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/ere are several methods which can be used to locate an object or people in an indoor location. Ultra-wideband (UWB) is a
specifically promising indoor positioning technology because of its high accuracy, resistance to interference, and better pen-
etration. /is study aims to improve the accuracy of the UWB sensor-based indoor positioning system. To achieve that, the
proposed system is trained by using the K-means algorithm with an additional average silhouette method. /is helps us to define
the optimal number of clusters to be used by the K-means algorithm based on the value of the silhouette coefficient. Fuzzy c-means
and mean shift algorithms are added for comparison purposes. /is paper also introduces the impact of the Kalman filter while
using the measured UWB test points as an input for the Kalman filter in order to obtain a better estimation of the position. As a
result, the average localization error is reduced by 43.26% (from 16.3442 cm to 9.2745 cm) when combining the K-means al-
gorithm with the Kalman filter in which the Kalman-filtered UWB-measured test points are used as an input for the
proposed system.

1. Introduction

With the expansion of information technology, indoor
positioning technology has developed rapidly. Positioning
methods are mainly divided into two categories: the lo-
cation fingerprint positioning method and the trilateration
algorithm [1]. /e need for high-accuracy indoor posi-
tioning is a very important issue. Determining the location
of patients in the hospital, locating workers in a large office,
and also people trapped in a burning building are all part of
scenarios that require a high accuracy indoor positioning
systems. Numerous solutions are presented for location
estimation of indoor targets [2, 3]. A large number of these
solutions rely on multilateration and triangulation
methods by utilizing ultrasound, infrared, and radio sig-
nals. /ese solutions manage to provide information re-
lated to the location. Triangulation utilizes the properties of
triangles to determine the target position. It includes two
derivations: first, the lateration, and second, the angulation.
/e lateration derivations determine the location of the

target by measuring the distances of this target from a
number of reference points, instead of directly measuring
the distance. /e time difference of arrival (TDoA), the
time of arrival (ToA), or received signal strengths (RSS) are
usually measured; and the distance is obtained by calcu-
lating the attenuation of the transmitted signal strength or,
in another case, by multiplying the travel time and the
velocity of the radio signal. /e round trip time of flight
(RToF) method is also used for range estimation purposes
in some systems. However, angulation helps us to locate a
target by calculating the angles relative to the reference
points in the angle of arrival (AoA) method [4, 5]. Many
positioning systems have different architectures, configu-
rations, accuracies, and reliabilities to determine the po-
sition of objects or people. Some of the indoor positioning
systems are GPS, infrared, Wi-Fi, RFID, BLE Beacon, ul-
trasonic location-based systems, and UWB [6, 7]. UWB
signals have an extremely large bandwidth, more than
500MHz. UWB transmitters allow better power efficiency
due to its low consumption of power, compared to other
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indoor positioning technologies [7, 8]. UWB offers a good
multipath resolution since the indoor wireless system must
cope with several multipath situations [8, 9]. Such a wide
bandwidth offers many benefits in terms of communica-
tions and radar applications. In other words, the large
bandwidth will enhance reliability since the signal includes
a different variety of frequency components. /us, at least
some of them can go around or through obstacles. Hence,
the UWB enables a more reliable and accurate positioning
[10, 11].

One of the most important applications of the indoor
positioning system is to achieve efficient manufacturing
processes in industrial facilities where it is necessary to track
products, objects, and machines. Such an environment is
considered to be more complex compared to other regular
indoor positioning scenarios in which large machines block
the line of sight path and increase the reflections and
multipath effects. /us, in [12], the use of ultra-wideband-
based (UWB) time difference-of-arrival positioning system
is investigated. It includes four transceivers since UWB
offers a solution to the multipath problem. In this study, the
evaluation of the proposed system is performed in three
different measurement setups. In single and the multi-
channel setups, the result refers to an increase in accuracy
with four transceivers per base station. And in situations
where there are several multipath signals, the standard
deviation of the measured positions is reduced by the
multichannel anchors.

For the UWB systems to perform reliably in indoor
areas, error mitigation techniques are applied based on the
ranging error modelling methods [13]. In this, a commercial
UWB system is used to develop error calibration models
based on data obtained from an indoor area. /ree cali-
bration methods are implemented for static and kinematic
test scenarios in order to generate the respective calibration
models. When it comes to the evaluation of the calibration
models, raw and calibrated ranges obtained at validation
points of known positions are compared with the corre-
sponding reference distances.

Another feature that can benefit from the indoor posi-
tioning system is determining the position of assets within a
network. /e GPS is sufficient for an outdoor environment;
however, the GPS is hard to apply in an indoor environment
because of walls and obstacles. In [14], UWB direct chaotic
communication is proposed, which has multiple advanta-
geous features, such as low hardware complexity, lower
power consumption, low cost, and large bandwidth, greater
than 500MHz. /ey investigate the feasibility of the ranging
system by using a noncoherent chaotic transceiver. Location
experiments are conducted in which the fuzzy logic algo-
rithm is employed to lower the effect of the nonline-of-sight
(NLoS) error on real indoor environments. /e two-way
ranging (TWR) method is applied in order to measure the
signal round trip time (RTT) between two asynchronous
transceivers. To achieve a high ranging accuracy, despite
using noncoherent reception and low clock rate, fuzzy logic
is used. /e fuzzy logic algorithm produces fuzzy input
membership function (FIMF) that can mitigate NLoS
propagation effect.

/ere is a wide range of medical applications that can
benefit from the indoor positioning functionality. Patients
that suffer from dementia often show wandering behaviour
because of memory loss or boredom. Such cases are con-
sidered hard to understand and manage. Yang et al. [15]
proposed a design and evaluated the wandering scenarios
related to people who suffer from this condition using the S
band (2–4GHz) sensing technique. In an indoor environ-
ment, different behaviours that include lapping, random,
and pacing movements can be monitored and characterized
by using such a frequency. /e wandering patterns are
recognized based on two factors: phase information and its
received amplitude, that measures any disturbance caused in
the ideal radio signal. A support vector machine is also used
as a secondary analysis in order to classify the observed
patterns.

In [16], a study is presented onmonitoring and detection
of freezing of gait (FOG). FOG is a nonmotor condition that
appears on aging patients./e evaluation of FOG can reduce
the chances of any secondary disorders. In this study, the
amplitude and phase information of the radio signals are
explored for a specified time duration using a single leaky
wave cable (LWC), which can be used later to differentiate
the motor and nonmotor symptoms. /e reason for using
LWC is to obtain a better performance when it comes to
directivity and ease of deployment. /e support vector
machine method is used to classify the amplitude in-
formation, whereas the linear transformation is performed
to acquire sanitized phase information that can be used for
detection purposes./e application of this method delivers a
high-accuracy (around 99%) performance, based on the
observation of several patients.

A nonintrusive breathing monitoring system that ben-
efits from the C-band sensing technique is proposed in [17].
/e respiratory motions of diabetic patients are monitored
by this technique in order to identify diabetic ketoacidosis in
indoor areas, which can be accessed from outside through
the connectivity of tactile internet. When it comes to col-
lecting wireless signals, the proposed system utilizes a mi-
crowave-sensing platform (MSP) at the C-band. In addition
to that, the respiratory sensor is utilized to verify the pro-
posed system accuracy.

Most of the predescribed works utilize UWB for the
indoor positioning system because of the wide range of ad-
vantageous properties that the UWB indoor positioning
system offers. It especially offers accuracy better than 30 cm.
In our paper, a UWBdevelopment kit is utilized to implement
this experiment and to provide the dataset for this study.
Moreover, this UWB development kit provides accuracy
better than 20 cm, and with the help of clustering algorithms,
it provides accuracy better than 10 cm, around 9 cm.

Regarding the machine learning methods that are
employed in these references, the support vector machine
method is used in more than one study for classification
purposes. Offered methods in our paper investigate the
benefits of using the clustering methods that involve the
grouping of data points with similar properties. Our paper
presents the effect of using the clustering method on the
accuracy of UWB indoor positioning system.
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2. Related Works

Because of its many advantages, UWB is an emerging and
promising technology in indoor environments. However,
the existence of a line-of-sight (LoS) blockage can affect the
location accuracy. First, the effects occur because the LoS
blocking material, which has a high level of dielectric
constant, introduces propagation delay. Second, by making
the propagation channel’s multipath structure complicated,
it makes it difficult to estimate the ToA of the path signal
[18, 19].

A method is proposed to estimate the positions of a
moving object instantaneously by combining the machine
learning algorithm with the Kalman filter [20]. In [21], a
method is proposed for indoor wireless localization, based
on Wi-Fi K-means. First, the outcome distance formula is
utilized to consider the effect of attribute values first. Second,
the difference between different objects is considered, which
can be computed more accurately. Despite the improve-
ment, several technical problems remain in the indoor lo-
calization based on Wi-Fi which is not fixed very well. /e
most important remaining problem is the accuracy of indoor
positioning.

Amethod for using the multilateration with probabilistic
RFID map-based technique is developed to determine the
position of the unknown tag. /e Kalman filter is also
implemented to improve the estimation of the tag position.
/e application of this method can obtain the accurate
estimation of position and accelerations as well [22].

In [23], the fuzzy c-means (FCM) clustering algorithm
for indoor localization method is used; and a new imple-
mentation in fingerprint for radio frequency is proposed.
Using such an implementation makes the localization sys-
tem more effective; and it is beneficial in terms of low power
consumption and time efficiency.

A detailed similarity analysis is presented in [24] by
adopting the K-means clustering algorithm with Squared
Euclidean. /e average silhouette method is utilized to
validate how well separated the produced clusters are.

/e issue of selecting the right cluster number is studied
in [25]./e K-means algorithm is implemented, whereas the
cluster number set is based on the highest average silhouette
width. As a result, the optimum number of clusters is found
from the given dataset. Moreover, there is also no need to use
user-defined parameters.

/e intelligent centroid localization (ICL) method is
proposed in [26]. /is method is a conversion of previously
implemented centroid localization method, with the aim to
determine the position of the unknown sensor location. /e
RSSI values are used as an input to the fuzzy system in the
developed ICL method.

3. Experimental Setup and Indoor
Positioning Dataset

In this work, a dataset is used, collected from an active
learning classroom (ALC), shown in Figure 1./e classroom
contains moveable tables, chairs, and desks, so it provides
multiple choices for seating. /e classroom capacity is 28

people; and the area is developed to provide full control to
the users. A total of 12 people setup is used when the dataset
is collected. /e design features are expected to support the
use of all the locations in this classroom while performing
different activities.

While the active learning classroom, measuring
7.35m× 5.41m, is designed as a test bed for collecting data, a
ceiling system, attached to the ceiling and the anchors
(shown as A0, A1, A2, and A3 in Figure 1), are held on each
corner of the test bed at 2.85m constant height.

As shown in Figure 2, Decawave MDEK1001 UWB
development kit [27] is utilized to implement this experi-
ment, by including 4 anchors on the ceiling and a test tag for
the test user. A total of 180 locations are marked for the test
user who has a UWB sensor tag to wear around his/her neck.
/en, the test user’s location data are collected. /e total
time of data collection is 9 hours excluding the time for the
setup and change of observation cycles. A total of 27,000
location measurements are collected.

A special ceiling system shown in Figure 3 is developed
to offer better LoS and also a direct path between the anchors
and the tags [11]. /e test user stayed in the test bed for at
least 3 minutes providing 150 samples for each marked
location.

4. Proposed Methods

/e proposed methods employed in this study are briefly
described in the following sections. /ese methods are
K-means, fuzzy c-means, and mean shift for clustering, the
Kalman filter, and finally, the average silhouette method to
initialize the optimal number of clusters.

4.1. K-Means Clustering Algorithm. K-means is considered
to be one of the most important clustering algorithms. /e
K-means algorithm selects k initial number of centroids
randomly. k in this case is the number of defined clusters by
the user. Now, each point is assigned to the cluster center
closest to this point. Based on the points in the cluster, the
centroid gets updated. /is process continues until there is
no change in points within their clusters. /e algorithm is
composed by the following steps [28]:

(1) Set the cluster number
(2) Select k cluster centroids randomly
(3) Calculate the distance between points of data and

cluster centroids
(4) If similar points of data are close to the centroid,

move that cluster
(5) Acquire new cluster centers by averaging data points

in each cluster
(6) Repeat Steps (3) to (5) until there is no change in

cluster centroids or the maximum number of iter-
ations is reached

4.2. FuzzyC-MeansAlgorithm. FCM is an algorithm for data
clustering. Based on the fuzzy set theory, it allows one piece
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of data belong to two or more clusters where fuzzy means
“unclear” or “not defined” and C denotes “clustering.”

/e advantages of this algorithm are its robust behav-
iour, ability of uncertainty data modelling, applicability to
multichannel data, and its straight-forward implementation
[23].

/e objective function given in equation (1) is con-
sidered; and the aim is to minimize this objective function
[23]:
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where m refers to a real number higher than 1, uij refers to
the membership degree of xi in the cluster j, xi refers to the
ith measured d-dimensional data, and cj refers to the

d-dimensional cluster center, while ‖∗‖ is the norm which
expresses the similarity between the center and any mea-
sured data.

/e fuzzy partitioning process through the iterative
optimization of the objective function is shown in equation
(1), with the update of membership uij and the cj cluster
centers by [29]:
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/e iteration stops when [29]
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Figure 1: Active learning classroom, measuring 7.35m× 5.41m and installation of the four anchors expressed as A0, A1, A2, and A3, tag
expressed as Tag1, and the test points expressed as ✕.
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where ε refers to the termination criterion, which is between
0 and 1, whereas k is the iteration step. /is process con-
verges to a local minimum./e FCM algorithm includes the
following steps:

(1) Initialize U� [uij] matrix, U(0)

(2) Calculate the center vectors at k step, C(k)� [cj] with
U(k) using equation (3)

(3) Update both U(k) and U(k+ 1) in equation (2)
(4) STOP If ||U(k+ 1) − U(k)||< ε; otherwise, return to

Step (2)

4.3.MeanShiftAlgorithm. /emean shift algorithm is based
on the general idea that locally averaging data result in
moving to a higher density and, therefore, more typical
regions [30]. /is algorithm is a nonparametric estimator of

the density gradient. Using the iterative method, the local
maximum can be obtained.

/e algorithm is used for a variety of purposes. Clus-
tering analysis, image segmentation, object tracking, in-
formation fusion, edge detection, and filtering are some
examples. /e Kernel function is used in the mean shift
algorithm to compute the steps of the algorithm and esti-
mate the point gradient orientation [31].

/e mean shift algorithm is very attractive because it is
based on nonparametric kernel density estimates (KDE) in
which the user does not need to define the number of
clusters. /e only parameter the user needs to specify is the
scale of the clustering (bandwidth). In the mean shift
clustering, the input of the algorithm is the data points and
the bandwidth or scale. Call xn􏼈 􏼉

N

n�1 ⊂ RD , the data points
to be clustered. /e kernel density estimate is defined as
follows [30]:
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Figure 2: A sensor kit of Decawave MDEK1001 development kit which can be assigned as an anchor or a tag.

Figure 3: Ceiling installation of four anchors expressed as A0, A1, A2 and A3.
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where bandwidth σ > 0 and the kernel K (t), K (t)� e − t/2,
for the Gaussian kernel. /e Gaussian mean shift algorithm
is shown in Algorithm 1 [30].

/e results of the mean shift are carried over to kernels
where each test point has its own weight and also its own
bandwidth./e Gaussian kernels are utilized since it is easier
to analyze and it leads to simpler formulas.

4.4.1eKalmanFilter. /eKalman filter uses a series of data
observed over time that may contain inaccuracies such as
noise with the aim to estimate the unknown variables with
better accuracy. /e Kalman filter has become a standard
approach in optimal estimation due to its merits of real time,
efficiency, speed, and strong anti-interference. And now, the
Kalman filter is applied in the fields of target tracking and
navigation, such as tracking of a maneuvering target and
positioning of GPS [32]. /e Kalman filter was firstly
proposed by R. E. Kalman in 1960 [33]. Algorithm 2
summarizes the Kalman filter steps.

Xest, Pest, z, T,M, R, andQ are the state vector, covariance
of the state vector, the observation vector, the state transition
matrix, observation matrix, covariance matrix of the mea-
surement noise, and covariance of the process noise, re-
spectively. Here, s−

t and P−
t fully parameterize the posterior

distribution, which is an improved estimate of the system
state vector and Xest its covariance Pest.

4.5. Average Silhouette Method. /e average silhouette is a
way of defining the number of clusters, by measuring the
quality of clustering. In other words, it determines how well
each data point lies within its cluster. /e silhouette ranges
from − 1 to +1, the high value refers to good clustering. /e
higher the average silhouette coefficient is (closer to 1 than
0), the higher to its cluster the data points get [24]. If ai is
the average dissimilarity between the ith data point and all
other points in the cluster and bi(k) is the average distance
from the ith point to points in another cluster k, then the
silhouette coefficient of the ith data point is [25]

si �
minkbi(k) − ai

max ai, mink bi(k)( 􏼁
. (6)

/e steps of the average silhouette are as follows:

(1) Perform the clustering algorithm, such as K-means
or fuzzy c-means for different values of k

(2) Calculate the average silhouette of observations for
each k

(3) Consider the appropriate number of clusters based
on the location of the maximum

5. Experimental Studies and Results

Experiments are performed using the ALC dataset. Our goal
focuses on improving the accuracy of UWB indoor posi-
tioning system using machine learning methods. Accuracy is
used as the performance metrics in comparison among the

clustering methods. /e accuracy metric is related to the
distance between the real location and measured location for
a given point. /e distance is calculated using the Euclidean
distance equation:

d �

��������������������

xr − xm( 􏼁
2

+ yr − ym( 􏼁
2

􏽱

, (7)

where (xr, yr) are the coordinates of the real location and
(xm, ym) are the coordinates of the measured location. /e
ALC dataset has a 180 test point location, and each test
point has 150 samples. /e dataset is partitioned ran-
domly into training data and test data in which the
training dataset includes 70% of the samples, and the test
dataset has 30% of the samples. /e proposed system is
shown in Figure 4.

5.1. Standalone Clustering Implementation. /e proposed
system is applicable for K-means, FCM, and mean shift
algorithms. /e average silhouette method is used in order
to define the optimal number of clusters in K-means and
FCM algorithms for each test point by varying k (number of
clusters) from 2 to 6 clusters. For each k, the average sil-
houette coefficient is calculated using equation (6)./en, the
number of clusters is selected with the highest average sil-
houette coefficient, for both the training set and the test set.
Figures 5 and 6 show the maximum average silhouette
coefficient for K-means and FCM for the training set, re-
spectively. Figures 7 and 8 show the maximum average
silhouette coefficient for K-means and FCM for the test set,
respectively.

Figure 9(a) shows the optimal distribution of the mea-
sured UWB test points (180 points) over clusters when
applying the clustering algorithms for the training set. After
setting the obtained number of clusters in all the imple-
mented algorithms for the training set, one of the outcome
clusters is chosen as a delegate based on its distance to the
real location (xr, yr) using equation (7). /en, the center of
the selected cluster (xc, yc) is calculated. At this step, the
selected cluster center is given for each test point in the
training set, which is coordinate dependent, since there are
180 coordinates that represent the real locations.

When it comes to the test set, the average silhouette
method is also used to define the optimal number of clusters
for K-means and FCM algorithms. /e optimal distribution
of the test set over clusters is shown in Figure 9(b). One of
the outcome clusters is chosen as a delegate based on its
distance to (xc, yc) for each test point. In order to identify
which (xc, yc) value belongs to which test point in the test
set, the average for each test point (xAvg, yAvg) in both the
training set and the test set is calculated./en, the average of
test points (xAvg, yAvg) in the test set that has the nearest
distance to the test point (xAvg, yAvg) in the training set is
taken. It uses the corresponding (xc, yc) value to select the
delegate cluster.

/e average location error comparison for the training set
is shown in Figure 10(a), whereas the comparison in average
location error for the test set is shown in Figure 10(b).
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5.2. Clustering Implementation with the Kalman Filter. To
acquire a better optimized result and improve the accuracy
of the clustering algorithms, in the second simulation, the
Kalman filter is applied on the ALC dataset first.

Filtering noisy signals are important since many sensors
have an output too noisy to be used directly; and utilizing the
Kalman filter lets you take the uncertainty in the signal/state
into account.

/e same simulation is repeated, but instead of using the
row UWB-measured test points, now the Kalman filtered
UWB test points are used as an input.

Figures 11 and 12 show the maximum average sil-
houette coefficient when applying the Kalman filter on the
training set for K-means and FCM algorithms, re-
spectively. /e maximum average silhouette coefficient
when applying the Kalman filter on the test set is shown in
Figure 13 for the K-means algorithm, and Figure 14 for the
FCM algorithm.

/e distribution of test points over clusters after applying
the Kalman filter for the training set and test set is shown in
Figures 15(a) and 15(b), respectively. /e average error
comparison after applying the Kalman filter for test is shown
in Figure 16.

As shown in Figure 16, the results significantly im-
proved, and again, the K-means algorithm outperforms both
FCM and mean shift algorithms.

6. Discussion

/e primary purpose of this study is to investigate the use of
different clustering algorithms to improve the accuracy of the
UWB indoor positioning system and check the performance
of each algorithm. /e highest accuracy is obtained when
applying the K-means algorithm./us, applying the K-means
algorithm in relevant studies is recommended based on the
obtained results. One of the limitations of using the K-means
clustering algorithm is to initialize the number of clusters in
advance, so it is difficult to predict the k value. /is drawback
is overcome by implementing the average silhouette method
to define the number of clusters to be used as input to the
K-means algorithm.

/e secondary purpose is to introduce the impact of
employing the Kalman filter on the accuracy. Hence, the raw
UWB dataset is fed to the Kalman filter first. /en, the
Kalman-filtered UWB dataset is used as input to the clus-
tering algorithms. By combining the Kalman filter with
K-means, the highest possible accuracy is obtained in this
study. Implementing the Kalman filter should be highly
considered when improving the accuracy of the indoor
positioning system. /e cost factors should also be con-
sidered when combining both the Kalman filter and any of
the clustering algorithms, especially the computation time
factor.

for n ∈ 1, . . . , N{ }

x⟵xn

repeat
∀n : p(n ∣ x)⟵ (exp(− (1/2)‖(x − xn)/σ‖ 2))/(􏽐

N
n′�1exp(− (1/2)‖(x − xn′ )/σ‖ 2))

x⟵􏽘
N

n�1p(n ∣ x)xn

until stop
zn⟵x

end
connected components ( zn􏼈 􏼉 N

n�1, ε)

ALGORITHM 1: Gaussian mean shift algorithm [30].

Input: Q, R, z, Xest, Pest
Output: s−

t , P−
t

Step 1. Initialize Tmatrix and M matrix
Step 2. Predict the state vector and the covariance:
Xprd �T∗Xest
Pprd �T∗ Pest∗T′ + Q

Step 3. Estimation step:
S�M∗Pprd′ ∗M′ + R

B�M∗Pprd′
Step 4. Compute the Kalman gain factor:
klm_gain� (S/B)′

Step 5. Correction based on observation:
s−

t �Xprd + klm_gain∗ (z− M∗Xprd)
P−

t � Pprd− klm_gain∗M∗Pprd
Step 6. Return s−

t , P−
t

ALGORITHM 2: /e Kalman filter algorithm in pseudocode.
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Figure 4: Proposed system flow chart.
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Figure 5: /e maximum average silhouette coefficient in K-means for the training set.

0

0.2

0.4

0.6

0.8

1

0 60 120 180

Si
lh

ou
et

te
 co

ef
fic

ie
nt

Test points 

Figure 6: /e maximum average silhouette coefficient in FCM for the training set.
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Figure 7: /e maximum average silhouette coefficient in K-means for the test set.
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Figure 8: /e maximum average silhouette coefficient in FCM for the test set.
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Figure 9: /e distribution of UWB test points over clusters (a) for the training set and (b) for the test set.

13.72

13.92

13.96

16.3378

12 13 14 15 16 17

K-means

Mean shift

FCM

Raw data

Average error in cm

(a)

14.09

14.27

14.47

16.3442

12 13 14 15 16 17

K-means

FCM

Mean shift

Raw data

Average error in cm

(b)

Figure 10: /e average error comparison (a) for the training set and (b) for the test set.
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Figure 11: /e maximum average silhouette coefficient in K-means after applying the Kalman filter for the training set.
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Figure 12: /e maximum average silhouette coefficient in FCM after applying the Kalman filter for the training set.

0

0.2

0.4

0.6

0.8

1

0 60 120 180

Si
lh

ou
et

te
 co

ef
fic

ie
nt

Test points

Figure 13: /e maximum average silhouette coefficient in K-means after applying the Kalman filter for the test set.
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Figure 14: /e maximum average silhouette coefficient in FCM after applying the Kalman filter for test set.
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7. Conclusions

In this paper, three clustering algorithms are compared in
terms of accuracy, using the ALC dataset. As a conclusion, it
can be deduced that the K-means algorithm is superior to all
other methods, with the highest accuracy (14.0864 cm) for
the test set, especially when the average silhouette method is
used to determine the optimal number of clusters. However,
the mean shift algorithm has the lowest accuracy
(14.4748 cm), when it is compared with K-means and FCM
algorithms, despite its advantage. /e main advantages of
mean shift algorithms stem from the nonparametric nature
of the kernel density estimate (KDE); and the user needs to
set only one parameter, the bandwidth. /is is often more
convenient than having to select the number of clusters
explicitly or utilizing other methods to define the number of
clusters such as the average silhouette or the elbow methods.

/e FCM algorithm has an accuracy of 14.2743 cm,
which is very close to the result obtained from the K-means
algorithm. However, the FCM algorithm tends to run more

slowly when it is compared with K-means because more
work is done during the processes where each data point is
evaluated with each cluster; and with each evaluation, more
operations are involved. FCM needs to do a full inverse-
distance weighting, whereas K-means just needs to do a
distance calculation. /us, K-means is simpler and com-
putationally faster.

In [26], the measured RSSI values are applied as an input
to the fuzzy system, and the base values of the fuzzy system’s
output membership functions are adjusted by using genetic
algorithm to reduce location error. /e error in location is
reduced by approximately 57%, and 65% when compared
with the centroid localization method and the APIT (ap-
proximate point in triangle) algorithm. In our paper, the
UWB measured values are used as an input to the proposed
system. /e number of clusters for each test point in
K-means and FCM algorithms is selected based on the value
of the silhouette coefficient to determine how well each
object lies within its cluster. As an advantage of imple-
menting the Kalman filter, the accuracy is enhanced
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Figure 15: /e distribution of test points over clusters after applying the Kalman filter (a) for the training set and (b) for the test set.
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Figure 16: /e average error results after applying the Kalman filter for the test set.
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significantly where the average location error is reduced by
31.05% for the test set.

Finally, the Kalman-filtered UWB data are applied as an
input to the clustering algorithm for the training and the test
sets. /e best result is obtained from the K-means algorithm
in which the average error is reduced by 43.26% (from
16.3442 cm to 9.2745 cm). As it can be clearly observed by
considering the Kalman filter effect on the raw data, noise
and interference effects can be removed from the signal.
/en, if filtered data can be considered for the clustering
method, it will be much more effective and much more
accurate. Based on the obtained results from the clustering
algorithms, it can be concluded that the K-means is the most
appropriate one for indoor positioning system due to its
simplicity, fast computations, and especially its high accu-
racy. Another feature to recommend the K-means algorithm
for consideration is that it can be scaled to large datasets.
Advanced versions of the K-means should be taken into
account for future studies to select better values of the initial
centroids. Since the K-means has a gradient descent nature,
the algorithm is highly sensitive to the initial placement of
the cluster centers.
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