolism is also im-

portant for the medicine and pharmacy such that if the genetic enzyme-catalyzed reactions

are known, proper diagnosis and treatments are developed for the most important and com-

mon metabolic diseases such as gout and diabetes. According to Danaei [5], ”The number

of people with diabetes increased from 153 (127-182) million in 1980, to 347 (314-382) mil-

lion in 2008.” The increasing number shows that understanding, analyzing and developing

methods and models for metabolisms are essential to the human life. The set of metabolic
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reactions helps not only to the metabolic diseases but also the diseases that are not affected

especially by the metabolic abnormal such as autoimmune and neurological diseases [6]. At

this point, the metabolism leads to drug targets such that antimicrobial drugs which are

given for the diseases usually affect the vital enzymes of the reactions. The modifications

such as elimination and rejection of the affects of drugs and also activation of enzymes and

drugs are made by the metabolism. In this manner, understanding the metabolism processes

is crucial, as well.

1.1.3. Metabolic Pathways and Their Functions

First of all, there are thousands of reactions and limited number of metabolic resources

in a cell. So, the usage of these resources must be efficient for regular working. As it is

mentioned in the previous subsection, organizing and analyzing these metabolic reactions

and resources are important in order to get reasonable and useful results. Thus, the math-

ematical models have been searched to maximize efficiency of the resources and complex

reaction networks have been created to predict utilization and remaining rate of products

and substrates. Afterwards, the limited number of biochemical reactions has been considered

and sets of these reactions have been organized such that the organization of these chemical

reactions within in a cell is defined as metabolic pathways. Thus, metabolic pathways can

be defined as the subnetworks of the complex reaction networks [1] as shown in Figure 1.1.

These subnetworks are actually step by step processes: Initially, the substrate is used as

the input by the enzyme to catalyze the reaction. When the reaction is completed, the

substrate turns into the product. The next reaction uses that product as the substrate and

the interconnected reactions continue until the exact products and the processes that are

required by the cell are obtained.

Several types of metabolic pathways exist and the types can show differences due to

organisms: Some of them consists of both catabolic and anabolic reactions such as citric
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Figure 1.1. A metabolic pathway (taken from [1])

acid cycle that is the last step of chemical processes and are called amphibolic. On the

other side, whereas a species can have a specific metabolic pathway, the central pathway

that is called glycolysis that is the degradation of the glucose exists for all living organisms.

Nevertheless, previous studies have argued that there exists remarkable variations even in

that pathway [7]. According to these variations and the differences, the comparative analysis

of metabolic pathways have been become the central subject in the bioinformatics. The

comparative analyses are helpful for major challenges of biology. Firstly, the evolutionary

relationships can be found between organisms and classification of organisms can be made

more meaningful. In the second place, as it is mentioned in the previous sections, drug targets

can be determined purposefully based on the species. Furthermore, the unknown parts of

the metabolic pathway can be determined by comparing it with well-known pathways.

In order to organize and analyze the metabolic pathways, some databases have been

developed such as KEGG [8], MetaCyc [9] and Reactome [10]. Whereas KEGG consists of

the data-oriented and organism-specific resources with analysis tools, MetaCyc provides ex-

perimentally elucidated pathways with applications that help to make prediction. Reactome

is different from KEGG and MetaCyc such that it is prefered mostly for visualization.
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The representation of the metabolic pathway differs depending on the databases, al-

gorithms and methods. Generally, the representation of the metabolic pathway is made by

using graph formulations. First modeling is to use a directed hyper-graph such that the

vertices are substrates or products and the hyper-edges represent the enzymes or reactions.

The directed hyper-edge is added between the vertices depending on the producer and con-

sumer relationships and the direction of the metabolic processes. However, the directed

hyper-edges are not preferred when the challenges depend on the visualization and simu-

lation of the metabolic pathways [1, 11]. The bipartite graphs are used where the vertices

corresponding to the reactions and the edges corresponding to binary relations in KEGG

for these purposes [1]. But, because it is hard to implement, use and adapt these models

to metabolic pathways, the simple directed graph representations have been suggested such

that the vertices represent the enzyme or the reaction and the directed edges refer to the

direction of the metabolic processes, as well [11]. The simple directed graphs are useful when

the product or the substrate details are negligible for the challenges such as finding align-

ment results. So, the directed edge addition depends on knowing which reaction is producer

and which one is consumer: The directed edge is added from the node corresponding to the

producer reaction or enzyme to the node corresponding to the consumer reaction or enzyme.

If the nodes represent the enzymes in the metabolic pathway, the new challenge occurs such

that because the enzyme may come up more than once in the metabolic pathway, a few

different nodes may refer to the same enzyme in the graph corresponding to that pathway.

In such a case, the nodes that represent the same enzyme may be merged. But, for more

simplicity, the definition of nodes is changed and the nodes indicate the reactions.

Because the biological networks are mostly defined as the graphs, theoretical methods

are needed to solve graph problems and analyze these biological networks. Solving these

problems is important to obtain significant information and improve the aspects for bio-

logical networks such as finding common patterns, functional relationships, structural and

sequential similarities and evolutionary classifications between organisms. Additionally, ac-
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cording to Koyutürk [11], ”two key problems on graphs are aligning multiple graphs, and

finding frequently occurring subgraphs in a collection of graphs”. Even if these are the major

problem definitions, it is possible to extend and classify them as global alignment, local

alignment, subgraph isomorphism, motif, graph and subgraph matching, graph clustering

and also graph mining [12]. Even if all of them provides remarkable frameworks to detect

functional relationships in general, whereas the alignment, matching and clustering algo-

rithms help to find common patterns and functionally similar groups [13, 14], the results of

graph mining algorithms provide subgraph similarities in detail [11].

1.2. Protein-protein Interaction Networks

Proteins are vital macromolecules in the cell of living organisms and most of the studies

in the bioinformatics area are based on their interactions. Whereas some proteins perform

their functions independently, almost all proteins interact with other proteins to perform

proper biological processes. Protein-protein interactions represent purposeful physical con-

tacts between two or more proteins depending on biochemical and physiologic events and

often occur in order to carry out their biological functions. Figure 1.2 represents a protein

interaction network with directed interactions and proteins. They are essential at almost

every function of living organisms, for instance, in the signal transduction across the biolog-

ical membranes, the movement of substances in and out of cells and RNA/DNA synthesis

such as replication, transcription and translation. In addition to essential functions, previ-

ous studies have shown that abnormal interactions between proteins cause various disorders

such as Alzheimer’s disease and cancer [15]. Hence, identifying these interactions is crucial

to understand and control the cellular functions at molecular level. Towards this goal, in

the recent years, various high-throughput experimental techniques have been presented to

identify, characterize and discover protein interactions such as yeast two-hybrid [16] and

co-immunoprecipitation [17]. These techniques have provided promise to predict new inter-

actions and have been supplement for new discovery methods. Following on the discovery and
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Figure 1.2. A protein interaction network (taken from [2])

prediction methods, amount of available data on protein-protein interactions has increased

rapidly for different species such as human, worm, fly and yeast.

Studying the protein-protein interaction data has become a crucial problem because of

the high noise levels in the data such that possibly helpful methods, models and computa-

tional approaches are required to enhance its’ understanding. The available protein-protein

interaction data has been represented as a network for comprehensible and reasonable studies

such that each protein corresponds to a node and each direct physical interaction between

two proteins corresponds to an edge in the network. Besides, as the amount of available

protein-protein interaction network data increases, computational methods have been de-

veloped to make comparative protein-protein interaction network analysis and attain new

predictions involving high accuracy across species.

The results of protein-protein interaction network comparisons provide crucial aspects

of similarities and differences between species at the biological level and lead to find functional

ortholog proteins [18]. At this point, we need to give the definition of functional ortholog.
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In general, the term ortholog refers to genes of different species such that they come from a

common ancestor and evolve after speciation and also, it is assumed that orthologs perform

same functions. Thus, to determine functional ortholog proteins is a crucial step in both

network alignment problems and in bioinformatics in terms of evolutionary aspect. On

the other side, similarities between proteins indicate the evolutionary conservation across

species and this helps to predict the biological function of individual proteins. The first

measurement of protein similarities is to compare sequence similarity which means to find

similarity between amino acid sequences of proteins. The similarity information between

sequences reveals an idea in molecular biology such that similar protein sequences carry out

similar functions. Because of the importance of this information, various homology-based

algorithms, tools and powerful methods with high probability and low computationally cost

have developed to compare and search protein sequences such as BLAST [19] and Hidden

Markov Model (HMM)-based search methods [20]. In bioinformatics, Basic Local Alignment

Tool (BLAST) is the commonly used similarity tool such that it makes sequence-based

comparisons for DNA and protein sequences faster. Furtermore, the results of BLAST

identify structural, functional or evolutionary relationships between sequences. Conveniently,

it is supplement for matching algorithms that require approximate solutions.

The idea of sequence similarity corresponds to functional similarity has been accepted

as the main concept in molecular biology for a long time. With the increase in the num-

ber of comparative sequence alignment tools, stating functional orthologs and functions of

proteins have got difficult because a protein have had sequence similarity to many proteins

[21]. Because only sequence similarity is not sufficient for determining true orthologs, new

topology-based similarity approaches have been improved such that these methods elaborate

on conserved pathways across multiple species [22]. Consequently, the measurement of con-

served protein networks includes both protein sequence similarity and interaction topology.
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The next section describes the types of network alignment problem that are mostly

used in the previous works.

1.3. Network Alignment Problem

Network alignment problem is interested in predicting interactions and functions, find-

ing conserved functional modules, verifying existing biological networks such as metabolic

pathways and protein-protein interaction networks and discovering unknown parts of metabolic

pathways and protein complexes within k different networks belonging to different organisms,

spanning different challenges such as local alignment, global alignment, network querying

and multiple network alignment. In general case, many formulations have been found to

solve the network alignment problem, but all of them have proven that this problem is NP-

Hard which means there is no polynomial time algorithm for the solution [23]. Therefore,

different heuristic algorithms have been presented to align k networks for different major

goals such as finding conserved regions [24] and identifying conserved functional modules of

arbitrary networks [25].

Generally in the network alignment problem concept, whereas a metabolic pathway is

modeled by an undirected simple graph, a protein-protein interaction network is represented

as a simple directed graph. For the simple directed or undirected graph G = {V,E}, V=

{ V1, V2,V3 ... ,Vn } is a finite set of vertices corresponding to N proteins or reactions

and E ⊂ V × V is the set of edges corresponding to interactions between proteins or the

relationships between metabolic pathways such that (u, v) ∈ E represents an interaction

between proteins or a relationship between reactions where u ∈ V and v ∈ V .
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1.3.1. Global and Local Alignment Problem

The global alignment provides an end-to-end alignment of the sequences or the nodes

of the graphs corresponding to the biological networks which is the best match in their

entirety, even though there are suboptimal regions in the alignment. It is most helpful when

the query sequences or the graphs are similar enough and their total sizes are nearly close.

Furthermore, it is often used to understand variations of species by comparing genomic

sequences or interactomes that are the interaction networks with details and may help to

detect functional orthologs and predict functions of the biological components [26].

In general, the global alignment of the sequences is based on a dynamic programming

algorithm which is called Needleman-Wunsch algorithm and the algorithm consists of two

steps: Finding highest possible score by using dynamic programming and determining one

or more alignment with that score. But, on the other side, when the problem consists of

whole interaction-based or relation-based networks, there exists many different algorithms

and studies [26, 27, 28] to align globally for both metabolic and protein interaction networks

in the bioinformatics area.

On the other side, the local sequence alignment provides the best subsequence alignment

between sequences. In general, the local alignment is due to Smith & Waterman algorithm

[29] that use dynamic programming to find best local alignment using a score function and

substitution matrix. There are many subjects that the alignment can be useful such as

comparing both protein sequences which have common conserved patterns or domains and

genomic DNA sequences against protein sequences. Besides, it is more sensitive for especially

comparing highly diverged sequences.

Afterwards, the idea is extended to work on biological networks such that the local

network alignment provides the subgraph(s) that has the best local alignment score between
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k graphs corresponding to different biological networks. The resulting subgraphs usually

show the conserved structures of the networks. But, finding the local sequence alignment or

local network alignment has a challenge: Initially, the beginning and ending positions of the

resulting subsequences or subgraphs are unknown. According to this challenge, obviously,

finding an optimal local alignment is more complex than finding an optimal global alignment.

Nevertheless, most of the previous works [23, 25, 30, 31] depend on the local alignments.

1.3.2. Pairwise and Multiple Alignment Problem

In general, the pairwise alignment provides useful information for detecting similar

regions such that these regions may denote possibly functional, structural and evolutionary

relationships between two biological sequences through comparisons. It has an important

place in molecular biology and bioinformatics such that the vast majority of sequence analysis

tools depend on pairwise alignment. These tools provide valuable insight into phylogenetic

analysis, structure prediction and similarity searches within the classifications and databases.

The pairwise alignment is important not only for two sequences, but also for the bio-

logical networks in general. Various efficient computational methods have been proposed for

aligning two networks and identifying their conserved pathways based on the sequence and

function similarity [30, 27].

In the second place, the multiple alignment is a kind of alignment methods such that

three or more biological sequences are aligned. In many cases, an evolutionary relationship

such as having common ancestor is assumed between the input sequences. This alignment

method is often used to conduct phylogenetic trees and dedicate both sequence homology

and conservation between these sequences for evolutionary analysis such as showing historical

relationships between organisms or genes and evolution of molecules and phenotypes. As

it is mentioned in the previous subsections, the sequence-based idea is extended to network
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alignments, as well.

Needles to say, the multiple alignment is more computationally complex than pairwise

alignment not only for the sequences, but also for networks as a whole. Correspondingly,

more heuristic algorithms [14, 26] are proposed rather than optimization algorithms which

are computationally expensive for multiple network alignments.

1.4. The Scope and Contribution of the Thesis

With this study, we proposed a constrained one-to-many alignment algorithm that was

inspired by the model suggested in SubMap algorithm [27] for metabolic pathways such that

it was accepted by Bioinformatics and published in 2013 [32]. Furthermore, we adapted that

algorithm for global one-to-one pairwise protein interaction network alignment by making

the necessary changes and additions in order to get reasonable and useful results. This

algorithm was implemented in C++ programming language using LEDA library [33].

First of all, we focused on global one-to-many network alignment problem and we

provided the formal description for this problem. Next, we provided a novel constrained

alignment framework appropriate for both one-to-one and one-to-many alignments model.

Secondly, we proposed an algorithm which implements this framework efficiently. We showed

the computational intractability of the constrained alignment problem and we improved the

constrained alignment framework for protein-protein interaction network challenges. Finally,

we presented experimental evaluations that are performed on actual metabolic pathways and

protein interaction networks and also demonstrated that our algorithm gives better results

in terms of biological meaning.



14

2. METHODS AND ALGORITHMS

In this chapter, firstly, we define the problem of global one-to-many alignment of

pairwise metabolic pathways. Afterwards, we indicate the constrained alignment frame-

work and the algorithm that is appropriate for this framework for metabolic pathways and

also, we extend the algorithm with necessary changes for one-to-one pairwise alignment of

protein-protein interaction networks. The algorithms are called CAMPways and CAPPI for

metabolic pathways and protein interaction networks, respectively.

2.1. Problem Definition for Metabolic Pathway Alignment

Initially, we preffer to use reaction-based representations that are employed in SubMap

[27] for metabolic pathways. Let P be a metabolic pathway, we use a directed unweighted

graph Gp(Vp, Ep) for its representation. As each node uri ∈ Vp is representing the reaction

ri ∈ P , a directed edge (uri , urj) is added between the nodes uri and urj if the output

compound (product) of ri is the input compound (substrate) of rj in the pathway. The

extension is made due to reversibility of the reactions such that if the input compound of

ri is the output compound of rj, then the edge existence condition is considered, as well.

Similarly, the same case is considered for rj. So, if both reactions are reversible, the existence

of the edge is handled in four cases.

Hereby, we need to give a definition for the legal alignment and allowed types of map-

pings due to one-to-many alignment restriction. Let Gp, G
′
p be the graph representations of

the metabolic pathways P ,P ′ and Rx be a subset of Vp such that the nodes in Rx indicate

an induced subgraph that is connected in its underlying graph. Let Rk indicate the set of

such subsets such that the size of each subset is greater than zero and less than or equal to

k and R′
k represent the similar set for G′

p. The mapping sets (Rx, R
′
x) for Rx ∈ Rk, R

′
x ∈ R′

k
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indicate a legal alignment A between Gp, G
′
p such that the following are satisfied:

• For (Rx, R
′
x) ∈ A, |Rx| or |R′

x| is 1.

• For (Rx, R
′
x) ∈ A and For (Ry, R

′
y) ∈ A, Rx ∩Ry = ∅ and R′

x ∩R′
y = ∅.

As the first condition ensures that there must be only one reaction in one side of the

mapping to obtain one-to-many alignment, the second one indicates the uniqueness such that

two mappings cannot contain same reactions. For instance, if the reaction rx ∈ P aligns

with the reactions r′x, r
′
y, r

′
z ∈ P ′ for k equals to three, then the aligned reactions rx, r

′
x, r

′
y, r

′
z

cannot be in other mapping of a legal alignment A .

In the second place, we need to define the quality of the alignment problem for

metabolic pathways. Generally, the definition of the alignment is the similarity measure

that includes both homological and topological similarities. The homological similarity of

the alignment is defined as a sum of all sequence-based similarity scores of all mappings.

When the problem is about proteins, only amino acid sequence similarities are considered,

but when the subject is the metabolic pathways, the computation of the homological similar-

ity becomes more complex due to compounds and enzymes. Thus, for the mapping (Rx, R
′
x),

the homological similarity is computed due to input compounds, output compounds and en-

zymes of Rx and R′
x. In this study, we use the homological similarty scores that are produced

by SubMap [27]. First of all, the enzyme sets Ex, E
′
x are produced by unifying the enzymes

of the reactions that are in the reaction subsets Rx and R′
x, respectively. The computation

of the enzymatic homology score between the enzyme sets Ex, E
′
x is calculated by creating

a bipartite graph such that the first partition of the graph corresponds to the enzymes in

the enzyme set Ex and the other partition corresponds to the enzymes in the enzyme set

E ′
x. An edge is added between every enzyme that belong to different enzyme sets and a

similarity score is assigned to that edge as the weight. Afterwards, total homological score

is obtained for Ex, E
′
x by making the maximum weight bipartite matching on the bipartite
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graph. Similar computations can be made for the unions of the input compounds Ix, I
′
x and

the unions of the output compounds Ox, O
′
x corresponding to Rx, R

′
x respectively. Totally,

the homological similarity score of (Rx, R
′
x) is a convex combination of the scores that are

computed independently for input compounds, output compounds and enzymes. On the

other side, the topological similarity of the alignment is defined as a sum of all conservation-

based similarity scores of all mappings. For the mappings (Rx, R
′
x) ∈ A and (Ry, R

′
y) ∈ A,

the score is computed based on the conserved edge numbers. If there exists an edge from a

reaction in Rx to a reaction in Ry and an edge from a reaction in R′
x to a reaction in R′

y, or

vice versa, then it is accepted that there is a conserved edge between the mappings (Rx, R
′
x)

and (Ry, R
′
y). Totally, the topological similarity is defined as a score that is proportional

to total conserved edge number. When both homological and topological similarity scores

are obtained, the network alignment problem becomes a problem that maximizes the convex

combination of these scores.

2.2. Constrained Alignment Framework

In this subsection, we give a formal definition for our constrained alignment frame-

work within one-to-many metabolic pathway alignment. We propose a constrained align-

ment framework that aims to maximize only topological similarity while satisfying some

constraints on homological similarity, rather than maximizing the convex combination of

homological and topological similarities.

For a metabolic pathway representation Gp = (Vp, Ep), the kth extension of Gp is

denoted by Gk
p that is the directed edge-weighted graph and each node uRx in Gk

p corresponds

to a reaction subset Rx ∈ Rk. If there is an edge from uri to urj in Gp, a directed edge

(uRx , uRy) is added in Gk
p, where ri ∈ Rx and rj ∈ Ry. At this point, the weight w(uRx , uRy)

is assigned as the total number of such edges. Surely, the same definition can be used for

G′
p
k. Let Cons(uRx) which is the subset of possible nodes that the node uRx can mapped to,
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denote the constraints set of uRx in Gk
p. Similarly, this definition can be used for the nodes of

G′
p
k. Hereby, there is a symmetry such that uR′

y
∈ Cons(uRx), if and only if uRx ∈ Cons(uR′

y
)

depending on |Cons(uRx)| ≤ k1 and |Cons(uR′
y
)| ≤ k2 for any nodes uRx ∈ Gk

p and uR′
y
∈ G′

p
k

and fixed constants k1 and k2, respectively. A bipartite similarity graph may be used to

represent all constraints such that while the first partition of the graph consists of Gk
p nodes

and the second partition consists of the nodes of G′
p
k, the edges correspond to the constraints

of the nodes. At this point, the constraint alignment problem turns into a problem that aims

to find the subset of the constraints. When the bipartite similarity graph is considered, the

problem corresponds to find the subset of edges in that graph such that the subset provides

a legal alignment and also maximum number of conserved edges in the result alignment. It

is important to emphasize that the constrained alignment definition has been given in the

previous study [34] for the global one-to-one alignment of protein-protein interaction (PPI)

networks. In this sense, our constrained alignment framework is more general consisting of

the previous model completely and can be used for the alignment of undirected PPI networks

while the previous model may not be used for some instances. For a given two nodes uRx , uRy ,

if Cons(uRx) ∩ Cons(uRy) 6= ∅, then the previous model applies Cons(uRx) = Cons(uRy).

There is a restriction in the case where Cons reflects high homological similarity such that

some pairs that are homological similar are missed or long homologically similar chains of

nodes are created incorrectly.

We first need to clarify that for a very restricted case, the constrained alignment

problem is computationally intractable.

Proposition 2.2.1. The constrained alignment problem where k = k1 = 1 and k2 = 3 is

NP-Complete.

Proof. In order to provide integrity, the proof is given in Chapter 3.
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Secondly, we clarify the point that the computationally intractable starts dissolving for

better understanding of the constrained alignment framework.

Proposition 2.2.2. The constrained alignment problem where k = k1 = 1 and k2 any

positive integer constant, is polynomially solvable if one of the directed graphs Gp or G′
p is

acyclic.

Proof. In order to provide integrity, the proof is given in Chapter 3.

2.3. CAMPways Algorithm

Even though Proposition 2.2.2 provides an affirmative perspective, there is a restriction

in the usage. Even if our constrained alignment algorithm provides high quality alignments,

it may not give optimum results in some cases. Our algorithm consists of three major steps

assuming Gk
p, G

′
p
k, the constants k1, k2 and the homological similarity score of (uRx , uR′

y
) is

given where uRx and uR′
y

are any nodes in Gk
p, G

′
p
k, respectively. These major steps are

shown in Figure 2.1 on a metabolic pathway pair. The details are explained in the next

subsections.

2.3.1. Constructing Bipartite Similarity Graph

In the first step, Cons(uRx) and Cons(uR′
y
) are created for every node uRx in Gk

p

and uR′
y

in G′
p
k where |Cons(uRx)| ≤ k1 and |Cons(uR′

y
)| ≤ k2. Let we have an edge-

weighted bipartite graph where the first partition corresponds to the nodes of Gk
p, the other

partition corresponds to the nodes of G′
p
k and also, an edge between two nodes includes the

homological score of these nodes. At this point, finding a subset of edges that provides the
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Figure 2.1. CAMPways algorithm

degree constraints k1 and k2 and also, maximizes the total weight of the edges in that subset

is the major goal of the algorithm. In Figure 2.1, the thickness of the edges represents the

weight of the edges such that the thickest edge corresponds to the highest score.

The major goal of the algorithm turns the problem into b-matching or degree con-

strained subgraph problem that have been studied in the previous works [35] such that poly-

nomial time solutions, network-flow algorithms and also, belief propagation methods have

been suggested [36, 37]. Nevertheless, instead of using them, we prefer to use a simple greedy

algorithm to provide the efficiency. The greedy algorithm selects the heaviest edge in the

bipartite graph considering the degree constraints k1 and k2 for both end points and the

output edge set. When there exists no edges that are appropriate for selecting due to edge

weight and degree constraints k1 and k2, the algorithm stops and we have a bipartite graph

that consists of the selecting edges and nodes that are connected by these edges. Afterwards,

we called the obtained bipartite graph as the similarity graph, S.
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2.3.2. Conflict Graph Generation and Conflict Resolution

Let we assume that the bipartite similarity graph S is extended by the directed edges

of Gk
p and G′

p
k due to a restriction such that if there exists an edge (uRx , uRy) in the graph

Gk
p, then the edge (uRx , uRy) is added to the similarity graph. Of course, same restriction

is valid for the G′
p
k, as well. After the extension of the similarity graph, an undirected

node-weighted conflict graph is created where the nodes of that graph corresponds to a set

of four nodes that provides conserved edges in the similarity graph S. Actually, a node that

corresponds to a 4− tuple ≺ uRx , uRy , uR′
x
, uR′

y
� is added to the conflict graph if and only

if the following are satisfied:

1. Rx ∩Ry = ∅ and R′
x ∩R′

y = ∅.

2. Either (uRx , uRy), (uR′
x
, uR′

y
) are in Gk

p, G
′
p
k respectively,or (uRy , uRx),(uR′

y
, uR′

x
) are in

Gk
p, G

′
p
k respectively.

3. {uRx , uR′
x
}, {uRy , uR′

y
} are undirected edges in S.

For each node that corresponds to a 4-tuple in conflict graph is called as c4 and a score is

assigned as a weight to every c4 such that while the score is 1 if only the first part of the second

condition is satisfied, 2 is assigned as the score if all parts of the second condition is provided.

At this point, it is possible to see that every node c4 of the conflict graph corresponds to

a pair of reaction subset mappings and provides at least one conserved edge in the output

alignment set. Furthermore, the weight of a c4 represents the conserved edge number that

is provided by that node. In figure 2.1, the exact conflict graph that is obtained from the

partial similarity bipartite graph is showed. Whereas the 4 − tuple ≺ uR9 , uR2 , uR′
5
, uR′

6
�

may denote a c4, it does not happen due to condition 1 such that the reaction subsets of R9

and R2 share the common reaction r2 in the partially extended similarity graph as shown in

figure 2.1. Also, when examining the weight of the c4s, it is possible to understand that the

weight of the c4 corresponding to the 4− tuple ≺ uR1 , uR9 , uR′
4
, uR′

5
� is two while other c4s
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weight are one according to the same figure.

Let the conflict nodes C1, C2 correspond to the 4 − tuples ≺ uRx , uRy , uR′
x
, uR′

y
�

and ≺ uRw , uRz , uR′
w
, uR′

z
�, respectively. Moreover, let S1, S2 be the elements of {Rx, Ry},

{Rw, Rz} and S ′
1, S

′
2 be the elements of {R′

x, R
′
y}, {R′

w, R
′
z}, respectively. For a c4 node Ci,

let MCi
(u) denotes the neighbour of u in Ci from the opposite network. In this case, an edge

is added between two c4 nodes if and only if at least one of the following satisfied:

1. ∃S1, S2 such that S1 6= S2 and S1 ∩ S2 6= ∅.

2. ∃S ′
1, S

′
2 such that S ′

1 6= S ′
2 and S ′

1 ∩ S ′
2 6= ∅.

3. ∃S1, S2 such that S1 = S2 and MC1(S1) 6= MC2(S2).

4. ∃S ′
1, S

′
2 such that S ′

1 = S ′
2 and MC1(S

′
1) 6= MC2(S

′
2).

Totally, these conditions indicate that there exists an edge between two c4s in the

conflict graph such that the conserved edges corresponding to these c4 nodes cannot coexist

in a legal alignment set. For instance, the edge is added between the c4 nodes corresponding

to the 4−tuples ≺ uR1 , uR9 , uR′
4
, uR′

5
� and≺ uR2 , uR4 , uR′

6
, uR′

7
� in the conflict graph due to

condition 1 such that the reaction subsets R9 and R2 share a common reaction. Accordingly,

there is no legal alignment that consists of both these c4s due to shared reactions. On the

other side, the edge is added between the c4 nodes corresponding to the 4 − tuples ≺

uR4 , uR5 , uR′
7
, uR′

15
� and ≺ uR2 , uR4 , uR′

6
, uR′

5
� due to condition 3 such that whereas the

reaction subset R4 matches with the reaction subset R′
7 in one c4, in the other one, it matches

with the reaction R′
5 and matching between different reaction subsets is not allowed to be in

the legal alignment set at the same time. In addition, these conditions and the construction

of the conflict graph supports the following proposition:

Proposition 2.3.1. The maximum weight independent set (MWIS) of C provides an opti-

mum solution to the constrained alignment problem.
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Before the maximum weight independent set solution, we need some modifications to

make our conflict graph model more useful in the framework. Firstly, in order to increase the

quality of the alignment, we propose two weighting formulas for the conflict graph nodes. Let

ws(e) be the weight of the edge e in the similarity graph S such that this weight indicates the

homological score between the reaction subsets corresponding to the end points of the edge e.

The first weighting scheme is denoted by W1 that equals to α x H(CI)+(1−α) x I(CI) where

CI corresponds to the conflict node that represents the 4− tuple ≺ uRx , uRy , uR′
x
, uR′

y
� and

H(CI), I(CI) correspond to the following:

H(C1) =
1

2
× (wS(uRx , uR′

x
) + wS(uRy , uR′

y
))

I(C1) =
1

2(k2 + 1)
×

∑
i,j∈{uRx ,uRy},i 6=j
i′,j′∈{uR′

x
,uR′

y
},i′ 6=j′

w(i, j) + w(i′, j′)

In order to calculate I(C1), the total number of directed edges that are between Rx, Ry

and between R′
x, R

′
y is normalized with the maximum number of possible directed edges in

any conflict node c4. The parameter α is a balance parameter such that it balances the rela-

tionship between homological similarity score and topological similarity score. On the other

side, our second weighting scheme that is denoted by W2 does not check the conserved edge

number between the reaction subsets due to knowledge of providing at least one conserved

edge by each c4. Furthermore, depending on the evolutionary distances between the organ-

isms that provide input pathways for our algorithm, differentiating between one-to-many
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alignments and one-to-few alignments is more meaningful. We use additional parameters

a1, a2..., ak in second weighting scheme W2 in order to make a such differentiation such that

a1 + a2 + ... + ak = 1 and each ai corresponds to importance of one-to-i mappings in the

total alignment. Thus, for the node C1 =≺ uRx , uRy , uR′
x
, uR′

y
�, W2 is calculated as a|Rx| x

|Rx|+ a|Ry | x |Ry| where |Rx| ≥ |R′
x| and |Ry| ≥ |R′

y|.

After the construction of the conflict graph, second important issue is solving that

conflict graph which means solving the maximum weight independent set (MWIS) problem

on the conflict graph and obtaining the maximum number of conserved edges. In gen-

eral, the maximum weight independent set problem is in NP-Complete problem set [38].

In order to solve MWIS problem, several greedy heuristic algorithms have been proposed

[39]. We implement and test the performance of all greedy heuristic algorithms and de-

cide on GWMIN2 algorithm that gives best results for our algorithm. GWMIN2 algorithm,

firstly, selects a node u in the conflict graph C such that the node u maximizes the score

of W(u)/
∑

v∈N+
C (u)W(v) where N+

c (u) denotes the node u and all neighbors of it. This

process goes on until there is no node in the conflict graph. Besides, the algorithm pro-

vides a theoritical guarantee such that the weight of the output independent set is at least∑
u∈VC [W(u)2/

∑
v∈N+

C (u)W(v)] where Vc denotes the vertex set of the conflict graph C. De-

pending on the results of our performance tests and the theoreticall guarantee of GWMIN2

algorithm, we prefer to use that algorithm to solve conflict graph.

Consequently, it is possible to see that we find a mapping set that consists of the edges

in the bipartite similarity graph S based on the process of the Step 1 and also depending

on the constraints k1, k2, our mapping set is limited. Obviously, extending the mapping set

increases the meaningful results. In order to extend the alignment set, firstly we restore all

homological edges and we remove the mapped nodes from Gk
p,G

′
p
k after the steps 1 and 2 are

over and afterwards, we repeat the steps 1 and 2. The loops go on until the conflict graph

C produce empty set. For the sample input pathway pair in Figure 2.1, the loop iterates
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only once such that after the step 1 and 2 works once, remaining extended similarity graph

consists of the nodes R6, R7, R13, R
′
6 and no conflict graph is produced by these nodes.

2.3.3. Final Alignment Expansion

Step 1 and Step 2 produce mappings based on the maximization of the conserved

edge number and depending on the loops, it is possible to see that after the loops are over,

the algorithm cannot produce more conserved edges anymore. But, still there may exist

potential matchings that have high homological scores and these may be added the output

alignment set. In order to provide such an extension, we restore all homological similarity

edges and remove all matched nodes from the graphs Gk
p,G

′
p
k. At this point, we create a

new conflict graph that is conceptually different from the conflict graph which is produced

in Step 2, based on the remaining bipartite similarity graph S. The conflict graph is called

expansion conflict graph and each node in that graph corresponds to a 2−tuple ≺ uRx , uR′
x
�

where {uRx , uR′
x
} is an edge in the remaining bipartite similarity graph S. An edge is added

between two nodes in the expansion conflict graph if and only if the intersection of the

reaction subsets which belong to the same pathway is not empty. The expansion conflict

graph construction is shown in Figure 2.1. After the construction of the expansion conflict

graph, GWMIN2 algorithm is used to solve conflicts on that graph as same as in Step 2 and

finally, the output matching of GWMIN2 algorithm are added in the output alignment set.

2.4. Extension of Constrained Alignment Framework and CAMPways

Algorithm

In this section, we extend the constrained alignment framework and CAMPways algo-

rithm for one-to-one pairwise protein-protein interaction network alignment by making the

necessary changes and additions in order to get reasonable and useful results. We give the

problem definition for this problem and define major steps of CAPPI algorithm.
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2.4.1. Problem Definition for PPI Network Alignment

Let simple undirected graphs G1(V1,E1) and G2(V2,E2) be the input PPI networks

where V1,V2 denote the sets of nodes corresponding to the proteins and E1,E2 denote the

sets of edges corresponding to the interactions, respectively. Moreover, let undirected edge-

weighted bipartite graph S be the similarity graph where the partitions of S are V1,V2 and

each edge (u, u′) in S has a positive real weight w(u, u′). In many studies, the weight is a

sequence similarity score w(u, u′) that is usually obtained by using BLAST between sequences

of u and u′, where u ∈ V1 and u′ ∈ V2. BLAST bit score is the most preferred score that

is a log-scaled score and indicates biological relevance of a finding. But, when you compare

the sequences of different species by using BLAST, you may not obtain all pairwise scores

such that some pairwise scores are found as zero. So, the number of scored sequences which

are taken as input may not be sufficient in some cases in order to get remarkable results.

According to Aladağ and Erten [28], ”most of global network alignment algorithms can be

viewed to proceed in two phases. For each pair ui ∈ V1,vj ∈ V2, an estimate confidence score

is sought at an initial coarse-grained phase. The score represents the level of confidence that

the match (ui, vj) is in the optimum alignment maximizing the global score. This is usually

followed by a fine-grained phase that consists of refining an initial global alignment based

on the estimate scores attained in the previous phase”. Correspondingly, we prefer to use

estimate confidence scores instead of BLAST bit scores and in this case, we obtain some

advantages such as increase in the number of scored sequences and decrease in the running

time. Thus, formally, the weight w(u, u′) of each edge (u, u′) is the estimate confidence score

that is produced in SPINAL coarse-grained phase in our study.

Hereby, we need to give a definition for the legal alignment such that the definition is

simpler than the problem definition of metabolic pathways within one-to-many alignment

perspective. Because we focus on only one-to-one mappings, the connected subsets that are

employed in the metabolic pathway alignment problem are not considered. Thus, in a simple
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way, a legal alignment A occurs between G1 and G2 if for any matched pairs (u, u′) ∈ A

and (v, v′) ∈ A, u 6= v and u′ 6= v′. This condition implies the uniqueness of the output

alignment such that each node in G1 can match with only one node in G2 and vice versa.

Afterwards, the important point is the quality of the alignment. As it is mentioned in the

previous sections, the quality of the alignment corresponds to the similarity measure in terms

of both homological and topological similarities. Because the subject is PPI networks, while

we use estimate confidence score that is mentioned before as homological similarity score, we

give the definition of the topological similarity score as in the problem definition of metabolic

pathways in terms of conserved edge number. There exists a conserved edge for any matched

pairs (u, u′), (v, v′) where u, v in V1 and u′, v′ in V2, if there is an undirected edge (u, v) in

G1 and an undirected edge (u′, v′) in G2. Consequently, in a similar way, the major goal of

the PPI network alignment is maximization of homological and topological scores.

2.4.2. CAPPI Algorithm

As it is mentioned before, because the major goal consists of both homological and

topological similarities, we propose an algorithm that balances these scores with a parame-

ter. While high-valued parameters handle the problem within conserved edge maximization,

low-valued parameters give alignment results based on better biological meaning. As both

versions are explained in same sections, in general, CAPPI algorithm consists of four main

steps assuming G1, G2, S, the constants k1, k2, α, f, b, i and the homological similarity score

(estimate confidence score) w(u, u′) is given where u and u′ are any nodes in G1 and G2,

respectively. The details are given in the next sections.

2.4.3. Finding Maximum Weight Bipartite Matching

Because the general framework is based on the conserved edge maximization, while

obtaining the conserved edges, some maximum homologically weighted pairs may be missed
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if they don’t provide any conserved edge or they may not be selected due to conflict status.

In order to handle this case, we employ a maximum weight bipartite matching (MWBM)

on the bipartite similarity graph S. Let b be a parameter that is used to define the number

of matchings that are taken from the alignment set of maximum weight bipartite matching

such that the first b maximum weighted pairs are taken from the alignment set of MWBM

and added to the actual alignment output set of CAPPI algorithm. Afterwards, the nodes

and edges that are in the selected pairs are removed from G1, G2 and S. Next steps of

CAPPI algorithm go on the remaining graphs. These processes are based on the value of

the constant f such that if f equals to one, then finding maximum weight bipartite matching

step is employed but when the value of f equals to zero, this step is not performed and the

original graphs G1, G2 and S are used in the next sections.

2.4.4. Constructing Reduced Bipartite Similarity Graph

Initially, we assume that we have a bipartite similarity graph such that the first parti-

tion nodes correspond to the nodes of G1 and second one includes the nodes correspond to

the nodes of G2. The edges that are between two partitions have estimate confidence scores.

But we change these scores according to the goal of the algorithm. When the goal is finding

more conserved edges, high-valued α parameter is used. However when the goal focuses

on biological meaning, low-valued α parameter is preferred. Thus, the score is based on

both homological and topological score and the score equals to α× min(|Eu|, |E ′
u|) + (1−α)

×w(u, u′) for any node u in G1 and any node u′ in G2. In this formula, while w(u, u′) denotes

the estimate confidence score between the nodes u, u′, |Eu| and |E ′
u| denotes the number of

edges of u and u′ in the original graphs G1 and G2, respectively. We take the minimum

number of edges and it is possible to see that the minimum number of edges indicates the

possible conserved edge number for a node pair and if all edges are legal in the conflict

graph, then the pair gives maximum min(|Eu|, |E ′
u|) conserved edges. Also, it is possible to

understand that α is a balance parameter between the homological and topological scores.
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In order to explain this step, we need to give the constrained definition for this problem

depending on the constrained alignment framework. In a similar way, Cons(u) denotes the

constraints set of u in G1 and includes the possible nodes that the node u can mapped to.

Of course, the same definition can be used for the nodes of G2. The same symmetry that

is mentioned in the constrained framework can be used for this problem as well such that

u′ ∈ Cons(u) if and only if u ∈ Cons(u′) depending on |Cons(u)| ≤ k1 and |Cons(u′)| ≤ k2

for any nodes u in G1 and u′ in G2 and fixed constants k1, k2.

This step reduces the original bipartite similarity graph based on these constraints such

that all constraints Cons(u), Cons(u′) are created for every node u of G1 and u′ of G2 where

|Cons(u)| ≤ k1 and |Cons(u′)| ≤ k2. In the fact, the problem is to find an edge subset

that maximizes the sum of edge weights by providing the constraints k1 and k2. In order to

solve this problem, we use the same greedy algorithm that is used for metabolic pathways

alignment in CAMPways algorithm and obtain reduced bipartite similarity graph.

2.4.5. Conflict Graph Generation and Conflict Resolution

In general concept, conflict graph generation and conflict resolution is same as CAM-

Pways algorithm. But, in order to get better results we make some changes in this step.

Let the reduced bipartite similarity graph be extended with the edges of G1 and G2 and

afterwards, an undirected node-weighted conflict graph is created such that each node in the

conflict graph corresponds a 4-tuple ≺ u, u′, v, v′ � and is denoted as c4, as well. In detail,

the node that corresponds to 4-tuple ≺ u, u′, v, v′ � is added to the conflict graph if and

only if the following are satisfied:
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1. u 6= v and u′ 6= v′.

2. The undirected edge (u, v) is in G1 and the undirected edge (u′, v′) is in G2.

3. {u, u′} and {v, v′} are undirected edges in S.

In the conflict graph, a weight is assigned to each node such that the weight of c4 that

corresponds to the 4-tuple ≺ u, u′, v, v′ � equals to the following:

W (c4) = (
1

2
× (w(u, u′) + w(v, v′)))

|e|

where |e| denotes the number of possible conserved edges such that it is possible to see

that each c4 denotes one conserved edge and it is important to check that if that conflict node

is selected in resolution phase, what is the contribution of that node to the conserved edge

number in the output alignment. Thus, the number of possible conserved edges |ep| that are

contribution of the conflict node to the output alignment is added to one and |e| = 1 + |ep|.

It is clear that whereas in the first loop, that score is only one, but in the next loops the

score is changed due to output alignment set that is provided by conflict resolution.

In this step, the second important issue is to add edges between the conflict nodes. Let

C1, C2 be two conflict nodes corresponding to 4-tuples ≺ u, u′, v, v′ � and ≺ w,w′, z, z′ �, re-

spectively. Let S1, S2 and S ′
1, S

′
2 be the unions of the nodes {u, v},{w, z} and {u′, v′},{w′, z′},

respectively. Furthermore, for a c4 node Ci, let MCi
(u) denotes the neighbor of u in Ci from

the opposite network. In this case, the condition of adding an edge is same as in CAMPways

algorithm. Thus, the conditions are not given again in order to prevent tautology.
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After the construction of the conflict graph, we need to solve the conflicts in an optimum

way. Similarly, we use GWMIN2 algorithm that is used in CAMPways algorithm within

same definitions. However, because this algorithm is heuristic, we extend it with some

modifications. Without loss of generality, we use the swap idea in the algorithm such that

the impact of that idea is negligible on the running time and it helps to increase the size

of the alignment set that is provided by GWMIN2. The swap idea have been used in both

the alignment problems and bioinformatics studies in order to get better results [40, 41]. At

this point, we use a simple swap process such that after GWMIN2 is completed, we try to

swap the nodes that are in the alignment set with the nodes in the conflict graph that are

legal for being in that set. The swap iteration starts from the first node in the alignment

set, removes this node from the set and finds the legal nodes that are not conflict with the

nodes in the remaining alignment set. Afterwards it compares the score of the node in the

alignment set with the total score of legal nodes. If the total score is greater than the score

of the node in the alignment set, then it swaps these nodes. The iteration goes on until all

nodes are checked in the alignment set.

Obviously, the alignment set that is provided by GWMIN2 includes the node pairs

based on the reduced bipartite similarity graph. Still, for the original bipartite similarity

graph, there may exist some matching that are created conflict graphs. Thus, in order

to extend the alignment set and obtain possible matching based on the conflict graphs,

we restore the bipartite similarity graph and remove the nodes that are in the alignment

set of GWMIN2 from the similarity graph. Afterwards, we repeat step 2 and 3 until the

bipartite similarity graph does not produce any conflict graph. The constant i defines the

number of such iterations. When the goal is maximization of the conserved edges, then

the value of constant i is higher and in that time, we observe that the homological score

decreases depending on the natural concept of the framework such that when the iterations

are employed, while the conserved edge number increases, the biological meaning decreases.

Thus when the better results in terms of biological meaning are aimed, then second and
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third steps are employed only once.

2.4.6. Final Alignment Expansion

Final Alignment Expansion parts of CAMPways and CAPPI are completely different.

While CAMPways try to find conflicts due to 2-tuples, CAPPI uses maximum weight bipar-

tite matching such as in step 1 of CAPPI algorithm. However, depending on the constant

f , maximum weight bipartite matching algorithm uses different values. As it is mentioned

before, when the constant f equals to zero, the algorithm aims to find more conserved edges.

Thus, when the iterations are over, the edge weights of remaining bipartite similarity graph

are changed depending on the aim. For each pair of the remaining bipartite similarity graph,

the conserved edge contribution number is calculated such as in conflict graph generation

step. The possible conserved edge number that is provided by the pair if it is selected for

being in the alignment graph is assigned as a weight to the considered edge. Afterwards, the

maximum weight bipartite matching algorithm is used on the remaining bipartite similarity

graph within these scores. The alignment set that is produced by that algorithm is added

to the actual alignment set. However, when the constant f equals to one, the goal is maxi-

mization of the biological meaning. Thus, the edge weights of remaining bipartite graph are

selected as estimate confidence scores and similarly, the alignment set that is produced by

that algorithm is added to the actual alignment set.
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3. COMPLEXITY ANALYSIS

3.1. NP-Hardness Proof of Constrained Alignment Problem

Proposition 3.1.1. The constrained alignment problem where k = k1 = 1 and k2 = 3 is

NP-Complete.

Proof. As it is defined previously, the problem refers to one-to-one alignment between the

nodes of Gp and G′
p in case k equals to one. In addition, the constraints that express k1 = 1

and k2 = 3 mean that each node of Gp can be aligned with one node of G′
p and on the other

side, each node of G′
p can be aligned with one of at most 3 nodes of Gp.

Because of a problem x in NP-Complete is also in both NP and NP-Hard, we need to

handle the proof from both directions. So, under these considerations, according to general

proof strategy, we first need to show that the problem is in NP by giving an efficient certifi-

cation. Hereby, the set of mappings between the nodes of Gp and G′
p gives the certification

and shows that the problem is in NP which means the problem is a decision problem within

yes or no answers that yes answers can be proved in polynomial time. For this problem,

yes answers correspond to checking whether the provided alignment is legal or not within

all these considerations and whether is it giving at least a fixed number f of conserved edges

or not. In order to show NP-Hardness of the problem, we use reduction from Monotone

1in3SAT that is a restricted version of 3SAT such that while every clause has exactly three

literals and exactly one of them is true, no negations in the clauses are allowed. Whereas

the reduction is based on the undirected graphs, it can be adapted to directed graphs as

well. In order to generalize the reduction for directed graphs, we make each edge of Gp and

G′
p bidirectional.
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Figure 3.1. NP-Hardness Proof Graph

According to the reduction idea, firstly, we need to create graphs that represent the

variables and clauses. Thus, we start by creating Gp. A clause cluster is created for each

clause (xi ∨ xj ∨ xk) in a given Monotone 1in3SAT instance φ where the nodes ci, cj, ck of

the cluster correspond to xi, xj, xk in the clause. Furthermore, a variable cluster is created

for each variable xt in φ where the nodes vt, v̄t correspond to xt, x̄t. Each node ci in a

clause cluster is connected to three nodes vi, v̄j, v̄k in variable clusters. Thus, Gp becomes

a bipartite graph where one partition consists of clause clusters and the other partition

consists of variable clusters. Creating G′
p is simpler than Gp such that the nodes are created

corresponding to clause and variable clusters of Gp. The edges are added between all possible

node pairs and a complete graph is obtained. Eventually, in order to represent the similarity

edges, we add an edge between a node of G′
p and its corresponding clusters in Gp. The figure

3.1 illustrates the graph definitions.

Hereby, our claim is that there exists a valid satisfying Monotone 1in3SAT assignment

of variables in φ if and only if the global alignment score is at least f = 3|C| such that

|C| refers to the number of clauses in φ. According to graph definitions and Figure 3.1,

it is possible to see G′
p refers to the maximization of the number of conserved edges in
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the alignment. In this manner, the problem becomes selecting exactly one node from each

cluster in Gp such that the problem supports Monotone 1in3SAT restrictions and makes

maximum the number of edges in the induced subgraph of Gp. After this point, G′
p becomes

negligible and we focus on a new problem that is defined on Gp: Assume that there is a

valid satisfying assignment Aφ for variables of φ instance. We select vt if xt is assigned as

true in Aφ but otherwise v̄t is selected for the variable cluster corresponding to xt variable

of Gp. For the clause cluster corresponding to (xi ∨ xj ∨ xk) in Gp, we select only the one

that corresponds to true literal in Aφ. Let xi be the only true literal in (xi ∨ xj ∨ xk). As it

is mentioned before, we focus on vi, v̄j and v̄k for xi. Since the nodes vi, v̄j, v̄k are exactly

selected from their respective variable clusters, for each clause cluster, exactly three edges

are in the induced subgraph on all selected nodes and totally, 3|C| edges are obtained as

shown in Figure 3.1. For the reverse direction, we can handle this case by selecting the nodes

from each cluster such that the induced subgraph on all selected nodes contains at least 3|C|

edges. Thus, we give a new definition for a valid satisfying assignment Aφ: xt is assigned

to true if vt is selected from the variable cluster corresponding to xt ; otherwise false. Let

only ci be selected from the clause cluster corresponding to clause (xi ∨ xj ∨ xk). At this

point, we need to show that vi, v̄j and v̄k must be selected nodes from the variable clusters

corresponding to xi,xj and xk, respectively. As shown in Figure 3.1, since every node in a

clause cluster has three edges to variable cluster nodes and only one node is selected from

each cluster, we can say that there must be 3|C| edges in the induced subgraph on all selected

nodes. Consequently, if the node ci is selected from the clause cluster, then the nodes vi, v̄j,

v̄k are selected from variable clusters corresponding to xi,xj and xk and a valid satisfying

assignment Aφ is provided such that there exists exactly one true literal in the each clause

of the instance φ. It is possible to see that, this proof is valid for one-to-one alignment of

protein interaction network within undirected graphs and the value of k in detail such that

both algorithms involve this proof.
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3.2. Polynomial Time Solution of the Alignment Problem

In this section, we prove that the simple pathway alignment problem within the con-

strained alignment framework is solvable in the polynomial time.

Proposition 3.2.1. The constrained alignment problem where k = k1 = 1 and k2 any

positive integer constant, is polynomially solvable if one of the directed graphs Gp or G′
p is

acyclic.

Proof. Let us begin the proof by creating a conservation graph such that each node C ′
x in

that graph corresponds to uR′
x
∪ Cons(uR′

x
) where uR′

x
∈ G′

p. Let C ′
x and C ′

y be two nodes

of the conservation graph. There exist a directed edge (C ′
x, C

′
y) if the edge from C ′

x to C ′
y is

induced such that there is a directed edge (uR′
x
, uR′

y
) in the graph G′

p and there is a directed

edge (uRw , uRz) in the graph Gp, as well where uRw ∈ Cons(uR′
x
) and uRx ∈ Cons(uR′

y
). At

this point, the size of vertex set is |V ′
p | and the size of edge set is O(|E ′

p|) of the conservation

graph, respectively. Thus, this size is polynomial due to the problem size. It is possible

to verify that if the conservation graph includes a directed edge, both Gp and G′
p certainly

contains a directed edge, as well. A cycle Cx′1 , ..., Cx′t , Cx′1 is possible in such as case: If there

is a cycle uR′
x1
, ..., uR′

xt
, uR′

x1
in G′

p and at the same time if there is a cycle uRx1
, ..., uRxt

, uRx1

in Gp where uRx1
∈ Cons(uR′

x1
)..., uRxt

∈ Cons(uR′
xt

). When we assume that at least one

of graphs Gp, G
′
p is acyclic, the conservation graph must be acyclic, as well. Let T be

the topological ordering of the conservation graph. A dynamic programming approach that

traverses the nodes depending on T and calculates the score of each k2 possible mappings

that represents the conserved edge number based on the neighbors scores is used and finally,

when it reaches the node whose out-degree 0 in T, it obtains the optimum matching for the

last node. For the remaining nodes, the optimum matching is obtained by backtracking and

traversing the nodes in the opposite direction of T. During both traversals, because the time

that is spent for each node is polynomial, the total algorithm is completed in polynomial

time.
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4. DISCUSSION OF RESULTS

In this section, first of all, we give our comparative experimental results on actual

metabolic pathways that are taken from KEGG database such as SubMap [27]. The com-

parisons are made between CAMPways and SubMap because of the same problem defini-

tions. In other words, both CAMPways and SubMap algorithms try to find one-to-many

mappings for a pair of metabolic pathways. It must be known that a new version of SubMap

is proposed based on the original version whose running time is decreased [42]. But, it is not

possible to make comparison between CAMPways and new compressed version of SubMap

because of the lack of publicly available implementation of that algorithm. According to

Ay et al [42] reported results, the improvement on the running time causes %50 diminution

on the accuracy. At this point, the accuracy is measured in terms of Pearson’s correlation

coefficient between the original version and compressed version of SubMap. On the other

side, the experimental results show that our algorithm provides both running time efficiency

and more accuracy without any loss on the time. Thus, the alignment results of CAMP-

ways provide more accuracy than the results of original version of SubMap. Afterwards,

we compare CAPPI algorithm with SPINAL, IsoRank [43] and MI-GRALL [44] algorithms

in terms of conserved edge numbers and biological meaning. The experimental results on

actual PPI networks show that CAPPI algorithm gives better results than those of other

algorithms in general and finally, we give memory requirements and running time analysis

of our algorithm.

4.1. Discussion of Results for CAMPways

Although KEGG database provides detailed metabolism categories such as Glycerolipid

metabolism and Tryptophan metabolism, these pathways are not suitable for directly usage

on the algorithm. The most important reason is the lack of the gold standard that is the
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base of objective comparisons. On the other side, there is another issue such that the sizes

of pathways are quite small and in such a case, it is hard to predict the behavior of the algo-

rithm in order to obtain realistic results. Therefore, the mechanism that merges all pathways

in the detailed metabolism categories is used to handle these problems. Also, these detailed

metabolism categories are gathered under the more general categories. Depending on the

first 11 high-level categories, we merge all pathways that are gathered under the same high-

level categories and thus, we obtain more extended metabolic pathways. In this way, we

have 11 metabolic networks such that each one corresponds to following, respectively: 1.1

Carbohydrate metabolism, 1.2 Energy metabolism, 1.3 Lipid metabolism, 1.4 Nucleotide

metabolism, 1.5 Amino acid metabolism, 1.6 Metabolism of other amino acids, 1.7 Glycan

biosynthesis and metabolism, 1.8 Metabolism of cofactors and vitamins, 1.9 Metabolism of

terpenoids and polyketides, 1.10 Biosynthesis of other secondary metabolites, 1.11 Xenobi-

otics biodegradation and metabolism. The number of metabolic pathways changes between

2 and 15 in these extended metabolic networks. The experimental comparisons that are

mentioned in this section are performed on these extended metabolic networks.

Next 2 subsections include the experimental comparisons between the output align-

ments of CAMPways and original version of SubMap based on their accuracy. For this

purpose, we perform two accuracy experiments. While first one is based on reverse engineer-

ing successes of the output alignments, second one includes experiments on the functional

group conversion categorization that are provided by KEGG database. Afterwards, the

experiments consist of the comparisons on the running times of these algorithms.

4.1.1. Reverse Engineering Metabolic Pathways

The natural accuracy measure is the capacity of reverse engineering of output align-

ments. The matched reactions in the output alignment that belong to the same KEGG

pathway provide higher quality. Thus, our gold standard is the pathways that are provided
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by detailed metabolism categories in KEGG. In this sense, it is important to remember that

we employ the algorithms on the general pathways that are created by merging the detailed

metabolism categories. But hereby, we assume that the metabolic pathways are noise-free

which means the pathways are completely valid and there is no missing data or poorly de-

signed pathway in that database. Let X and X ′ be two organisms and Gx, G
′
x be their

metabolic networks, respectively such that these networks correspond to the metabolism

1.m that are defined above. Moreover, let ≺ uRx , uR′
x
� be the mapping in the alignment

of Gx, G
′
x. Hereby, while Rx corresponds to the reaction subset of X, R′

x corresponds to

the reaction subset of X ′, similarly and let Rx = {rx} such that it is the subset which

contains only one reaction in the one-to-many alignment. Additionally, let P1, ..., Px repre-

sent the pathways that includes the reaction rx. These pathways belong to the metabolism

1.m of the species X. Then, a mapping is called correct if all reactions in R′
x is included

in at least one of the pathways P ′
1, ..., P

′
x such that a pathway P ′

i is a pathway that is in

the metabolism 1.m of the species X ′ and corresponds to the pathway Pi of the species

X. Within this knowledge, we make two different experiments such that the experiments

are performed between same-domain species and between across-domain species. We select

H.Sapiens (hsa) and M.Musculus (mmu) as the representative species for eukaryote domain

and A.tumefaciens(atc) and E.coli (eco) as the representative species for bacteria. Also, k

value is fixed as 3 which means only one reaction of the one network match with at most

three reactions of the other network. Furthermore, for CAMPways algorithm k1 = k2 = 3 is

selected.

4.1.1.1. Same-domain Alignments. The experimental results of output alignments of hsa-

mmu and atc-eco pairs based on 11 metabolic networks that are mentioned before are given

in Table 4.1.1. In the table, while Total Reactions column represents the number of total

reactions of the network pair, Coverage column indicates the number of total reactions that

are covered by the matching in the alignment. The column which indicates the correct

mapping number in the alignment is called Correct Mappings and Ratio column gives the
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ratio of the correct mapping number that is produced by the alignment to the total mapping

number in that alignment. Also, each subcolumn indicates the algorithm names such that

whereas the subcolumn which is represented as S corresponds to the alignment scores of

SubMap algorithm, the subcolumn C1 indicates the weighting scheme W1 of CAMPways

algorithm with α = 0.3. When we try different α values, we obtain similar results to the

results of α = 0.3. So, we only give the results of CAMPways algorithm when α = 0.3 in

the weighting scheme W1. Similarly, the subcolumn C2 represents the weighting scheme W2

of CAMPways algorithm with α1 = 0.4, α2 = 0.5, α3 = 0.1.

When we compare the alignment results of SubMap and CAMPways, both algorithms

provide similar coverage values in general. In some cases, SubMap produces more coverage

but in the others, both versions of CAMPways produce better results for the coverage. When

we look the results of correct mappings, the results of CAMPways are overwhelmingly supe-

rior than the results of SubMAP. Even if SubMap provides more coverage than CAMPways

for the alignment of atc-eco pair within 1.11 Xenobiotics biodegredation metabolic network

(153 versus 134), the correct mapping number of CAMPways algorithm is still better than

the SubMap results (60 versus 53). In this case, it is possible to see that even if SubMap

provides more coverage which means more matched reactions in the alignment, the reactions

in that alignment are not share same pathways and these matches are meaningless. In 5

instances of 22 results, SubMap does not give results due to excessive memory consumption

and these results’ entries are empty in Table 4.1.1. Whereas for 16 instances, CAMPways

presents more correct mappings, in only one instance, both algorithms give same number of

correct mappings. Additionally, results of ratio shows that CAMPways gives better results

than SubMap algorithm. Hereby, we need to remember that the ratio does not normalize

the correct mapping number with the coverage number, conversely, it normalize the correct

mapping number with the total reaction number in the output alignment. Thus, the ratio

value gives us the correct mapping ratio in that alignment.
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4.1.1.2. Across-domain Alignments. We perform the same tests for the across-domain pairs

within the same metabolism networks and two remarkable observations are obtained from

the alignment results. The first one is the difference between the correct mapping numbers

and between the correctness ratios. When we focus on these results, we observe that the

results are decreased by comparison with Table 4.1.1. The prime reason of the decrease

is the evolutionary distance such that when the evolutionary distance between the species

increases, the reactions which are in the different pathways are matched by the algorithms.

Secondly, when we compare the alignment qualities, the trend is same as in the same-domain

experiments. In almost all cases, CAMPways provides more and better results in terms of

correctness ratio than SubMap. In 4 instances of 20 results, SubMap does not produce any

alignment due to excessive memory consumption as in the same-domain experiments. In 7

instances, both algorithms produce same results in terms of correct mapping number and

in 16 instances, CAMPways algorithm gives more correct mappings than SubMap. On the

other hand, in only 1 instance, the results of SubMap are better than CAMPways. These

results can be shown in Table 4.1.1.1 and all column names are same as in Table 4.1.1.The

results in that table belong to the metabolisms 1.2, 1.6, 1.7, 1.9, 1.10 and 1.11, respectively.

It is important to emphasize that CAMPways produces all alignment within 11 metabolism

networks. In order to provide compactness, we do not give all results in the table, but we

define our results that are taken from the other metabolism network alignments. The average

correctness ratios of the output alignments within 1.1, 1.3, 1.4, 1.5 and 1.8 are 0.7, 0.88, 0.97,

0.64 and 0.77, respectively. According to these results, it is possible to observe that totally

CAMPways works better than SubMap but there are some exceptional cases such as the

alignment results of 1.7 Glycan biosynthesis and metabolism and 1.10 Biosynthesis of other

metabolites. In these exceptional cases, the sizes of correct alignments of both algorithms

are quite small. Therefore, drawing a conclusion from these results is hard and it shows that

these results are negligible. Even if we consider these results, in all output alignment results

of CAMPways and SubMap, the correctness ratio of CAMPways is %5.3 better than the

correctness ratio of SubMap on average.
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Figure 4.1. Top: Same-domain (hsa-mmu). Bottom: Across-domains (hsa-atc)

At this point, we need to explain that we make experiments to see the results of

weighting scheme W2 for various α1, α2, α3 values in terms of correctness values of the output

alignments and the change in the number of 1-to-i mappings.

4.1.1.3. Correctness and Sizes of Mappings. We perform many tests in order to obtain the

output alignments and experimental results of these depending on the various a1, a2, a3 values

of the weighting scheme W2 of CAMPways. In Figure 4.1, while top 3D surface represents the

correct mapping number of the same-domains (hsa-mmu) pair, bottom 3D surface indicates

the correct mapping number of the across-domains (atc-eco) pair. In this figure, the plots

are drawn due to changing values of a1, a2, a3 parameters. The values are limited between 0.1

and 0.8 and in each experiment the values increase 0.1. The value of a3 is not clearly defined

because of the parameters relationship such that a3 = 1 − a1 − a2. The correct mapping

number is given in z-axis. This number is an average number of the correct mapping number

of the alignments within 1.1 and 1.11 metabolism networks. The best average number of

correct mappings is obtained when a1 = 0.4, a2 = 0.3 and a3 = 0.3. In this sense, we need

to remember that each ai represents the importance of 1-to-i mappings. According to this

representation, we also perform some tests in order to observe the changing in the number of
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Figure 4.2. Same-domain (hsa-mmu) results. Top: 1-to-1 mappings. Middle: 1-to-2

mappings. Bottom: 1-to-3 mappings

1-to-i mappings in the alignment. These results are shown in Figure 4.2. Both same-domain

results and across-domain results are similar, therefore we give only same-domain (hsa-mmu)

results in that figure. As in the other figure, the plot shows the average number of 1-to-i

mappings within 1.1 and 1.11 metabolism networks. For same-domain tests, the maximum

number of 1-to-3 mappings is around 10 and this number is obtained when a1 = 0.1 and

a2 = 0.1. Similarly, the maximum number of 1-to-2 mappings is around 40 and as shown

in figure 4.2, while the value of a1 increases, the number of 1-to-2 mappings decreases.

The remarkable difference between same-domain and across-domain tests, 1-to-2 and 1-to-

3 mapping number does not decrease under 0. This implies that when the evolutionary

distance increases between two species, the reaction in one network match with two or three

reactions in other network, mainly.

4.1.2. Biochemical Significance of the Alignments

In order to compare the alignment qualities of both algorithms, we use functional

group conversion (FGC) hierarchy. This hierarchy is provided by RCLASS database in

KEGG database [45]. The reactions in that database are organized in the hierarchical func-
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tional group categories. Same functional group indicates same or similar chemical reactions

independently of the molecule size [46]. Thus, the inter-species alignment of a pair is called

biochemically valid if the matched reaction subsets are in same FGC category. There are

five levels in KEGG database such that the root level includes eight high-level FGC cat-

egories: Carbon-related, hydrogen-related, isomerization-related, nitrogen-related, oxygen-

related, phosphorus-related, oxygen-related and halogen-related. The accuracy measure is

same as in the previous sections such that for fixed level i, a mapping is called valid if all

reactions in the mapping are in at least one of i. level categories. Assume that root level is

defined as i = 1 and starting with the root level, we performed some tests and evaluate the

accuracy degrees of CAMPways and SubMap algorithm alignments for first five levels.

We perform two type of experiments such as in the previous subsections: experi-

ments on same-domains and across-domains. These results are given in Table 4.1.2. The

metabolism network pairs, rows and subrows are same as in Table 4.1.1. While the sub-

columns that are presented as S indicates the alignment results of SubMap, the subcolumns

that are marked as C shows the results of weighting scheme W1 of CAMPways algorithm.

The weighting scheme W2 gives similar results to W1. Thus, we don’t give the results of

weighting scheme W2 in that table. The main column title indicates the first five levels in

FGC hierarchy and it helps to understand results easily level by level. Each table record

corresponds to the correct mapping number of the alignment. It is possible to understand

that the results of CAMPways are superior than SubMap in that table. For same-domain

pairs, the number of correct mappings decreases from the abstract categories of root level

to less abstract categories. Also, it is important to define that for 1.7 Glycan biosynthesis

and metabolism, while the size of mapping is around 80 for hsa-mmu pair, both algorithms

provide too few correct mapping. The ratio of correct mappings to mapping size is only

%6. So, this case is inconsistent with the results that are given in Table 4.1.1 that provides

%90 accuracy ratio. The main reason is the lack of reaction classification in FGC cate-

gories. In fact, this lack provides a useful opportunity such that if there exists a reaction
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Figure 4.3. Sample mapping from the CAMPways alignment

in the mapping whose FGC classification is unknown, then FGC category of this reaction

can be predicted or defined considering the reactions whose FGC classification is known

are in the same mapping. When we look across-domain experiment results that are given

in Table 4.1.2, same results are obtained such that CAMPways algorithm provides better

results than Submap for almost all instances in all hierarchical levels. The only exception is

1.10 metabolism alignment for has-atc species. In this instance, both algorithms don’t give

remarkable results.

The experiments that are based on RCLASS data are extended by RPAIR data. For

the alignment of atc-eco pair on Amino acid metabolism network, an instance is analyzed in

detail for both algorithms. In this sense, a reactant pair is determined as a pair of a substrate

and a product such that the reactant pair is used as a chemical substructure in the enzymatic

reactions. In fact, RCLASS database classification provides information about the reactant

pairs but there is a difference between RCLASS and RPAIR databases. Whereas RCLASS

classifications are made due to molecular methods or computational methods with chemical

structure information, RPAIR classifications are made by molecular alignments and manually

compiled reactant pairs with biochemical information. The sample that is analyzed of CAM-

Pways algorithm alignment is shown in Figure 4.3. In this matching, atc reactions R01374

(D-phenylalanine: acceptor oxidoreductase (deaminating)) and R01582 (D-Phenylalanine:
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2-oxoglutarate aminotransferase) are together matched with eco reaction R01374. Addition-

ally, the reactions R00694 (L-Phenylalaline: 2-oxoglutarate aminotransferase) and R01372

(Phenylpyruvate: oxygen oxidoreductase (hydroxylating, decarboxylating)) of atc species

are together matched with the reaction R00694 of eco species. The output compound of

reactions R01374 and R01374 is C00166 (Phenylpyruvate) and also, the output compound

of these reactions is input compound of R00694 and R01372 reactions. As a consequence, in

atc pathway, there is a directed edge from the node that corresponds to the reaction subset of

R01374 and R01582 reactions to the node that correspond to the reaction subset of R00694

and R01372 reactions. Similarly, in eco pathway, there is a directed edge from the node that

corresponds to the reaction R01374 to the node that corresponds to the reaction R00694.

Thus, it is possible to see that this sample provides a conserved edge. Moreover, when we

look the classifications, the first five levels in FGC categorization of the reactions R01374

and R01582 are same and this implies that the alignment is biologically valid depending on

RCLASS classification. Also, both reactions are under the same RCLASS entry RC00006.

For more accuracy, when we look RPATH data that includes manually compiled reactant

pairs and provides more realism, both reactions belong to the same reactant pair RP00289.

On the other side, in the alignment of SubMap, the reactions R01582 and R01373 (Prephen-

ate hydro-lyase (decarboxylating phenylpyruvate - forming)) of atc species are matched with

the single reaction R01373 of etc species. The reactions R01373 and R01582 shows differ-

ences from the second level in FGC categorization and also these reactions belong to the

different RCLASS entries. Furthermore, there is not a remarkable relationship between these

reactions considering RPAIR database. Consequently, CAMPways algorithm provides more

meaningful in terms of biological significance alignment results.

4.1.3. Execution Speed and Memory Requirements

When we assume that degree of each nodes in Gp and G′
p is limited with a fixed number,

the total running time of CAMPways is O(|Vp|2log2|Vp|). In this sense, it is assumed that |Vp|
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is greater than |V ′
p |. The detailed running time analysis is given in the next section. If any

comparison is needed between SubMap and CAMPways algorithms, there is no running time

analysis for SubMap. The experimental results that are given in this section are provided

by performing the tests on the system that consists of Intel(R) Xeon(R) CPU, 2.67 GHz

and 24 GB memory. All required CPU times are given in Table 4.1.5. Whereas the first

three rows indicate the experimental results of same-domain pairs, the other rows represent

the results of across-species pairs. For each instances, the total reaction number is denoted

by TR column in that table. The algorithm names’ abbreviations are same as in previous

tables. There is a limitation for SubMap algorithm such that some experiments are not

completed due to excessive memory consumption. For the alignment of hsa-atc pair within

1.1 Carbonhydrate-metabolism, whereas CAMPways algorithm gives the alignment around

3 minutes, SubMap algorithm does not complete after 2 hours execution. In 15 instances of

17 results, the experiments that are performed on same-domain pairs show that CAMPways’

execution time is better than the execution time of SubMap. In this sense, the important

point is the differences between the execution times of CAMPways and SubMap is large

when CAMPways execution is faster but when SubMap algorithm is completed in a small

time, the difference between the execution times is quite small. When we look in terms of

computational efficiency of both algorithms, the difference between same-domain alignments

and across-domain alignment is interesting. In fact the difference between computationally

efficiency corresponds to the difference between the algorithms. The metabolic networks that

belong to the same-domain species are close to each other in terms of evolutionary distance.

Therefore, the aligned networks include more conserved edges. In fact, there are many

instances that make the network alignment sensible such that both homological similarity

and topological similarity are optimized. Most of the reactions are aligned in the main loop

of CAMPways algorithm and conflict graph sizes are large due to higher edge conservation.

But when the species are not close in terms of evolutionary distance, naturally, the number

of conserved edge decreases and in this sense, both algorithm preferred to give alignments

that includes higher homologically similar matched reactions.



47

4.1.4. Running Time Analysis

We assume that the degree of each node in Gp and G′
p is limited with a constant 4.

This limitation is sensible when the metabolic pathways are considered. In addition to this

limitation, we assume that |V ′
p | = O(|Vp|). Each node in Gp can be denoted in at most

(1−4k)/(1−4) such that the node subsets in Gp that consist of the connected nodes give

rise to the nodes of Gk
p. This implies that the number of nodes in the extended graph Gk

p is

at most |Vp| x (1−4k)/(1−4). Because we assume that both 4 and k are constant, the

size of node set of Gk
p is limited with O(|Vp|). Similar arguments are employed for G′

p
k, as

well. Also, the degree of each node in the extended graphs is limited with kx4. According

to these limitations, degree values are constant. The running time of step 1 is limited with

the time of sorting the edges in the complete bipartite graph according to the edge weights.

Therefore, the running time of Step 1 is O(|Vp|2log|Vp|). Each node in the extended graph

Gk
p is shown in at most k21 x k x 4 node in the conflict graph. This implies that the number

of nodes in the conflict graph is at most |Vp| x k21 x k x 4. Because the values of k1, k and

4 are constant, the number of nodes in the conflict graph is O(|Vp|). So, in simple terms,

the construction of the conflict graph requires O(|Vp|2). Hereby, there is an important point

that the degree of each node in the conflict graph is also limited with a constant. Two nodes

in the conflict graph share an edge if these nodes share a common node in their original

pathways Gp, G
′
p. Therefore each original pathway node is represented with at most k21 x k

x 4 x (1 − 4k) / (1 − 4) conflict node such that this value is also a constant. When we

focus on maximum weight independent set solution, GWMIN2 heuristic needs the weight of

the neighbors of the node to make a calculation for this node. Therefore, each node can be

calculated in a constant time and this part of Step 2 needs O(|Vp|log|Vp|). It is important

to remember that both Step 1 and Step 2 remain until the loops are over which means

until the convergence is provided. Because the degree of each node in the conflict graph

is limited with a constant, in each iteration, after the aligned nodes are removed from the

conflict node, a constant number of conflict nodes remains. Because any node of extended
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graph can be represented in constant number of conflict graph, ongoing iteration remains

with the constant number of extended graph nodes. This implies that the iteration number

is O(log|Vp|). As a consequence, the total running time that consists of both Step 1 and

Step 2 is O(|Vp|2log2|Vp|). This is also an upper bound for the final expansion step and

provides an upper bound on the algorithm. At this point, it is important to remember that

the convergence is obtained in a few iterations on the mentioned metabolic networks.

4.1.5. Discussion of Results for CAPPI

In this section, we compare the results of CAPPI with the results of SPINAL, IsoRank

and MI-GRAAL algorithms. Firstly, we compare biological significance of these results.

When the subject is protein interaction network, the biological significance is evaluated in

terms of gene ontology (GO) consistency scores. In order to make such a comparison, we use

the formula that is given in [28]. The results are given in table 4.6. Because, mostly SPINAL

gives more superior results, IsoRank and MI-GRAAL results are not given in that table. In

order to obtain these results, we run SPINAL algorithm with various parameters and produce

similarity files within these processes. Afterwards, we run CAPPI algorithm with related

similarity files. For CAPPI algorithm, α equals to 0, the constant b equals to %55 and the

constants k1, k2 are 3. Also, the iteration number is given as one. For 18 instances of 25

results, CAPPI algorithm gives better results in terms of go consistency scores. Furthermore,

similarly, for 18 instances of 25 results, CAPPI algorithm produces more conserved edges

even if the priority is finding better biological results. For the instances where IsoRank gives

better results than SPINAL, even if CAPPI algorithm does not pass IsoRank, it increases the

score of SPINAL. On the other hand, when we look conserved edges, interestingly, CAPPI

algorithm passes SPINAL where SPINAL gives low results. The results are given in 4.7.

MI-GRAAL results are not given in that table for integrity because MI-GRAAL algorithm

does not use any constant value. For ce-dm species and α = 0.7, while MI-GRAAL algorithm

produces 2390 conserved edges, CAPPI algorithm gives 2374 conserved edges and SPINAL
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produces 2258 conserved edges. It implies that both biological meaning evaluations and

conserved edge evaluations, CAPPI algorithm may be an alternative or a supplement for

SPINAL algorithm.
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Table 4.1. Same-domains reverse engineering experiment.

Total Reactions Coverage Correct Mappings Ratio

S C1 C2 S C1 C2 S C1 C2

437 - 435 435 - 211 213 - 0.99 0.98

458 - 416 416 - 166 171 - 0.82 0.83

62 62 62 62 29 31 31 0.96 1 1

116 105 110 110 45 51 51 0.93 0.94 0.94

745 - 726 726 - 361 361 - 0.99 0.99

264 244 254 254 96 105 103 0.82 0.82 0.83

320 - 320 320 - 159 159 - 0.99 0.99

296 280 262 262 110 128 128 0.90 0.98 0.98

496 491 481 481 221 239 239 0.96 0.99 0.99

369 352 340 339 122 143 143 0.79 0.86 0.86

134 128 130 130 59 64 64 0.96 0.98 0.98

108 102 97 97 37 39 39 0.78 0.82 0.82

168 148 168 168 73 76 76 1 0.90 0.90

73 69 64 64 31 31 31 0.96 0.96 0.96

307 - 306 307 - 150 151 - 0.98 0.98

334 325 324 326 129 143 144 0.87 0.89 0.90

31 28 28 28 12 14 14 1 1 1

51 43 43 44 15 17 17 0.78 0.80 0.77

35 34 34 34 16 17 17 1 1 1

23 21 20 20 8 9 9 0.8 0.9 0.9

207 201 200 200 87 100 100 0.92 1 1

175 153 134 134 53 60 60 0.81 0.89 0.89
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Table 4.2. Across-domains experiment.

Total Reactions Coverage Correct Mappings Ratio

S C1 C2 S C1 C2 S C1 C2

93 71 61 63 23 26 27 0.76 0.86 0.87

85 74 61 61 19 25 25 0.63 0.83 0.83

85 74 61 61 19 25 25 0.63 0.83 0.83

93 71 61 63 23 26 27 0.76 0.86 0.87

128 122 117 117 41 46 46 0.74 0.80 0.79

114 108 100 100 37 41 41 0.77 0.85 0.85

118 110 101 101 38 41 41 0.79 0.83 0.83

124 118 117 115 38 44 41 0.73 0.77 0.74

125 79 78 80 7 7 7 0.19 0.18 0.17

116 61 63 63 6 6 6 0.22 0.19 0.19

116 61 63 63 6 6 6 0.22 0.19 0.19

125 79 78 80 7 7 7 0.19 0.18 0.17

39 37 34 34 8 12 12 0.53 0.70 0.70

43 34 27 27 9 12 12 0.69 0.92 0.92

46 40 33 33 12 15 15 0.75 0.93 0.93

36 36 28 28 7 11 11 0.50 0.78 0.78

30 24 26 26 4 4 4 0.40 0.36 0.36

28 21 21 19 2 2 1 0.25 0.22 0.12

27 21 18 18 2 1 1 0.25 0.14 0.14

31 24 26 26 4 4 4 0.40 0.36 0.36

174 156 135 135 43 46 46 0.67 0.68 0.68

208 198 198 198 35 40 40 0.39 0.41 0.41

215 208 214 214 42 46 46 0.45 0.44 0.44

167 156 136 136 36 40 40 0.56 0.59 0.59
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Table 4.3. Same-domains biochemical significance experiments.

Level 1 Level 2 Level 3 Level 4 Level 5

S C S C S C S C S C

- 193 - 193 - 193 - 192 - 192

- 154 - 154 - 151 - 144 - 138

23 23 22 23 22 23 21 23 21 22

32 41 32 41 32 39 32 39 32 39

323 343 323 343 323 343 318 340 316 338

97 105 97 105 97 104 93 103 92 102

- 103 - 103 - 101 - 101 - 101

66 84 66 84 64 80 64 80 63 80

209 229 209 229 208 229 205 227 205 227

117 143 110 139 104 132 97 130 93 127

53 57 53 57 52 57 52 57 52 56

37 35 37 35 34 33 33 33 33 32

5 6 5 6 5 6 5 6 5 6

20 21 20 21 20 21 20 21 19 21

- 123 - 123 - 123 - 123 - 123

96 115 94 114 93 111 93 110 90 109

9 13 9 13 9 13 9 13 9 13

16 17 16 16 16 16 15 15 14 15

14 16 14 16 13 16 13 16 13 16

7 9 7 9 7 9 6 8 6 8

79 97 78 97 76 97 76 97 76 97

44 59 44 58 42 55 42 55 42 54
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Table 4.4. Across-domains biochemical significance experiments.

Level 1 Level 2 Level 3 Level 4 Level 5

S C S C S C S C S C

17 19 16 18 15 18 13 18 12 16

13 19 12 18 10 17 9 17 8 15

13 19 12 18 10 17 9 17 8 15

17 19 16 18 15 18 13 18 12 16

37 40 37 40 35 40 34 39 31 36

33 35 33 35 32 35 30 34 26 30

35 37 35 37 32 36 31 35 26 31

32 38 32 38 30 36 30 36 27 36

2 3 2 3 2 3 1 2 1 2

2 3 2 3 2 3 1 2 1 2

2 3 2 3 2 3 1 2 1 2

2 3 2 3 2 3 1 2 1 2

8 12 7 10 7 10 5 8 4 8

9 11 6 11 6 11 6 11 5 10

9 13 7 11 6 10 6 10 6 10

9 11 7 9 6 9 5 8 4 8

5 5 5 5 4 5 4 5 4 5

1 2 1 2 1 2 1 1 1 1

1 0 1 0 1 0 1 0 1 0

5 5 5 5 4 5 4 5 4 5

43 55 36 50 32 48 30 44 29 44

51 66 37 53 34 46 30 40 28 40

56 69 43 53 39 48 35 43 33 41

39 50 32 44 28 43 26 40 25 39
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Table 4.7. Conserved edge evaluations

Conserved Edges

DataSet Algorithm 0.3 0.4 0.5 0.6 0.7

ce-dm

SPINALII 2343 2320 2300 2337 2258

CAPPI 2343 2372 2335 2361 2374

IsoRank 335 329 325 327 328

ce-hs

SPINALII 2370 2446 2437 2487 2512

CAPPI 2420 2387 2411 2403 2405

IsoRank 299 287 290 300 293

ce-sc

SPINALII 2326 2384 2323 2361 2398

CAPPI 2312 2309 2295 2322 2306

IsoRank 410 385 385 360 339

dm-sc

SPINALII 5203 5150 5311 5283 5360

CAPPI 4802 4827 4854 4754 4828

IsoRank 840 856 837 781 763

hs-sc

SPINALII 5703 5593 5651 5706 5798

CAPPI 5264 5275 5246 5262 5184

IsoRank 786 824 817 763 761
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