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Structure Prediction of Human DAT and its Binding Analysis 

 

                                               Abstract  

 

Dopamine neurotransmitter and its receptors are crucial in cell signaling 

process in the brain, which is in charge of information transfer in neurons 

functioning in the nervous system. Therapeutics used for the treatment of related 

disorders such as Parkinson’s and schizophrenia would be considerably improved 

with the availability of the three dimensional (3D) structure of the dopamine 

transporter (DAT) and of the binding site for dopamine and other ligands.  

Therefore, in this thesis; I have studied the prospective 3D structures of the 

neurotransmitter molecules such as human DAT which is predicted from primary 

amino acid sequence using computational molecular modeling techniques. 

We have determined the binding sites and relative binding affinities of several 

ligands with the predicted structures of DAT. These computationally obtained 

binding affinities and binding sites, i.e. the critical residues of DAT for binding of 

dopamine and the other ligand molecules, correlate well with experiments. For 

instance, based on the modeled structures, our calculated binding free energy 

(ΔGbind= -7.4 kcal/mol) for dopamine with DAT is found to be the same as the 

experimentally observed ΔGbind value of -7.4 kcal/mol. 

As a conclusion, new 3D structural models of human DAT has been 

constructed through homology modeling. Two of these human DAT models have 

been used to determine the binding characteristics between DAT and the ligands by
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means of computational docking. These kind of computational studies, in which new 

structural and mechanistic insights were obtained, are expected in future to stimulate, 

further biochemical and pharmacological studies with much more detailed structures 

and accordingly, come up with the detailed insights of the working mechanisms of 

DAT and other homologous transporters. 
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               İnsan DAT proteinin Yapısal Modelenmesi ve Bağlanma Analizi  

 

                                          Özet  

 

Dopamin nörotransmiter ve reseptörleri, beyindeki sinir sisteminde görevli 

sinir hücrelerinde bilgi transferinden sorumlu olan hücre sinyal sürecinde büyük 

önem taşırlar. Parkinson hastalığı ve şizofreni gibi rahatsızlıkların tedavisinde 

kullanılan ilaçlarda, dopamin taşıyıcısının (DAT) üç boyutlu (3D) yapılarının ve 

dopamin ile diğer ligandların bağlanma bölgelerinin bulunmasıyla büyük ölçüde 

ilerleme kaydedilebilir. 

Dolayısıyla, bu tezde, hesaplamalı moleküler modelleme tekniklerinin 

kullanılmasıyla primer sekansdan tahmin edilen insan DAT’nın olası 3 boyutlu 

yapısı (3D) çalışılmıştır.  

Ayrıca, bazı ligandların ve tahmin edilen 3D DAT yapılarına bağlanma 

bölgeleri ve bağlanma afiniteleri tanımlanmıştır. Bu hesaplamalı yöntemlerle elde 

edilen bağlanma afiniteleri ve bölgeleri; dopamin ve diğer ligandların bağlanması 

için gerekli olan önemli rezidüler, deneysel sonuçlarla örtüşmektedir. Örneğin, 

dopamin ile DAT'ın, modellenen yapıya göre hesapladığımız bağlanma serbest 

enerjisi (ΔGbind= -7.4 kcal/mol), deneysel olarak gözlemlenen ΔGbind -7.4 kcal/mol 

değerine eşittir. 

Sonuç olarak, homoloji modelleme yönteminden yararlanılarak insan DAT'nın 

yeni bir 3D yapısı geliştirilmiştir. Bu yapının oluşturulmasının ardından, DAT ve 

ligandlar arasındaki bağlanma özelliklerinin hesaplamalı docking yöntemi 

belirlenmesi için iki adet insan DAT modeli kullanılmıştır. Yeni yapısal ve mekanik 

görüşlerin elde edilmiş olduğu bu tür hesaplamalı araştırmaların gelecekte 

biyokimyasal ve farmakolojik araştırmaları daha da ilerleteceği ve buna bağlı olarak 

DAT ve diğer homolog taşıyıcıların işleyişini kavramamıza olanak sağlayacak daha 

detaylı bilgilerle sonuçlanacağı düşünülmektedir.  
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                                        Chapter 1 

                                      Introduction 

The focus of my thesis is the development and application of structure and 

function prediction methods on membrane proteins called the dopamine transporter 

(DAT) belonging to the ion-coupled secondary transporters superfamily (STS), 

taking place in a neurotransmitter sodium symporter (NSS) family [1]. 

Dopamine neurotransmitter is fundamental for cellular signalling processes that 

are responsible for information transfer in neurons functioning in the nervous system 

[2]. The DAT pertains to a large family of Na+ and Cl- dependent transporters. This 

family comprises other monoamine transporters, such as the norepinephrine and 

serotonin transporters, gama-aminobutyric acid (GABA) and glycine carriers [3].  

There are some experimental studies performed on DAT to gain information 

about the working mechanism of it. And it has been proven through pharmacological 

studies that dopamine transporting by DAT is Na+/Cl- dependent [1]. The transport 

process of the DAT includes the translocation of the substrate dopamine (DA) and 

two sodium, one chloride ions across the cell membrane [4]. The uptake is 

energetically coupled to transmembrane concentration gradient of Na+, which is 

maintained by Na+ K+ ATPase [5]. 
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Figure 1.1: Model for Na+ effects on the interaction of dopamine with its transporter 

in intact cell [6]. 

Furthermore, some other experimental studies show that the dopamine 

transporter ensures the return of dopamine into neurons and is a major target for a 

variety of pharmacologically active drugs and environmental toxins. Various 

substances, such as the psychostimulant amphetamine, the dopaminergic neurotoxin 

1-methly-4-phenylpyridinium (MPP+) and several sympathomimetic amines, are 

structurally similar to dopamine. Therefore, they make up substrates for the 

dopamine carrier and can be transported. In addition to this, the dopamine transporter 

constitutes an important molecular target for the addictive drug cocaine and to some 

extent, antidepressants [2].  

 

 

 

Figure 1.2: Mechanism of Cocaine and Amphetamine based DAT block: Cocaine 

binds DAT and slows transport and Amphetamine induces MAPK/PKC to 

phosphorylate DAT. Phosphorylation slows transport and triggers internalization of 

DAT [7]. 
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Some more substantial experimental and computational studies, such as Zn2+ 

binding site engineering, site-directed mutagenesis, Molecular Dynamics (MD) 

simulations, have also been performed so far in order to further investigate the 

structure and potential mechanism of DAT [8]. 

 

The first structural study related to DAT is the x-ray crystal structure 

determination for a bacterial homolog of DAT, which is bacterial leucine transporter 

(LeuTAa) from NSS family. This bacterial homolog has recently been identified as 

Aquifex aeolicus as a complex of substrate leucine and two sodium ions (PDB entry 

of 2A65 at 1.65 A° resolution) [10].  

 

Consequently, initial computational studies for the structure determination of 

human DAT (hDAT) had been based on the above LeuTAa template [1]. And some 

more computational studies make use of Na+/H+ antiporter or Lac permease (LacY) 

as the template [1]. Further molecular modelling studies had been performed on 

DAT, serotonin transporter (SERT), and noradrenalin transporter (NET) [1].  

However, for the latter there is no experimental evidence supporting the 

previously reported models from any kind of structural or biological studies. 

Therefore, the structural models of DAT, SERT, and NET that have previously been 

reported are not good enough to be used for studying molecular interaction of 

psychotropic drugs with these transporters. Since, these structural models are not 

appropriate for the homology modelling of any member of the NSS family 

consequently, the predicted atomic interactions are not reliable as well.  

Up to now, LeuTAa, which has similar structural folding and physiological 

features as other NSS family members, had been reported to be the most reasonable 

template to study the substrate binding and transporting mechanism for NSS 

transporters, especially for DAT and SERT [1]. 
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Figure 1.3: Crystal structure of LeuTAa, a bacterial homology of Na+/Cl- dependent 

neurotransmitter transporters. The determination of the X-ray structure of LeuTAa in 

complex with its substrate leucine and two Na ions (PDB entry of 2A65 at 1.65 A° 

resolution) has been viewed as a milestone in understanding structural and functional 

relationships of NSS members [1]. 

As a result, even though there are several studies reported before, the structure 

and working mechanism of DAT is not revealed at the atomic scale. And 

furthermore, since the previous studies reported to be not enough, either because of 

the template they have used or the resolution of the experimental studies. In this 

thesis, new three-dimensional (3D) structural model of hDAT has been constructed 

through two different methods; first template is based on an experimental structure 

obtained from the protein database by the means of the multiple sequence alignment, 

whereas the second template protein was the protein DAT of rat. Following the 

construction of the 3D structure, two different hDAT models have been used to dock 

DAT ligands with automatic computational docking. 
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Figure 1.4: Shows model of human DAT with dopamine. Red bars indicate alpha 

helices and dopamine shown in ball-and-stick. 

In the Chapter 2, we have given the basic theory of the homology modelling. 

Here we gave a brief theory of how to perform pairwise and multiple sequence 

alignment. Furthermore, we introduce the algorithms used for these sequence 

alignment; methodologies, which have two main categories as local and global 

alignment algorithms. Finally, in these two sections we talk about secondary 

structure from sequence and homology modelling of the protein structure. And in 

Chapter 3, we have given the theory of protein-ligand interaction which have two 

main categories as docking algorithm and scoring function. 

In Chapter 4, we introduce the methods that we used to predict the 3D 

structural model of DAT. This model has been constructed through comparative 

homology modelling based on the most reasonable template proteins. At the end, we 

obtained two different hDAT.  

And in Chapter 5, upon obtaining a 3D hDAT model, eight ligands that couple 

with the macromolecule have been docked using the AutoDock program to obtain 

the conformation and orientations for hDAT functional analysis. There are eight 
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ligand molecules, namely 5-hydroxydopamine, 6-hydroxydopamine, Dopamine, 

Amphetamine, Methamphetamine, Cocaine, Benzene-1.3-diol (benzenediol), 

Tyramine. These ligand molecules were tested on the predicted hDAT structure 

model. 
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                                      Chapter 2 

                      Theory of Homology Modelling  

 

2.1 Introduction 

 

Despite the newly developed techniques in molecular biology that allow rapid 

identification, isolation, sequencing of genes and consequently the sequences of 

many proteins, the task of acquiring the 3D structures of these proteins remains a 

time-consuming task. The 3D structure of the protein, along with the sequence, can 

provide us a detailed understanding of the protein's function, mechanism of action 

and its structure-function relation. As the main purpose of structural biology is to 

infer the three-dimensional structure through the sequence, different approaches are 

being taken in order to achieve this goal by making up for the constraints related to 

X-ray diffraction or Nuclear Magnetic Resonance (NMR).       

 

In the field of computational biology there are several studies conducted to 

support the tertiary protein structure. The most important topic of these studies is the 

homology modelling method. The observation that tertiary structure is better 

conserved than amino acid sequence underlies this method of homology modelling 

[11]. This modelling enables us to detect common structural properties and especially 

the overall fold of proteins which have observable resemblance despite the 

considerable change they have undergone in the sequence. While obtaining 

experimental structures through methods such as X-ray crystallography and protein 

NMR requires a considerable amount of time and effort, homology modelling 

provides useful structural models for developing theories on a protein's function and 

directing prospective experimental work. 

 

 



 

8 
 

For building the first homology models wire and plastic models of bonds and 

atoms were used in the 1960s. Following this advancement, the first homology 

model structure, which was of the small globular protein α-lactalbumin, got 

published in 1968. Hen egg white lysozyme had been taken as the template protein of 

this model structure. Subsequently, X-ray crystallography method has shown that the 

model was basically precise except for the misconception that the structure of 

carboxy-terminal end is similar to that of lysozyme [12]. 

 

Basically, there are two types of methods that are used most frequently for 

tertiary structure prediction. The first is the homology modelling (also known as 

comparative or knowledge-based modelling) which functions on the basis of 

modelling the structure of an unknown protein with regard to the known structure of 

homologous protein. The other approach, which is known as threading of fold 

recognition, eliminates the need for a homologous protein structure because it tries to 

match the sequence with all known protein folds to identify the best fit [12].  

 

In our thesis, we have predicted the three-dimensional structure of the human 

dopamine transporter (hDAT) protein by making use of the homology modelling 

methods. In the course of this research, we obtained two different 3D hDAT protein 

structures using two different homology modelling methods. Whereas the templates 

of the first modelling method were experimental structures, the template of the 

second method was a structure of the rat DAT protein. 

 

Modelling process of a protein's three-dimensional structure consists of a few 

steps. Accordingly, this chapter is outlined as follows; first, an introductory 

information is given about sequence alignment methods, which are basically pairwise 

sequence alignment and multiple sequence alignment. Then, the algorithms used are 

explained as; local alignment and global alignment. After that, theory of the 

corresponding computational tools, i.e. BLAST and FASTA, are given. Definition of 

substitution matrices and scoring functions; which are PAM and BLOSUM, is 

included. Secondly, a description of the methods used for secondary structure 

prediction and structure assignment is given. Finally, principle of homology 

modelling with automatic homology modelling systems are explained. 
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2.1.1 Pairwise Sequence Alignment 

 

Sequence alignments are intended to discover and illustrate the similarities, 

differences, or evolutionary relationships between sequences. Sequence alignment is 

generally divided into two category; global and local alignment. And for both global 

and local alignment methods there exists algorithms for performing pairwise 

alignments, that is, the alignment of just two sequences, and for performing multiple 

sequence alignments, in which more than two sequences are aligned with each other 

[13]. 

 

Pairwise sequence alignment methods are used to find the best-matching 

piecewise local or global alignments of two query sequences [13], where as in the 

multiple sequence alignment multiple data within databases are considered. 

 

In this chapter, we will present the basic sequence alignment algorithms, 

broadly characterized as global alignment, semiglobal alignment, and local 

alignment, which are also common in multiple sequence alignment. 

 

2.1.2 Multiple Sequence Alignment 

 

Though the alignment of all sequences together, instead of making use of a 

generalized representation of the sequence family, multiple sequence alignments are 

more effective for the comparison of similar sequences. In the cases where there are 

subgroups of sequences with mutual extra features that are not available in the 

complete sequences set, these features may disappear during the creation of a profile. 

This occurs when the subgroup can be used for generating a new profile which is 

used in the search for other sequences [12]. 

 

Multiple alignment programs such as ClustalW and T-Coffee execute 

Needleman-Wunsch global alignment for every pair of sequence and obtain from 

these alignments the measure used in developing the guide tree. This measure is, in 

fact, the evolutionary distance which is a measure of dissimilarity. The percentage of 

alignment sites at which various residues have been aligned is considered as the 

simplest evolutionary distance measure. The Needleman-Wunsch alignment of all 
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sequence pairs takes a very long time when there are too many sequences to be 

aligned. As a result, faster but more approximate methods have been suggested for 

obtaining a distance measure [12]. 

 

2.1.3 Algorithm of Sequence Alignment 

 

There are two main types of alignment: global and local. The local alignment 

algorithm of Smith and Waterman (1981) is the most rigorous method by which 

subsets of two protein or DNA sequences can be aligned. A global alignment such as 

the method of Needleman and Wunsch (1970) contains the entire sequence of each 

protein or DNA sequence. At the sequence alignment stage of our research, we made 

use of the BLAST server which functions on the basis of the below mentioned 

algorithms [14]. 

 

2.1.3.1 Local Alignment Algorithm 

 

Local alignment is extremely useful in a variety of applications such as 

database searching where we may wish to align domains of proteins. 

 

For the Smith-Waterman algorithm a matrix is constructed with an extra row 

along the top and the extra column on the left side. Thus for sequences of lengths m 

and n, the matrix has dimensions m + 1 and n + 1. The score in each cell is selected 

as the maximum of the preceding diagonal or the score obtained from the 

introduction of a gap. However, the score cannot be negative: A rule introduced by 

Smith-Waterman algorithm is that if all other score options produce a negative value, 

then a zero must be inserted in the cell. Thus the score S(i,j) is given as the maximum 

of four possible values 

 

1. The score from the cell at position i-1, j-1; that is, the score diagonally up to 

the left. To this score, add the new score at position s[i, j],which consists of 

either a match or a mismatch. 

2. s(i, j-1)(i.e.,the score one cell to the left)minus a gap penalty 

3. s(i-1,j)(i.e.,the score immediately above the new cell)minus a gap penalty. 
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4. The number zero. This condition assures that there are no negative values in 

the matrix. In contrast negative numbers commonly occur in global 

alignments because of gap or mismatch penalties [14]. 

 

BLAST (Basic Local Alignment Search) 

 

Having primarily been designed as a local alignment search tool, BLAST 

identifies alignments between a query sequence and database without the 

introduction of gaps. The current version of BLAST allows gaps in the alignment 

[14]. 

 

By making use of BLAST, the user can select one sequence (termed as the 

“query”) and furthermore achieve pairwise sequence alignments between the query 

and the whole database (termed the “target”). As a result BLAST returns just the 

closest matches of millions of alignments which are analysed in a BLAST search. It 

also enables you to compare query sequence to DNA or protein sequences in a 

database. 

 

          This algorithm can be described in three phases 

 

1. BLAST compiles a preliminary list of pairwise alignment, called word pairs. 

2. The algorithm scans a database for word pairs that meet some threshold score 

T. 

3. BLAST extends the word pairs to find those that surpass a cut-off score S, at 

which point those hits will be reported to the user. Scores are calculated from 

scoring (substitution) matrices (such as BLOSUM62) along with gap 

penalties [14].   

 

Optional BLAST Search Parameters 

 

We will initially focus our attention on a standard protein-protein BLAST 

search. 
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Scoring Matrix: Five amino acid substitution matrices are available for blastp 

protein-protein searches: PAM30, PAM70, BLOSUM45, BLOSUM62 (default), and 

BLOSUM80. 

 

Gap Penalties: A gap is a space introduced into an alignment to compensate 

for insertions and deletions in one sequence relative to another. 

 

Expect Threshold: A threshold value T is established as a cut-off for the score 

of aligned words. It can be lowered to identify more initial pairwise alignments. This 

will increase the time required to perform the search but may increase the sensitivity. 

The default setting for expect value threshold is 10 for blastn, blastp, blastx and 

tblastn. 

 

Filter Low-Complexity: Low-complexity sequences are defined as having 

commonly found stretches of amino acids (or nucleotides) with limited information 

content. 

 

Word Size: For protein searches, a window size of 3 (default) or 2 may be set. 

When a query is used to search a database, the BLAST algorithm first divides the 

query into a series of smaller sequences (words) of a particular length (word size), as 

will be described below  

 

Expect value: Altschul and colleagues revised the application of extreme value 

distribution to BLAST.  The following formula defines the distribution of function 

scores for two random sequences m and n.  
 

   E=K x m x n x e-λS 

 

K,λ: constants 

m: length of query sequence 

n: length of the entire database 

S: score of the alignment 

 



 

13 
 

E is the expect value of different alignment with the same or greater scores 

than some scores that are expected to be the results of a database search. Very small 

E-values of 10ˉ20 or less are usually collected from closely related sequences and 

these scores manifest the resemblance of the database and query sequences. The fact 

that the E-value is determined by the sequence length, the number of sequences in 

the database and the alignment score should always be kept in mind. A small E-value 

mostly signifies a better alignment. Likewise, a higher percentage identity implies a 

more accurate assessment of the importance of the resemblance between the database 

sequence and query sequence [14]. 

 

2.1.3.2 Global Alignment Algorithm 

 

This algorithm is important because it produces an optimal alignment of 

protein or DNA sequences, even allowing the introduction of gaps. 

 

We can describe the Needleman-Wunsch approach for global sequence 

alignment in three steps [14]: 

 

1. Setting up a matrix 

2. Scoring the matrix 

3. Identifying the optimal alignment 

 

The algorithms for two commonly used search programs BLAST and FASTA. 

They make use of indexing techniques such as suffix trees and hashing to locate 

short stretches of database sequences highly similar or identical to parts of the query 

sequence [14]. 

 

2.1.4 Substitution Matrices and Scoring 

 

Referring to a substitution matrix, score values for all possible pairs of residue 

are calculated for the aligned pairs of amino acids. Among different types of 

substitution matrices used over the years, there were some based on theoretical 

considerations, such as the number of mutations that are necessary for converting one 

amino acid into another, or resemblances in physicochemical characteristics. 
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Nevertheless, the most effective matrices, which are based on analysis of alignments 

of many homologs of well-studied protein from a wide range of species, use real 

proof of what happened during evolution [12]. 

 

Two methods have been used in deriving substitution matrices from multiple 

sequence alignments and the resultant substitution matrices PAM and BLOSUM are 

used for calculating the scoring matrices [12]. 

 

The matrices of BLOSUM (Blocks of Amino Acid SUbstitution Matrix), 

which is a substitution matrix serving for protein sequence alignment, are based on 

local alignments and used for scoring alignments between evolutionarily variant 

protein sequences. First, BLOCKS database has been scanned for highly preserved 

regions of protein families (the ones without gaps in the sequence alignment) and 

relevant amino acid frequencies and their substitution probabilities have been 

calculated. Secondly, a log-odds score for 210 probable substitutions of the 20 

standard amino acids has been computed. BLOSUM matrices, which are not 

extrapolated from related proteins as in the PAM Matrices, function on the basis of 

examined alignments [15]. 

 

Henikoff and Henikoff (1992,1996) used the BLOCKS database, which 

consisted of over 500 groups of local multiple alignments (blocks) of distantly 

related protein sequences. Thus the Henikoff’s focused on conserved regions 

(blocks) of proteins that are distantly related to each other [13]. 

 

The aptitude of a range of BLOSUM and PAM matrices was put to test by 

Henikoff and Henikoff (1992) in order to identify proteins in BLAST searches of 

database. BLOSUM 62's performance at identifying a variety of proteins was found 

to be slightly better than BLOSUM 60 or BLOSUM70; but much better than PAM 

matrices. Their matrices were particularly effective for determining weakly scoring 

alignments. Other scoring matrices in common used in BLAST searches are 

BLOSUM 50 (matrix that is best for the alignment of two proteins sharing about 

50% identity) and BLOSUM90 [14]. 
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Figure 2.1: Summary of PAM and BLOSUM matrices. High-value BLOSUM 

matrices and low-value PAM matrices are best suited to study well-conserved 

proteins such as mouse and rat RBP. BLOSUM matrices with low number (e.g.; 

BLOSUM45) or high PAM numbers are best suited to detect distantly related 

proteins. 

 

As seen in the Figure 2.1, based on data from the alignment of highly linked 

protein families, PAM matrices contain the presumption that substitution 

probabilities for closely related proteins (e.g., PAM10) can be extrapolated to 

probabilities for distantly related proteins (e.g., PAM250). On the other hand, 

BLOSUM matrices are based on empirical observations of more distantly related 

protein alignments.  

 

Considering all the properties of the substitution matrices, in our research, we 

preferred to use BLOSUM62 matrix as the scoring matrix [14]. 

 

2.2 Secondary structure from sequence 

 

In the case of an atomic-resolution of a structure, the hydrogen bonds of the 

biopolymer define its secondary structure. In proteins, the patterns of hydrogen 

bonds between backbone amide and carboxyl groups identify the secondary 

structure. Whereas, in nucleic acids, it is the hydrogen bonding between the 

nitrogenous bases that identifies the secondary structure. 

 

An α-helix is generated when a single polypeptide chain turns around itself to 

form a structurally rigid cylinder. A hydrogen bond is made between every fourth 

amino acid, linking the C=O of one peptide bond to the N-H of another. This gives 

rise to a regular helix with a complete turn every 3.6 amino acids [16]. 
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β-strands (sheet) are created when hydrogen bonds form between segments of 

polypeptide chains lying side by side. A beta strand (also β strand) is a stretch of 

polypeptide chain typically 3 to 10 amino acid long with backbone in an almost fully 

extended conformation. When the structure consists of neighbouring polypeptide 

chains that run in the same orientation, it is considered a parallel β-sheet; opposite to 

that of its immediate neighbours-the structure is an antiparallel β-sheet [16]. 

 

  

 

Figure 2.2: Polypeptide chains often fold into one of two orderly repeating forms 

known as the α helix and the β sheet. 

 

Most transmembrane (TM) proteins span the membrane in the form of one or 

more α-helix, and we shall discuss these first. The properties of the lipid bilayer force 

a number of structural constraints on the α-helical TM segments. An average 

membrane thickness is 30 Ao, which corresponds to an α-helix of between 15 and 30 

residue [12]. 
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Figure 2.3: Putative topology and structural features of the DAT protein. 

 

DAT protein structure shown in the Figure 2.3. human dopamine transporter 

(hDAT), which is in the content of our thesis, pertains to NSS family. Results 

obtained from structure analysis of previous studies indicate that DAT pertaining to 

NSS family are transmembrane proteins with the following characteristics; 12 TM α-

helices with intracellular location of N-terminal and C-terminal, and a large internal 

substrate binding cavity on the midpoint of the membrane [17]. 

 

Methods for predicting protein secondary structure can be broadly divided into 

the following categories: statistical analysis, also referred to as probabilistic analysis; 

knowledge-based analysis; machine-learning methods; and those mainly based on 

neural networks. Most automated methods in use today use a mixture of these 

techniques, and all of them incorporate some form of statistical analysis, is employed 

in most of the automated methods [12]. 

 

Many prediction programs are designed to recognize just three different regular 

structural states: α-helices, β-strand, and β-turns. There are also some algorithms that 

even try to predict different kinds of helical or turn conformations, such a ߨ-helices, 

310-helices, and polyproline helices, and type I, II and other types of turns [12]. 
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The most widely used of these programs is Dictionary of Protein Secondary 

Structure (DSSP), which assigns secondary structure according to hydrogen-bond 

patterns. DSSP, proposed by Wolfgang Kabsch and Chris Sander in 1983, takes the 

approach just described to assign helices.  

 

Another program, STRIDE, uses both hydrogen-bond energy and backbone 

dihedral angles. DEFINE matches the interatomic distances in the protein with those 

from idealized secondary structures. However, these programs do not always 

produce identical results from the same data, giving slightly different secondary 

structure assignments. The differences are almost exclusively at the ends of structural 

elements. These differences in defining secondary structure elements can affect the 

apparent accuracy of secondary structure prediction methods. A prediction method 

should be trained and subsequently tested using training and testing datasets whose 

structural features were defined using the same assignment method [12]. 

 

Table 2.1: The eight structural states detailed by the DSSP method, with their 

descriptions.  

 

DSSP, is commonly used to describe the protein secondary structure with 

single letter codes. There are eight types of secondary structure that DSSP defines: 

· G = 3-turn helix (310 helix). Min length 3 residues. 

· H = 4-turn helix (α helix). Min length 4 residues. 

· I = 5-turn helix (π helix). Min length 5 residues. 

· T = hydrogen bonded turn (β-turn) 

· E = extended strand in parallel and/or anti-parallel β-strand conformation. Min 

length 2 residues. 

· B = residue in isolated β-bridge (single pair β-sheet hydrogen bond formation) 

· S = bend (the only non-hydrogen-bond based assignment). 
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2.3 Homology modelling of protein structure 

 

Homology modelling has several steps. The first step consists of finding 

structural homologues to the target protein. Most experimentally resolved structures 

are placed in the Protein Data Bank (PDB). Using one of the sequence-search 

programs (BLAST and FASTA), a database with the sequences of the PDB structures 

is searched with the target sequence for homologues. The protein with the highest 

similarity score and highest sequence identity over the largest stretch of amino acids 

is chosen as the template. Having identified a matching template protein, the next 

step should be the alignment of the target and template sequences. The most 

important step in the modelling process is this alignment [12]. After alignment, the 

structurally conserved regions-the core-are modelled first. Modelling the core is 

simply achieved by transferring the x, y, and z coordinates of every matched atom 

within an aligned residue from the template to the target molecule. The backbone 

atoms are then joined together to form peptide bonds at the correct angles. It is 

usually possible to copy only some of the side-chain coordinates, as many side 

chains in the target will not be identical to those in the template. Regions with 

insertions and deletions are left for later. It is important to check the core for misfits. 

In regions that were difficult to align, one should examine whether the insertion by 

one or two residues would position it in a more favourable conformation [12]. 
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Figure 2.4: First picture, shows a target structure superposed on a template structure. 

Second picture, shows only the target model with the end of the core regions where 

an insertion has to be modelled [12]. 

 

Once a good alignment has been obtained, the other major procedure in model 

building is modelling the loops. These are the regions that usually contain insertions 

or deletions and the most variable in sequence. Because of their variability in both 

sequence and length, loops are generally the most difficult regions to model. If the 

target protein contains an insertion in a loop sequence relative to the template 

structure, there will be no template coordinates from which to model the insertion. 

The easiest way round this problem is if there are other structure homologs with the 

same insertion. It is then possible to model the missing part using their coordinates. 

However, an insertion is often unique to the target protein. In this case, the most 

widely used method for modelling loops, in both manual and automatic procedures, 

is to search for fragments of the same length in a database of high-resolution 

structures. Loops that have the lowest RMSD are selected for further evaluation [12]. 
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Figure 2.5: A schematic illustration viewing the database search method for building 

loop [12]. 

 

Then, to be able to build side chains in a model, however, it is necessary to 

have some understanding of the conformations they can adopt. A study of atomic 

coordinates of side-chain atoms of conserved residues in proteins with similar three-

dimensional structure has found that in more than 90% of cases the side chains have 

the same conformations in the two proteins. To predict the side-chain conformation 

when the aligned residues are not identical, rotamer libraries are used [12]. 
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Figure 2.6: (A) In cases where the side chains at a given position are identical, the 

conformation of the target side chain can be extracted directly from the template. (B) 

In cases where the side chains are similar but not identical, most of the target side 

chain can be built from the template. (C) In cases where the side chains are different, 

the conformation of the target side chain has to be deduced from a library of rotamer 

structures and an assessment of the energetic [12]. 

 

And the final step is the model optimization. This method boils down to a 

sequence of rotamer prediction and energy minimization steps. At every 

minimization step, a few big errors (like bumps, i.e., too short atomic distances) are 

removed while many small errors are introduced. When the big errors are gone, the 

small ones start accumulating and the model moves away from the target. As a rule 

of thumb, today’s modelling programs therefore either restrain the atom positions 

and/or apply only a few hundred steps of energy minimization. In short, model 

optimization does not work until energy functions (force fields) get more precise. 

Such a simulation follows the motions of the protein on a femtosecond (10-15) 

timescale and mimics the true folding process [18]. 
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Figure 2.7: Steps in homology modelling. Example, the fragment of the template 

(arabinose-binding protein) corresponding to the region aligned with the target 

sequence forms the basis of the model (including conserved side chains). Loops and 

missing side chains are predicted, then the model is optimized (in this case together 

with surrounding water molecules) [18]. 

 

2.3.1 Automated Homology Modelling 

 

Having changed modelling into a practically routine technique for the 

observation of the three-dimensional structure of a new protein, automated model 

building by homology has revolutionized the modelling assignment. Fully automatic 

model-building programs, such as Swiss-Model and MODELLER, brought along the 

advantages of objectivity, rapidity. We made use of the MODELLER program for the 

homology modelling in our research. Information about this program is given below 

[12]. 
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2.3.1.1 MODELLER 

 

With the aim of satisfying constraints, MODELLER develops a hypothetical 

target structure based on a familiar template structure. First, these spatial constraints 

in the form of atom-atom distances and dihedral angles are extracted from the 

template(s), used in the target and afterwards synthesized with general rules of 

protein structure like bond length and angle preferences.  

 

The alignment enables us to identify parallel residues between the target and 

the template. The optimization of the target model continues until a model that best 

satisfies the spatial constraints is obtained. MODELLER is most commonly used for 

homology modelling of protein's three-dimensional structure as the program deduces 

structure by satisfaction of spatial constraints; yet, it can also be put into use in 

experimental structure determination by NMR. The output of MODELLER is a 

tertiary structure of a protein that satisfies a set of constraints as well as possible [11]. 

 

MODELLER protocol evaluates protein structure using the Probability Density 

Function (PDF) energy data and DOPE (Discrete Optimized Protein Energy) scoring 

function (in the tutorial) [19]. 

 

PDF (Probability Density Function) 

 

In order to constrain a model towards the structure of the template and to 

preserve fine structure geometry, MODELLER creates numerous restraints. There 

are dissatisfied restraints at the end of a MODELLER refinement and in order to 

obtain an evidence of the quality of the model for that particular residue, the PDF 

energy (i.e., the value of the objective function) regarding each residue is summed. 

As parts of a model (for example residues alongside an insertion or deletion) are 

practically sure to have higher restraint violations, a simple interpretation of the 

absolute value of the energy does not exist. The energies are effective for 

comparisons between different models. Models with lower energy in a given region 

are probably better in that region. If these models have been developed from 

different initial alignments of the model sequence and the homologues, then lower 
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energies are an evidence of better alignment. Either residue or atomic based 

statistical potentials are used as quality indicators of protein structures and as 

potential energy functions in predicting protein structures.  

 

PDF Physical Energy is more of a true energy term. It is comprised of the sum 

of energies for the stereo chemical pseudo-energy terms which consist of valence 

bonds, valence angles and torsion angles, improper torsion angles, and soft-sphere 

repulsion, as well as knowledge based non-bonded potentials used only for loop and 

mutant modelling. Higher energy indicates a larger restraint violation in the model. 

 

PDF Total Energy is the total PDF energy, that is the sum of the scoring 

function value of all homology-derived pseudo-energy terms and stereo chemical 

pseudo-energy terms.                  

 

DOPE Scoring Function 

 

Many statistical potentials, either residue based or atomic based are used in 

evaluating the quality of protein structures and as potential energy functions in 

predicting protein structures. 

 

DOPE is an atomic based statistical potential in MODELLER package for 

model evaluation and structure prediction. The DOPE score of a protein can be 

viewed as a conformational energy which measures the relative stability of 

conformation with respect to other conformations of the same protein. It can assist in 

choosing the best model out of a set of predicted model structures of a protein 

sequence. And low scores are better. 

 

In addition, the statistical potential is also used as part of the energy function in 

predicting loop models or to optimize the local structure of a mutated residue. 

 

The pairwise statistical potential function of a protein with N atoms can be 

represented by the pairwise probability density function: 
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                    : ሬሬԦ.ሻ࢞,ሬሬԦ3࢞ሺ࣋          

where ࣋ሺ࢞ሬሬԦ3ሻ  is the single body distribution function for atom i and is a 

constant for a given protein. 

   

The pairwise probability density function is proportional to ࣋ሺ࢞ሬሬԦ3ሻሺ࢞ሬሬԦ.ሻ and the 

(m,n) pair density where m and n are the atom types of atom i and atom j 

respectively. 

 

The density of (m,n) pairs at distance r is pmn(r)/(4πr2Δr). For a finite system, 

such as a protein structure, the spherical shell can be partly outside of the protein 

boundary in many cases and the density should be more accurately represented by 

pmn (r)/n(r,a) where n(r,a) = 4πr2ξ(r) 

 ሻ࢘ሺࣈ0࢘ሻ/Hn࢘úሺ࢓࢖ሬሬԦ.൯࢞ሺ࣋ሬሬԦ3ሻ࢞൫࣋ሬሬԦ.൯ൌ࢞,ሬሬԦ3࢞൫࣋ 
 

The scores used in the current MODELLER are calculated as a weighted sum 

from a set of high resolution X-ray structures with low sequence homology: 

ሬሬԦ.൯ൌ෍࢞,ሬሬԦ3࢞൫࣋  ࢙ú,࢓࢙࣋7 ሺࢇ,࢘ሻ/úሺࢇ,࢘ሻ 
 

For all the heavy atoms in the 20 standard amino acid residue types, 

MODELLER determines 158 various atom types. DOPE scores are calculated for 

each pair of heavy atoms, excluding the N-terminal nitrogen and C-terminal oxygen 

atoms and tabulated for distances from 0 to 15 Ao with an interval of 0.5 Ao. Atom 

pairs between different residues have the pair potential; however, the calculation 

does not include the atom pairs in bond, angle, and torsion angle. 

 

Then, the scores are entered into the cubic spline function. This function not 

only calculates the single point energy of a protein model, but also calculates the first 

and second derivatives of the energy function in molecular dynamics protocol. A 

protein's absolute score is insignificant as the DOPE energy is not standardized 
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depending on the proportions of the protein. Nevertheless, in model assessment, the 

related energies of various conformations are effective. Single chain protein 

structures form a potential. Making use of the score on single chain proteins is highly 

secure.  

 

DOPE scores can be calculated at high and regular resolutions; for former, a 

bin size of 0.125 and for latter, a bin size of 0.5 is needed. 

 

2.3.1.2 Verify protein 

 

Verify protein protocol is mostly used in the final phase of a homology 

modelling for analysing a preliminary protein structure on the basis of experimental 

data. Compatibility of a protein's structure with its own sequence is a requirement for 

the functioning of this protocol.  

 

The strategy that Verify Protein makes use of comprises building a protein's 

3D profile and calculating its compatibility with the same protein's sequence. Verify 

Protein can also be used to calculate local 3D-1D scores in a fixed-length sliding 

window (typically about 5 to 20 residues long). These can be plotted against residue 

position to expose local regions of comparatively high or low 3D-1D compatibility. 

Regions with remarkably low scores are likely to be places where the backbone has 

been incorrectly threaded through the electron density data (if the structure is 

experimental) [19]. 
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                                                   Chapter 3 

         Prediction of protein-ligand interaction in drug design 

 

3.1 Introduction 

 

Due to the vital role they play in critical metabolic pathways and the 

incomparable opportunities they offer for structure-based drug design and discovery, 

many of the macromolecules are considered to be potential therapeutic targets. With 

a growing importance in the endeavour, structure-based design has now become an 

integral part of medicinal chemistry [20]. 

 

Relenza, which is used for the treatment of flu, is the first drug to be designed 

in that way. It was developed through the selection of molecules that had the 

potential of binding the conserved regions of the enzyme neuraminidase, which is 

created by the flu virus to take newly formed viruses away from infected cells. The 

prevention of this enzyme would therefore keep new viruses from being dispersed 

into the body. For the prevention of the parainfluenza virus hemaglutinin-

neuraminidase, a similar structure-based approach was applied [12]. Experimental 

techniques and their outcomes in the database help computational drug design by 

providing the 3D structure of proteins. More than 35,000 crystallographic or NMR 

structures of proteins or nucleic acids are available in the Protein Data Bank (PDB). 

Furthermore, the rate of 3D macromolecular structure identification keeps increasing 

every year, especially with the development of new techniques such as X-ray 

crystallography [20]. The interest in computational methods continues to increase for 

the prediction of protein-drug docking. 

 

When trying to find out the structure of a protein-ligand complex, a problem 

may sometimes occur in X-ray crystallography. Through analogy with previously
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identified homologous proteins, the positions of the protein atoms can be identified 

more directly. However, the electron density of the ligand may occasionally turn out 

to be too unclear to determine the atomic positions of its binding mode. Identification 

of the most favourable conformation of the ligand when bound to the protein 

molecule can be achieved through computational docking. The protein molecule may 

later be tested for affinity with the experimental electron density [21]. 

 

Computational docking may be used to identify the most convenient form of 

the ligand when bound to the protein molecule, which may then be tested for 

compatibility with the experimental electron density. Likewise, making use of 

computation, the binding of substrates, products, and transition states may be 

predicted. This would also allow study of enzyme mechanisms and bound states 

which couldn't be studied experimentally [21]. 

 

The structural and energetic recognition of a ligand and a protein helps 

determine the selective binding of a low-molecular-weight ligand to a particular 

protein. Free energy decreases when a bond between atoms is formed. ΔG is thus 

negative. The binding affinity can be determined from the experimentally measured 

binding constant Ki 

 

                     ΔG= –RT ln Kİ = ΔH-TΔS      

 

The experimentally estimated binding constant Ki ranges mostly between 10-2 

and 10-12  M, equal to a Gibbs free energy of binding ΔG between -10 and -70 kj/mol 

in aqueous solution [22]. Beside the experimental techniques used for the 

determination of ΔG, there are also computational methods for that. Docking is one 

of these methods. Docking protocols are considered to be a combination of a search 

algorithm and scoring functions. The number of various search algorithms and 

scoring functions is comparatively large and continues to increase. The degrees of 

freedom of the protein-ligand system should allow for the system to be adequately 

tested by the search algorithm, so that it consists of true binding modes. Speed and 

effectiveness in covering the related conformational space are certainly the key 

elements of a search algorithm. In addition to these essentials, the thermodynamics 

of interaction of the protein-ligand system should sufficiently be covered in the 
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scoring function in a way that the true binding modes could be separated from all the 

others discovered and be classified appropriately.  

 

3.2 Docking algorithm 

 

In the prediction of a ligand binding pose, the effectiveness of a docking 

algorithm is usually evaluated in terms of the root-mean-square deviation (RMSD) 

between the experimentally observed heavy-atom positions of the ligands and the 

system is major challenge in the search for the correct pose. The number of degrees 

of freedom included in the conformational search is the main feature that affects the 

searching efficiency. Docking algorithm falls into two general categories: Flexible 

docking search algorithm and matching algorithm.  

 

3.2.1 Flexible docking search algorithm 

 

Flexible docking search algorithm three general categories of algorithms are 

designed to treat ligand flexibility: systematic methods; random or stochastic 

methods; and simulation methods [20]. 

 

The systematic search algorithms attempt to examine all the degrees of 

freedom in a molecule, and can be further divided in three main types: 

conformational search methods, fragmentation methods, and database methods. 

 

Random search algorithms test the conformational space by performing 

random changes to a single ligand or multiple ligands. There are three main types of 

methods based on random algorithms: Monte Carlo methods (MC), Genetic 

Algorithm methods (GA), and Tabu Search methods [20]. 

 

Many programmes function on the basis of GAs (for example, AutoDock, 

DARWIN, DIVALI, GOLD, EADock, FITTED and PSI-DOCK) [23]. Genetic 

algorithms (GAs) benefit from ideas obtained from genetics and the theory of 

biological evolution to docking. GAs firstly start from a population of diverse 

conformations of the ligand regarding the protein. Each conformation is 

characterized by a set of state variables (described as genes) that describe facets such 
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as translation, orientation, and conformation of the ligand related to the protein 

receptor. The full set of the ligands state variables is described as the genotype, 

whereas the automatic coordinates refer to the phenotype [20]. Different methods are 

employed for choosing the next generation; however, the most popular is the survival 

of the fittest, where the two lowest scoring conformations are passed to the next 

generation [23]. 

 

3.2.2 Matching algorithm 

     
A pharmacophore representing the protein is initially designed and used to 

guide the docking in matching algorithms. An initial ligand conformation is created 

and a ligand pharmacophore is extracted from this conformation. The distance 

matrices (list of all the distances between the pharmacophoric points) of the ligand 

and protein pharmacophore are analysed for a match. When a match is found, 

rotational and translational vectors are computed and applied to the ligand. These 

vectors place the ligand in the same frame of reference as the protein. While speed is 

the most important strength of these approaches, their prognostic power is reduced 

when ligand poses are not totally refined as it makes it difficult for the correct poses 

to be found or for an exact score to be given. The former issue is addressed by post-

processing the selected poses through an additional local search algorithm [23].     
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Figure 3.1: Schematic illustration of a matching algorithm (a) and genetic algorithm 

(b) in the context of docking of a flexible ligand [23]. 

 

3.3 Scoring function 

 

For an effective docking process, the conformation of the ligand-receptor 

complex has to be predicted correctly, and the ranking of final structures also has to 

be correct. The procedure needs to have the ability to differentiate among similar 

conformations of the same system, as well as to predict the relative stability of 

diverse complexes [24]. 

 

The scoring functions normally used in protein-ligand docking are usually 

capable of predicting binding free energies within 7-10 kJ/mol,14 and can be placed 

into three major classes: force field-based, empirical, and knowledge-based scoring 

functions [20]. 
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3.3.1 Force Field-Based Scoring 

 

Standard force field (FF) normally measures the sum of two energies: the 

interaction energy between the receptor and the ligand, and the internal energy of the 

ligand. The energies are normally calculated through a combination of a Van der 

Waals in terms of electrostatic energy. The Van der Waals energy term is described 

with a Lennard-Jones potential, whereas the electrostatic term is given by a 

Coulombic formulation with a distance-dependent dielectric function that reduces the 

contribution from charge-charge interactions [20; 22].  ෍ ෍ ቈ3࢘.3࡭.૚0െ3࢘ .3࡮.૟ ൅ zz0Ǥ૙3࢘ࢿ.ࢗ3ࢗ.቉࢘)P
.

ࢍ3࢒
3  

 

Various FF Parameters are chosen; AutoDock, DOCK and RankScore scoring 

functions (SFs) synthesized the van der Waals, electrostatic and hydrogen bond 

interaction energy [23]. 

 

A wide range of computational docking methods use empirical free energy 

force fields, which describe basic functional forms for ligand-protein interactions, 

and semi-empirical free energy force fields, which synthesize traditional molecular 

mechanics force fields with empirical weights and/or empirical functional forms.  

 

These force fields ensure a fast method to rank potential inhibitor candidates or 

bound states based on an empirical score. This score may occasionally be calibrated 

to obtain a prediction of the free energy of binding [25].  

 

The AutoDock force field makes use of a molecular mechanics approach for 

the evaluation of the enthalpic contributions such as dispersion/repulsion and 

hydrogen bonding and an empirical approach to assess the entropic contribution of 

changes in salvation and conformational mobility. Empirical weights are applied to 

each of the components based on calibration against a set of known binding 

constants. The final semi-empirical force field is generated to obtain an estimate of 

the binding constant [25]. 
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The AutoDock 4.0 programme used new force field, which has been calibrated 

using a large set of diverse protein-ligand complexes, includes two major advances.    

 

The first is the use of an upgraded thermodynamic model of the binding 

process, which now ensures inclusion of intra-molecular terms in the estimated free 

energy. Second is that the force field incorporates a full desolvation model that 

includes terms for all atom types, comprising the favourable energetic of desolvating 

carbon atoms as well as the unfavourable energetic of desolvating polar and charged 

atoms. The force field also includes an improved model of directionality in hydrogen 

bonds, now predicting the proper alignment of groups with multiple hydrogen bonds 

such as DNA bases [26].  

 

This force field is composed of six pair-wise evaluations (V) and an estimate of 

the conformational entropy lost upon binding (ΔSconf): L refers to the “ligand”, P 

refers to the “protein” in a ligand-protein docking calculation [27]. 

 

ΔG= (ࢂRƼ=úmିࡸ ࡸ െࢂ=úRƼ=úmିࡸ ࡸ ሻ൅൫ࢂRƼ=úmିࡼ ࡼ െࢂ=úRƼ=úmିࡼ ࡼ ൯  ൅ሺࢂRƼ=úmିࡼ ࡸ െࢂ=úRƼ=úmିࡼ ࡸ ൅∆ࡿPƼúfሻ  
 

Each of the pair-wise energetic terms includes evaluations for 

dispersion/repulsion, hydrogen bonding, electrostatic, and desolvation: 

m7෍࢜ࢃൌࢂ  ቆ  3࢘.3࡭.૚0 –3࢘.3࡮.૟ ቇ3,. ൅ ࢎࢃRƼúm෍ – ૚0.3࢘.3࡯  ሻቆ࢚ሺࡱ .,૚૙ ቇ3.3࢘.3ࡰ  

 ൅࢒(ࢃ)P෍ .3࢘൯.3࢘൫ࢿ.ࢗ3ࢗ ൅ ࢙ࢃƼ࢒෍ ൫ࢂ3ࡿ. ൅3ࢂ.ࡿ൯3,.3,. )ቀି3.0࢘ ⁄0࣌0 ቁ 
                                                                                                                             

 

We have chosen to use AutoDock4 program for the docking analysis in our 

thesis. Information related to the method and the results of this study is given in 

Chapter5. 
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                                             Chapter 4 

            Obtaining the 3D-Structure of DAT by comparative  

                                homology modelling method 

 

4.1 Introduction 

 

Depending on the working mechanism of neurotransmitters, studies performed 

on the dopamine neurotransmitter and its receptors are fundamental for the treatment 

of diseases such as Parkinson’s (PD) and schizophrenia. The reason of PD and 

Parkinson-plus syndromes can briefly be explained as the degeneration of substantia 

nigra (SN) pars compacta dopaminergic neurons. Due to the loss of nigrostriatal 

neurons, this degeneration results in the deficiency of striatal dopamine (DA) 

concentration. In addition to this neuronal loss, there occurs an increase in glial cells 

of the SN and a loss of neuromelamin (NM). As the nigrostriatal dopaminergic 

neurons get lost, DA content in SN and the striatum decreases similarly. Within these 

mechanisms, dopamine agonists were found to provide treatment for the early 

symptoms and signs of PD [28]. 

 

Therapeutics used for the treatment of disorders such as Parkinson’s and 

schizophrenia would be considerably improved with the availability of 3D structure 

for the dopamine receptors and of the binding site for dopamine and other agonists 

and antagonists.  

 

Some research groups have built homology molecular models for the dopamine 

transporter (DAT) based on the structure of LacY, (Protein Data Bank, ie., PDB 

entry of 1PV7 with a resolution of 3.6 A°) [29], glycerol-3-phosphate transporters 

(GlpT, PDB entry of 1PW4 with a resolution of 3.3 A°) [30] and 
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Na+/Cl- dependent neurotransmitter transporters (LeuTAa, PDB entry of 2A65 at 

1.65 A° resolution) [10]. For example, previously, to provide structural models of 

DAT, Xiaqin Huang and Chang-Guo Zhan group members used computational 

techniques (InsightII software) which based on the X-ray crystal structure of LeuTAa 

[1]. Unfortunately the sequence similarity of dopamine is 29% to LacY, 28% to GlpT 

and 23% to LeuTAa, so that these homology models are not accurate enough to be 

used to design drugs specific to the receptor subtypes. They have been useful in 

rationalizing the results of biochemical experiments after using the information to 

refine the homology model. 

 

Due to the deficiency of adequately similar experimental 3D structures of 

DAT, computational methods have been applied in this thesis, in order to make 

predictions of the DAT three-dimensional structure, and depending on these 

predicted structures its binding sites and binding energies for a variety of ligands.  

 

Martin Indarte, Jeffry D. Madura and other members, had some efforts to 

predict the 3D structure of rat DAT protein (SwissPort locus SC6A3_RAT; accession 

number P23977; NCBI accession number AAB21099) by means of comparative 

molecular modelling with de novo method of the Robetta server. In that study, again 

the inadequately similar bacterial leucine transporter protein LeuTAa was employed 

as the template. However, with the help of the Molecular Dynamic simulations 

applied further they end up with a structure with important domains taking part in the 

right place with respect to the experimental results [31]. 

 

In this thesis, we have also built a structural model of human DAT using 

homology modelling based on the templates with experimentally determined 3D 

structures having sequence similarity less than 30% and, additionally, we had chosen 

rat DAT robetta [31] 3D structure which has 93.1% sequence similarity as a 

template. Our aim is to compare the model dependency on the templates, and 

furthermore examining the binding mechanism variations due to obtained models. 

 

 

 

 



 

37 
 

4.2 Method 

Comparative methods are based on the construction of 3D structures starting 

from the amino acid sequence. Homology modelling is the most reliable 

computational method for predicting protein structure from its sequence. Basically, 

the method involves searching through the already existing protein data within the 

databases (PDB) and matching the similar segments of interest. The extended theory 

of homology modelling is given in Chapter 2 of this thesis. There are several 

software and online database tools. Discovery Studio (DS) is one of them, which is a 

comprehensive software suite for analyzing and modelling molecular structures, 

sequences, and other data of relevant to life science researchers. The software 

includes functionality for viewing and editing data along with tools for performing 

basic data analysis. It consists of an interactive environment for viewing and editing 

molecular structures, sequences, X-ray reflection data, scripts, and other data. 

Besides that, it also provides a rich set of viewers for displaying plots and other 

graphical representations of data [19]. 

 

This method consists of a few steps, first of which is determining templates by 

making use of sequence similarity search method by BLAST. The second step is 

aligning and superimposing the templates through structure alignment methods. The 

third step is the alignment of the model sequence (DAT) with the template sequences 

by making use of sequence alignment methods. The final step is the 3D model 

predicted for template protein with respect to some algorithms (given Chapter 2) 

implemented as MODELLER protocols.  

 

4.2.1 Sequence Similarity Search  

We start developing a homology model by determining single or multiple 

templates from known protein structures according to the sequence resemblance. 

Templates help us build 3D structural model of DAT based on x-ray crystal 

structures. The strategy, which is about determining the templates and aligning the 

model sequence with the template sequences, is based on the matches between the 

model sequence and the templates. Between templates and model, a high level of 

homology exists (mostly sequence identity over %60) then the alignment is 
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considered to be successful. By making use of BLAST, we are able to identify the 

better templates without difficulty. Correspondingly, simple multiple sequence 

alignment between the model sequence and templates works successfully.  

 

In our research, we used the BLAST search sequence by similarity tool of the 

DS program. This tool functions on the basis of certain parameters. Similarity 

sequence analysis in this work has been performed using the parameters displayed on 

the following table. 

                      

                       Table 4.1: shows BLAST DS search parameters used. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
                    

Our input sequence has been set as the Human_gi (hDAT (Access No:Q01959 

NCBI databank)) and PDB_nr95 database is used for sequence search of the 

templates. BLOSUM 62 scoring matrix, E-value (cut-off) value 10 and word size 3 

are the other important parameters we have chosen. Detailed information and the 

theory related to these parameters given on Chapter 2, in the section 2.1.3.1 

regarding the BLAST program.  

 

When the task is complete, the sequences identified by BLAST search are 

automatically displayed, and the templates obtained as a result of our work are 

Parameter Name Parameter Value 

Input Sequence Human_gi 

Input Database PDB_nr95 

Scoring Matrix BLOSUM62 

Gap Penalties Existence:11 Extension:1 

Gapped Alignment True 

E-value Cutoff 10 

Filter Low Complexity True 

Maximum Hits 250 

Word Size 3 
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shown in Figure 4.1 and as in the Map View, Figure 4.2 in the following Results and 

Discussion section.  

 

4.2.2 Structure Alignment  

    

The second step is to perform multiple structure alignment for a group of 

protein structures. There are two important matters that necessitate particular 

attention in order to acquire an optimal structure alignment. The first is the global 

optimization problem. In order to find out an optimal solution, a wide range of 

residue equivalence combinations in 3D space need to be searched. The second 

matter of concern is about identifying a target function; here, the question is “Is the 

alignment optimized to align the largest number of residues, or for the lowest 

RMSD?”. Whereas there isn't a single correct solution, all the algorithms attempt to 

minimize the RMSD and maximize the residues to be aligned.  

 

It is time consuming and impractical to thoroughly examine all probable 

alignments. For identifying the optimal solution, many heuristic methods are 

employed by various programs. Making use of a fast algorithm in order to choose the 

initial seed alignment on the basis of a hash table, the seed alignment is turned into 

full alignment. The similarity between two proteins is computed using the 

coordinates of their Cα atoms. Next, in order to perform the final multiple structure 

alignment, best-pairwise alignments for each pair of input structures are used [19]. 

 

In this work, the approaches explained above are further applied can be used by 

aligning a model sequence (hDAT) to templates found in the previous steps. Through 

the alignments of sequences with respect to a sequence profile, the system made use 

of the template structure and later combine the model sequence information with the 

template structures. A sequence profile defines the existence possibility of twenty 

standard amino acids at an assumed alignment position. The possibility is computed 

on the basis of the multiple sequence alignment. For profile calculation, a position-

based weighting method (Henikoff and Henikoff, 1994) [32] is used to every 

sequence. Information on this subject is given in the Chapter 2. 
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Following the completion of the task, a Sequence Window (Figure 4.3) 

displays the alignment between the model sequence and the templates, and a 

Molecule Window (Figure 4.4) displays the super-imposed template structures.  

 

4.2.3 Building a 3D model  

 

In this section, by making use of the alignment we have performed and three 

template structures created with the automatic model-building program MODELLER 

(Sali and Blundell 1993), we have developed a 3D model belonging to our original 

protein sequence (hDAT). As a result, protein structures of a model sequence is 

created based on an alignment of the model sequence with other related known 

protein structures. 

                         

                         Table 4.2: Build Homology Models protocol parameters. 

 

     

     

 

 

 

               

 

  

                 

 

 

As seen in the table above, the proteins of the previous step are used as 

template structure and a 3D model of the input model protein hDAT (Access No: 

Q01959 NCBI databank) has been created.  

 

The sequence and the model structures alignment figures are given Figure 4.5 

and Figure 4.6. PDF Total Energy and Physical Energy and DOPE scores of all the 

models are displayed in the Table 4.5. Detailed information on these energy and 

score rates is given in the section 2.3.1.1 of the Chapter 2. 

Parameter Name Parameter Value 

Input Sequence Alignment gi:ALL 

Input Model Sequence Gi 

Input Template Structure 2A65,3FZEA,1SWWB 

Water FALSE 

Number of Models 2 

Optimization Level Low 

Cut Overhangs TRUE 

Refine Loops FALSE 

Parallel processing FALSE 
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4.2.4 Assessing the validity of the 3D structure 
 

Verification of the final protein structure is performed by analyzing the validity 

of a hypothetical protein structure through measuring the compatibility between that 

structure and the protein's structure. It uses the sequence of residue information to 

further evaluate the model structure. The theory behind the evaluation process is 

given Chapter 2.  

 

In this protocol; 
                                    

                 Table 4.3: Verify Protein (Profiles-3D) protocol parameters. 

 
Input Protein Molecule gi:giM0002 

Smooth Window size 10 

Secondary Structure Model Kabsch-
Sander 

 

As seen in the Table 4.3, giM0002, which is the built 3D model protein in the 

previous step, has been chosen as the input protein. Kabsch-Sanger model has been 

chosen as the secondary structure model and smooth window size has been set as 10.  
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4.3 Results and Discussion 

 

In this work, we have applied the methods described above, step by step 

according to homology modelling protocol of the DS which is the software we used 

for the 3D conformation analysis of our model protein, i.e hDAT protein. This 

chapter, includes the results corresponding to each step and the interpretation of these 

results. 

 

4.3.1 Structural model of DAT based on the protein database 

 

Here, first of all we have performed single/multiple sequence alignment to find 

out the possible most appropriate templates throughout the known 3D structures of 

proteins existing in the databases. The results coming out of the sequence alignment 

analysis of the hDAT protein by means of the BLAST, which is the first step of 

homology modelling, is displayed in the following figures; 

 

 

Figure 4.1: Sequence alignment results from BLAST. Blue: identical alignment 

similarity, light blue: weak alignment similarity, dark blue: strong alignment 

similarity. 
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Throughout the BLAST searches; hDAT sequence (query sequence:gi) 

matches some PBD_nr95 protein database sequences in the matching sequences are 

proteins with PDB ID number; 2A65, 3FZEA and 1SWWB. As seen in the figure 

above, the amino acid sequence of the hDAT protein is aligned with the aminoacid 

sequences of the proteins. The alignment covers amino acids from 30th residue of N-

terminal to 326th residue of C-terminal with ISWW, from 60th residue of N-terminal 

to 538th residue of C-terminal with 2A65, from 296th residue of N-terminal to 326th 

residue of C-terminal with 3FZE. According to these results, hDAT protein is 

aligned mostly with 2A65 protein amino acid sequence. 

  

 

Figure 4.2: The map view displays the coverage of the hits in a map, with one line 

per sequence. The bars are colored according to the bit score of the hits (with above 

400, red, being the best hits). 

 

As a result, as can be seen from the figures, three successful hits occurred as a 

result of the protein sequence alignment analysis of hDAT protein. The BLAST 

result; the names of these three best fitting proteins, the organisms that they belong 

to, amino acid sequence lengths, alignment scores, expect values, percent identities 

and gap percentages are given in the following table, Table 4.4. 

 

 

 

 

 

 

 

 



 

44 
 

 

                      Table 4.4: BLAST search results for the hDAT sequence. 

 

Protein Name Na(+) neurotrans. 

symporter,(SNF 

family) 

Protein STE5  Phosphonoacetaldehyde 

Hydrolase 

Accesion 

Number 

      2A65     3FZE     1SWW 

Organism Aquifex aeolices 

       VFS 

Saccharomyces 

cerevisiae 

Bacillus cereus 

Length         509      185        257 

Score(bits)         98.2      28.9        27.3 

Expect         4e-21       3.7         9.1 

Identities       119/498(23%)     13/34(38%)      28/110(25%) 

Positives       212/498(42%)     19/34(55%)      50/110(45%) 

Gaps       57/498(11%)     3/34(8%)      14/110(12%) 

 

As shown on the report regarding the BLAST search, score value of the results 

have been calculated as bit value. Bit score is defined as;  

 

   E=K x m x n x e-λS                  (given in section 2.1.3.1) 

 

As seen on this formula, there is an inverse proportion between the score value 

and the Expect Value (E). As I have mentioned in the theory, section 2.1.3.1 of the 

Chapter 2, the smaller the E-value the higher the percentage identity, and the higher 

the score the better the alignment is for the evaluation. These criteria are used of the 

similarity between the database sequence and the query sequence. According to this 

explanation, as the Expect Value of the Na(+) dependent neurotransmitter symporter 

protein (2A65) is lower than other proteins, the highest score value pertains to this 

protein. So that this is considered to be the best template in the database. 

 

Na(+) dependent neurotransmitter symporter (2A65) is a part of the Aquifex 

aeolicus organism and pertains to the NSS protein family with known 3D structure 
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(enlightened through the x-ray crystal structure) [1]. In general, this protein is used as 

a template in the researches regarding the proteins pertaining to the NSS protein 

family (dopamine transporter and serotonin transporter). This protein (2A65) was 

also found as the best hit at our sequence alignment search with the hDAT that is 

used in our research. Therefore it was used as a template for the further steps. 

However, the percent sequence similarity between this protein and hDAT was 

calculated to be lower than other proteins. Even though similarity of the sequence 

between proteins are sometimes low, the 3D structures of those proteins may turn out 

to be homologous. For instance, X-ray crystallography makes it evident that 

myoglobin and beta globin have quite similar structures. Whereas human beta globin 

and human neuroglobin share only 22% amino acid identity, the myoglobin and 

alpha globin proteins share only about 26% amino acid identity [13]. 

 

At the second step of the homology modelling, amino acid sequences between 

our protein and the proteins with the best-hit scores have been aligned to determine 

the secondary structures. The results of this method are shown in Figure 4.3 and 

Figure 4.4. 
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Figure 4.3: The sequence alignment analysis pertaining to the templates (2A65, 

3FZEA, 1SWWB) and the model (gi: hDAT) protein. According to the secondary 

structure definition of Kabsch and Sanger, alpha helix regions are shown in orange. 

The parts of the model protein and the template proteins which haven't been aligned 

are defined as X. 
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(A)                                       (B)                                          (C)                      

 

Figure 4.4: Template structures: 2A65 (A); 3FZEA (B); 1SWWB (C). Red bars 

indicate alpha helices, blue arrows indicate beta strands and green arrows indicate 

coil. 

 

As a third step, we made use of these secondary structures of three template 

proteins, which have been proven, at the previous stages, to be homologous with the 

hDAT protein. Here, from now on we have attempts to build the 3D structure of the 

hDAT protein. As a result of this task, initially two different model structures have 

been obtained (gi.M0001 and gi.M0002). The following figures, Figure 4.5 and 

Figure 4.6 show the secondary structure alignments during this step and the resultant 

3D model structures obtained.  
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Figure 4.5: The structure alignment results of the model (gi: hDAT), templates 

(2A65A, 3FZEA, 1SWWB) and the model proteins (gi.M0001 and gi.M0002) 

created through the MODELLER program. Regions colored in orange represent the 

alpha helix and the arrows colored in blue represent the beta-sheets.  
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(A)                                                              (B) 

 

Figure 4.6: The resultant 3D model structures of giM0001 (A) and giM0002 (B). 

Red bars indicate alpha helices and green arrows indicate coil. 

 

As I have previously mentioned in the MODELLER section of the Chapter 2, a 

low energy level is the indicator of a better alignment when these models have been 

generated from different initial alignments and homologues. According to the results 

shown in Table 4.5, the empirical PDF Total Energy value of gi.M0002 is less than 

that of gi.M0001. Therefore, we used only gi.M0002 model for the further steps.  

 

Table 4.5: The MODELLER PDF energy data and DOPE Scores are stored in each 

model structure. 

 

 

 

 

Model Scores 

Name PDF Total Energy PDF Physical Energy DOPE Score 

gi.M0002 27974.937 3339.621 -62487.925 

gi.M0001 31550.265 3722.596 -61833.507 
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After obtaining the model 3D structure, a verification process should be 

performed. Here, this validation was achieved by comparing the verification scores, 

which is a numerical way for indication of the compatibility. 

 

Table 4.6: The Verify Protein (Profiles-3D) Verify Score, Verify Expected High 

Score and Verify Expected Low Score values are shown in each model structure. 

 

Name Verify Score Verify Expected 
High Score 

Verify Expected 
Low Score 

2A65A 234.07 233.058 104.876 

3FZEA 75.86 83.8575 37.7359 

1SWWB 132.08 116.801 52.5603 

gi.M0002 149.03 232.597 104.669 

 

If the Verify Score result of a model protein is higher than Verify Expected 

Low Score value, then the model is considered to have acceptable quality. And the 

closer the Verify Score result is to the Verify Expected High Score value, the better 

the quality of the model. In our result; the model (gi.M0002) Verify score is higher 

than its Verify Expected low score value. Therefore; we use this as an acceptance 

criteria. 
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Figure 4.7: The superimposed poses of the tertiary structure prediction result for 

giM0002 (model protein) from MODELLER, and the 3D structure of template 

protein 2A65 from the two different view angles. Yellow color: giM0002 red color: 

2A65. 

 

As a conclusion, the model gi.M0002 has been obtained as the most suitable 

3D structure model from the overall results of the homology modelling study we 

have conducted for hDAT protein so far. 

 

A further energy minimization procedure is applied on this model by means of 

simulation, in order to get rid of the steric clashes and to end up with an energetically 

better conformation. Within this procedure, first of all, the model was ionized for 

neutralization purposes. 

 

After the ionization of the model protein which was created through this task, a 

brief energy minimization has been performed with the NAMD program. The 

energy-minimized DAT structure has a RMSD of 0.89 A0 for Cα atoms from the 

initial structural model. This energy minimized structure is shown in Figure 4.8. 
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Figure 4.8: The 3D structure of the hDAT protein after the energy minimisation. 

Purple represents the alpha helix, blue represents the helix_3_10, green represents 

the turn and red represents sodium ions. 

 

Helical structures shown in purple on the above figure are the regions that are 

identified as the alpha helices. The residue intervals of these regions given in Table 

4.7 shows the computationally obtained intervals. 

 

 

 

 

 

 

 

 

 

 

 

 



 

53 
 

Table 4.7: The amino acid sequence positions of the Transmembrane helix (TMH) 

regions pertaining to the model hDAT protein by VMD (VMD used by STRIDE 

secondary structure codes). 

 

TMH                        Aminoacid                     TMH                      Aminoacid    

  Number                     seq.position                  Number                  seq.position 

 

       1                      68-77           13           328-335 

       2             86-92           14           343-356 

       3             99-109           15           392-400 

      4             113-123           16           404-429 

      5             142-173           17           442-455 

      6             192-198           18           473-483 

      7             214-225           19           490-498 

      8             246-252           20           501-509 

      9             263-276           21           531-544 

     10             279-286           22           553-568 

     11             290-298           23           600-615 

     12             308-322   

 

As seen in the above table, as a result of the research study we have conducted 

on the hDAT protein, 23 TMH (Alpha helix) regions have been identified. When we 

check for comparison purpose, as a consequence of the experimental studies, 12 

alpha helical regions in the hDAT protein have been identified [33]. Figure 4.9 

shows the results of these experiments. And in the following table, Table 4.8 the 

corresponding residue intervals for alpha helices obtained experimentally are 

tabulated. 



 

 

 

Figure 4.9: Nucleic acid and deduced am

clone.  The 12 TMH domains 
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: Nucleic acid and deduced amino acid sequences of the hDAT cDNA 

domains are boxed [33].     

 

DAT cDNA 
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Table 4.8: Amino acid sequence positions of the TMH (alpha helix) regions detected 

in the hDAT protein through experimental studies. 

 

                         TMH                                                        Aminoacid 

                        Number                                                     seq.position 

 

                               1                               67-90  

                               2                         98-121 

                               3                         140-163 

                               4                         238-259 

                               5                         266-289 

                               6                         310-333 

                               7                         347-369 

                               8                         395-418 

                               9                         440-463 

                              10                         478-500 

                              11                         518-541 

                              12                         556-566 

 

Even though this seems like a contradiction, actually it is not. Because when 

examined residue-by-residue, the regions cover more or less the same regions. To 

conclude, the TMH (alpha helix) regions of the model obtained from the 

computational 3D structure analysis that we have performed for the hDAT protein 

and the TMH (alpha helix) regions that are experimentally detected, have been 

identified as approximately similar. And in addition, TMH (alpha helix) regions have 

also been found on the model protein were obtained through the structural analysis 

tools of the computational softwares, which uses different definitions of the 

secondary structures. So that, this might be an other reason for the numbering. 
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As a result, computational and experimental studies correlates well for 

hDAT model obtained based on the multiple sequence alignment of proteins within 

the protein database. 

 

4.3.2 Structural model of DAT based on rat DAT template  

 

In our second homology modelling study, we used the rat DAT robetta 

(rDAT_robetta) protein structure as a template whose 3D structure modelling had 

previously been created by some other independent researchers that made use of the 

Robetta server and the structure template pertaining to the LeuTAa [31].  

 

The 3D structure modelling of the hDAT protein has been performed with the 

above mentioned homology modelling methods. Different from the previous study, 

in this process, a built 3D model structure pertaining to the rat DAT protein has been 

used as a template. 

 

In the first stage, sequence alignment analysis between the amino acid 

sequences of the hDAT protein and the rDAT_robetta has been performed, and 

corresponding results are shown in Figure 4.10 
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Figure 4.10: Sequence alignment results from BLAST. For BLAST searches; hDAT 

(query sequence) are aligned with the rDAT_robetta sequence. 

 

As a result of this stage, a sequence identity of 93.1% has been detected 

between hDAT with rDAT_robetta .  

 

In the second stage, the secondary structure modelling of the hDAT protein has 

been performed by making use of the rDAT_robetta structure template. As a result of 

this study, two different hDAT model structures have been obtained. The 3D 

structures of these two models and the rDAT_robetta is shown in Figure 4.11. 
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(A)                                            (B)                                    (C) 

 

Figure 4.11: 3D structures of rDAT_robetta (A), model structure giM0001 (B) and 

giM0002 (C). 

 

Table 4.9: The MODELER PDF energy data and DOPE Scores are stored in each 

model structure. 

 
 

Model Scores 

Name PDF Total Energy PDF Physical Energy DOPE Score 

gi.M0001 3728.801 1890.910 -75957.132 

gi.M0002 4087.605 1936.183 -75521.0937 
 
 

 

Model scores corresponding to these two models are given in Table 4.9. 

According to these results, the PDF Total Energy of gi.M0001 is lower than that of 

gi.M0002. As previously mentioned, lower energy level is an indication of better 

alignment. Therefore, we used only gi.M0001 model sequence in the further steps of 

the modelling.  
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And finally, a validation procedure should have been applied. For this reason, 

the required verification scores are given in Table 4.10. According to these values, 

the Verify Score result of the gi.M0001 model protein is higher than Verify Expected 

Low Score value, therefore this model is verified to be acceptable. 

 

Table 4.10: The Verify Protein (Profiles-3D) Verify Score, Verify Expected High 

Score and Verify Expected Low Score values are shown in each model structure and 

rDAT_robetta. 

 

Name Verify 
Score 

Verify Expected High 
Score 

Verify Expected Low 
Score 

rDAT_robetta 180.23 283.307 127.488 

gi.M0001 131.43 283.307 127.488 
 

 
In Figure 4.12, the 3D structure of superimposed rDAT_robetta and the model 

hDAT is depicted. The high similarity also in structure can be seen from the figure 

conforming the amino acid sequence similarity. 

 

 

Figure 4.12: The tertiary structure prediction results rDAT_robetta (template 

protein) red color and giM0001 (model protein) yellow color. 
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In the table below, the amino acid residue intervals for the alpha helices 

belonging to the 3D model obtained here are given. 

 

Table 4.11: The amino acid sequence positions of the TMH (alpha helix) regions 

pertaining to the giM0001 model structure by VMD. 

 

   TMH                        Aminoacid                        TMH                  Aminoacid    

  Number                   seq.position                       Number              seq.position 

 

 

 

As seen in the table, 24 alpha helix regions have been identified on the model 

protein obtained from this study. As previously mentioned, 12 alpha helix regions 

had been identified as a result of the experimental study. The helix regions identified 

in both computational studies are similar with some extra alpha helix regions 

identified.   

 

Consequently; for enlightening the 3D structure of the hDAT protein, two 

different hDAT model structures have been built using different template structures 

pertaining to different template proteins. After the structure alignment performed in 

       1                        5-11         13              328-335 

       2               27-34         14              342-373 

       3               65-77         15              376-384 

       4               79-93         16              387-400 

       5               96-124         17              404-438 

       6              137-172         18              442-457 

       7              194-199         19              467-479 

       8              206-221         20              481-497 

       9              240-253         21              501-509 

      10              258-282         22              518-550 

      11              290-298         23              553-594 

      12              308-322         24              611-619 
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VMD for these two resultant models. The RMSD value of Cα atoms pertaining to 

these two different models have been calculated as 4.792 A0 for Cα atoms. This 

number is an indication of two similar but some how different structure models of 

hDAT protein. The variations in the structure can be examined from the Figure 4.13 

given below, which is the 3D structures of hDAT protein obtained by using different 

templates. 

 

 

 

Figure 4.13: The hDAT model structure (red) created initially by using multiple 

templates from the database and the hDAT model structure (blue) created as the 

second which based on the rDAT_robetta as a template.  

 

In this study, we must concern the fact that LeuTAa protein had been used as a 

template for the homology modelling of the rDAT_robetta protein, which was itself 

used as the template in the latter part. LeuTAa protein is also one of the proteins that 

we have used as a template during the homology modelling we have performed in 

the first part throughout the multiple sequence alignment. As a result, the 3D 

structure pertaining to LeuTAa has been in a way involved in as a template both in the 

first and second modelling hDAT protein. Similarities observed despite the slight 
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differences identified in some regions in the 3D model structures pertaining to the 

hDAT protein can be a consequence related to this fact. 

 

And further investigation of these two model structures were performed in 

order to see the effects on ligand binding to this protein. This further analysis are 

given in the next Chapter. 
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4.4 Conclusion 

 

The molecular modelling of the hDAT protein pertaining to the NSS family 

whose 3D structure isn't yet available, has been performed through two different 

comparative homology modelling techniques. Whereas experimental multiple data 

has been preferred as template in the first part, a single template structure pertaining 

to the rDAT_robetta has been used in the second.  

 

Three different template proteins (2A65, 3FZEA and 1SWWB) has been used 

in the first part. The sequence similarities between each of these proteins and the 

hDAT protein has been calculated less than 40%. 23 alpha helix regions have been 

identified in the hDAT model (hDAT_MS) created through the use of these multiple 

template proteins. In the latter part, the sequence similarity between the hDAT and 

the rDAT_robetta which has been used as template has been calculated as 93.1%. 

The human DAT model (hDAT_robetta) obtained through this way has 24 alpha 

helix regions. Even though the sequences of the hDAT models obtained from the 

application of both methods were the same, differences in the 3D structures of hDAT 

models has been identified in some regions.  

 

In order to enlighten the functionality of the hDAT models built through the 

application of these two different techniques, and to identify the changes affecting in 

the mechanism as a result of the structure differences between the two different 

molecular ligand docking analysis was performed in the following stage of our 

thesis, and this studies are given in the next Chapter. 
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                                         Chapter 5 
 
    Calculation of binding energies of DAT with some important  

                              ligand molecules by docking 

 
5.1 Introduction 
 

Ligand molecules that binds to dopamine transporter can be categorized as 

agonists and antagonists. DAT agonists lessen the hypokinesia of Parkinson's 

disease. And DAT antagonists are used for the prevention of hallucinations and 

delusion from which schizophrenic patient suffer. Despite the known curing features 

of both, in some cases adverse effects resulted from dopamine depletion similar to 

those caused by the restriction of dopamine receptors. For example, dopamine 

agonists in high doses may result in psychoses. So, in other words, dopamine 

imbalances may causes serious adverse effects. Inventing selective dopaminergic 

drugs that do not cause adverse effects is a difficult task in the development of 

pharmaceutical agents. This task can be achieved by comprehending how the 

agonists of subtypes of dopamine receptors involve in the mechanism and how they 

influence each other. Therefore, understanding of the dynamics is an important task 

and the interactions should be foreseen. Making such predictions directly with the 

receptor sequences or trial and error methods is tiresome. Hence, in the development 

of agonists and antagonists, predicting the three dimensional structure and function 

of DAT and binding sites of dopamine is an indispensable work [34]. 

 

In the past, there had been some experimental attempts made, in order to 

investigate the DAT molecule. The cloning of DAT cDNA was worked by Shimada 

et al. and Vandenbergh et al. [35, 36]. DAT’s structure, function and drug interaction 

were further investigated as a result of these studies.  



 

65 
 

However, the crystal structure of the hDAT hasn’t been developed yet. 

Kitayama et al., Lien et al. [37, 38], had also performed some experimental studies in 

which particular DAT amino acids were mutated. Experimental mutation results on 

DAT have been used by the group members for the rationalization of the 

experimental ligand binding measurements by this group member. 

 

Furthermore, a more recent crystallization experiment has proven that the 

bacterial leucine transporter (LeuTAa) consists of 12 TM domains with intracellular 

N- and C-termini [10]. These LeuTAa TM domains are reported to be merely 

overlapping in part with the domains suggested for the eukaryotic transporters [39]. 

 

An inhibitor-binding site located in an extracellular vestibule above the 

substrate-binding site has been discovered by the LeuTAa structure. Binding of the 

inhibitor evidently stabilizes the external gate in a closed conformation at this 

substrate-binding site. Therefore, this function results in non-competitive inhibition 

of substrate transport. Along with these discoveries, the question of whether this is a 

binding mode that can be generalized to the mammalian transporters and to different 

inhibitor classes emerges [40]. 

 

Following the studies on LeuTAa, a 3D structural model of DAT was generated 

computationally on the basis of the x-ray crystal structure of LeuTAa by the group 

members Xiaqin Huang and Chang-Guo Zhan. They made use of the structural 

model of DAT, by using the AutoDock 3.0.5 and the DOCK 5.4 programs, for the 

inspection of the binding mode of dopamine with DAT through molecular docking 

[1]. 

 

In another computational study, Martin Indarte, Jeffry D. Madura and their 

colleagues also made use of the LeuTAa crystal structure as a template and targeted 

rDAT protein sequence. To build three rDAT models, they used three different 

comparative modelling approaches. In addition to this, to identify potential binding 

sites for the substrates dopamine and psychostimulant d-amphetamine, three docking 

methods (MOE-Dock 2005.06, ASEDock and MOE-DOCK 2004.03 GA) were 

applied to the three DAT by the same group [31].  
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Considering the researches mentioned above, here in this thesis, we have 

constructed a new 3D structural model for hDAT through homology modelling based 

on various reasonable templates. Furthermore, we have used the resultant DAT 3D 

models for the binding analysis of DAT ligands computationally with a docking 

program, AutoDock 4.0. In addition, based on the developed structural model of 

DAT, the substrate-binding modes have been determined through the calculation of 

binding free energies. The overall agreement between the computational results and 

available experimental data demonstrated some important structural features of DAT 

and its binding properties with several substrates, providing a valuable insight into 

the molecular working mechanism for DAT. 
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5.2 Methods 

 

AutoDock programme makes use of a semiempirical free energy force field 

and Lamarckian Genetic Algorithm, which is a docking simulation method that 

provides flexible docking. Lamarckian Genetic Algorithm is mostly useful for 

systems with about 10 rotatable bonds in the ligand. Lamarckian Genetic Algorithm 

is more effective than the Simulation Annealing, though it can be useful in 

applications where search starting from a given point is desired.  

 

5.2.1 The AutoDock Protocol: 

 

The program AutoDock was developed to provide a procedure for predicting 

the interaction of small molecules (ligand) with macromolecular targets and 

calculating their binding energies. The steps of AutoDock4 used here were as 

follows; 

 

1. First, we created the ligand and receptor coordinate files to use as input 

information for AutoGrid and AutoDock. It included polar hydrogen atoms, 

partial charges and atom types and information on the articulation of flexible 

molecules. 

2. Second, AutoGrid created grid maps for each atom type of the ligand being 

docked. This helps to make the docking calculation fast. AutoGrid requires a grid 

parameter file (gpf) to specify the input files and parameters used in the 

calculation. The  parameters used in our study are as such; the grid size was set to 

be 70x70x70 and grid space was chosen as 0.375 Ao   

3. Next we created docking parameter file (*.dpf) including the search parameters 

and the docking parameters. We have chosen the genetic algorithm for docking. 

The system runs 100 genetic algorithm with 2500000 number of evaluations.  

4. At the end of AutoDock used these parameters in the *.dpf file and calculated the 

binding free energy of the protein-ligand complex and computed the coordinates 

for each docked conformation in the output file (*.dlg). 

 

 

 



 

 

5.3 Results and Discussion

 

The theory behind the

with macromolecules by means of

 

The tasks performed here in this thesis were

the calculation of the binding energies 

using the three-dimensional structure of DAT predicted

     

Ligand molecules 

     
5- hydroxydopamine             
            (1)                                            

                
        Amphetamine                          
                  (4)                                           

                    Cocaine                          Benz
                       (6)                               
                                                                   
 

Figure 5.1: Structures of the eight ligands studies as

hydroxydopamine(1), 6-hydroxydopamine(2), Dopamine(3), Amphetamine(4), 

Methamphetamine(5), Cocaine(6), Benzene

 

When we analyse the chemical structures of the above ligands; we see that all 

the ligands have an unsaturated
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5.3 Results and Discussion 

theory behind the study of the interactions of small molecules

with macromolecules by means of docking is described in detail in Chapter 3. 

s performed here in this thesis were predicting the binding site

the binding energies using AutoDock for eight different

dimensional structure of DAT predicted in our previous steps

           
ydroxydopamine             6- hydroxydopamine             Dopamine 

                        (2)                                  (3) 

              
Amphetamine                                      Methamphetamine 

(4)                                                          (5) 

           

Cocaine                          Benzene-1.3-diol              Tyramine 
(6)                                  (benzenediol)                      (8)     

                                                                   (7)                     

Structures of the eight ligands studies as the DAT receptor. 5

hydroxydopamine(2), Dopamine(3), Amphetamine(4), 

ine(5), Cocaine(6), Benzene-1.3-diol(benzenediol)(7), Tyramine(8)

When we analyse the chemical structures of the above ligands; we see that all 

the ligands have an unsaturated benzene ring known as aromatic hydrocarbon. Also, 

of small molecules (ligands) 

in Chapter 3.  

the binding sites and 

different ligands 

in our previous steps. 

                                 

 

the DAT receptor. 5-

hydroxydopamine(2), Dopamine(3), Amphetamine(4), 

diol(benzenediol)(7), Tyramine(8) 

When we analyse the chemical structures of the above ligands; we see that all 

benzene ring known as aromatic hydrocarbon. Also, 
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NH2 (amine) group is common in all the 5-hydroxydopamine, 6-hydroxydopamine, 

Dopamine and Tyramine ligands, but the number and orientation of their OH 

(hydroxyl) groups are different. If we look at the organic structures of 

Methamphetamine and Amphetamine ligands; different from the Amphetamine, an 

extra CH3 (methyl) group is present in the Methamphetamine ligand. Cocaine ligand, 

however being quite different than the other ones, is a bigger compound containing 

an aromatic benzene ring and a piperidine bi-ring. Furthermore, it contains more than 

one carboxyl oxygens and its free electron number is apparently higher than other 

ligands, when simply compared. 
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DAT Models; 
 

 
(A)  hDAT_MS                          (B) hDAT_robetta                  (C) rDAT_robetta          

 

Figure 5.2: (A) The structural energy minimized model of the 3D hDAT protein 

which has been obtained using multiple experimental data as template. (B) The 

structural model of the 3D hDAT created using by taking rDAT_robetta protein as 

template. (C) The 3D structural model pertaining to the rDAT_robetta protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

71 
 

 

5.3.1 Binding Energies of the eight ligand molecules in DAT 
 

The lowest binding energies for the DAT-ligand complex were computed by 

using the AutoDock4.0. The 3D hDAT’s structure models obtained in our previous 

steps and for DAT of rDAT_robetta were used here. Computational results were 

given in Table 5.1, Table 5.2 and Table 5.3 for the first model of DAT (hDAT_MS), 

the second one (hDAT_robetta), and finally rDAT_robetta respectively. 

 

Table 5.1: The calculated binding energies of the eight ligands with 3D model of 

hDAT_MS. 

 

                    LIGANDS                    LOWEST BINDING  
                     ENERGY(kcal/mol) 

             5-hydroxydopamine                             -4.81 
             6-hydroxydopamine                             -6.33 
                Amphetamine                             -5.91 
             5-(2-aminoethyl)  
              benzene-1.3-diol 
                (benzenediol) 

           
                            -5.45 

              Cocaine                            -6.33 
              Dopamine                            -6.03 
              Methamphetamine                            -5.05 
              Tyramine                            -6.08 

 
Among these lowest binding energy scores in the Table 5.1, two best binding 

ligands for hDAT_MS are found to be cocaine and 6-hydroxydopamine. However, 

when compared with the other energy values, it is seen that there is not much 

difference among all.      
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Table 5.2: The calculated binding energies of the eight ligands with 3D model of 

hDAT_robetta 

                                                       

                 LIGANDS                    LOWEST BINDING  
                      ENERGY(kcal/mol) 

          5-hydroxydopamine                              -7.54 
          6-hydroxydopamine                              -7.51 
             Amphetamine                              -7.78 
          5-(2-aminoethyl)  
           benzene-1.3-diol 
             (benzenediol) 

           
                             -7.06 

          Cocaine                               -9.28 
          Dopamine                               -7.43 
          Methamphetamine                               -7.29 
          Tyramine                               -7.25 

 

Table 5.2 shows that the best lowest binding energy score pertains to the 

hDAT_robetta-cocaine complex, throughout the all ligands. 

 
Table 5.3: The calculated binding energies of the eight ligands with 3D model of 

rDAT_robetta. 

 
                   LIGANDS             LOWEST BINDING  

                ENERGY(kcal/mol) 
           5-hydroxydopamine                         -7.01 
           6-hydroxydopamine                         -7.35 
              Amphetamine                         -7.23 
           5-(2-aminoethyl)  
             benzene-1.3-diol 
            (benzenediol) 

           
                        -7.10 

            Cocaine                         -4.26 
            Dopamine                         -7.12 
            Methamphetamine                         -6.84 
            Tyramine                         -6.71 

 

Looking Table 5.3, the best lowest binding energy scores for all ligand-DAT 

complexes in rat are observed to be quite similar to each other, expect for cocaine. 
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According to the experimental studies conducted previously with the DAT-

dopamine complex, the binding energy score was calculated as -7.4 kcal/mol [41]. 

The scores obtained from our computational research show that the binding energy 

score pertaining to the DAT-dopamine complex is equal to the experimental score as 

shown on Table 5.2, and the scores on Table 5.1 and Table 5.3 are quite close 

confirming a good agreement.  

 

So, our computational results and the experimental ones were compared. 

However, the binding energy scores are not sufficient for comparing the complex 

forming tendencies. Therefore, the binding site regions of the DAT-ligand complexes 

and the atomic interactions between the protein-ligand in these regions have been 

further investigated by docking analysis in the following sections.  
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5.3.2 Binding sites of the eight ligand molecules in DAT 
 

Next, we will analyze the predicted binding sites to determine how each 

residue in the binding pocket contributed. 

 

5.3.2.1 Binding sites in complexes of hDAT_MS  
 
Table 5.4: The residues in the binding sites pertaining to the hDAT_MS-ligand 

complexes. Common residues found in these regions are shown in dark.  

 
   LIGAND        BINDING SITES   LIGAND         BINDING SITES 

  5-hydroxy 
Dopamine 

TRP162    THR473   LEU80 
ILE159     ASP476 
PHE155    PHE320 
PHE472    ARG85 
 

  Cocaine ASP476    ILE159     VAL158 
THR473   TRP162    TYR88 
PHE472    VAL364   ARG85 
PHE155    TRP84 
   

  6-hydroxy 
Dopamine 

PHE332     ALA77    LEU322 
VAL73      PHE76     SER44 
SER72        LEU47    SER45 
VAL328    GLU117  GLY323 
LEU329     PHE114   THR48 
 

   Dopamine SER45    LEU329    GLY323  
PHE114   VAL328    ALA77    
LEU47    VAL324    PHE76     
GLU117  LEU322    VAL73    
SER72      PHE332 

Amphetamine GLU117     SER45      VAL73        
PHE76        LEU47     VAL324    
VAL328     GLY323   ALA77 
LEU329      LEU322 

      Meth- 
 amphetamine 

PHE472     ILE159 
THR473    ARG85 
ASP476     PHE320 
PHE155     LEU80 

5-(2-amino  
ethyl) 
Benzene 
-1.3-diol 
(benzenediol) 

GLY75       ALA76     SER45 
ILE74         LEU322    LEU47 
SER72        GLY323   VAL328  
VAL73       VAL324   LEU329 
ALA77       THR48     PHE332 
PHE114      GLU117 

    Tyramine PHE332    PHE76     SER45 
SER72      ALA77    PHE114 
GLY75     LEU47    GLY323 
ILE74       GLU117  LEU322 
VAL73     LEU329  VAL328 

 

As seen in the above table, SER45, LEU47, VAL328, LEU329, GLY323, 

VAL73, GLU117 and ALA77 are the common residues in interaction with all the 

ligands except for 5-hyroxydopamine, methamphetamine and cocaine. Considering 

the commonality of binding residues, 6-hyroxydopamine, amphetamine, benzenediol, 

dopamine and tyramine were expected to bind to the same volumetric cavity in the 

hDAT_MS. Corresponding, visual analysis were shown in the next figure. 
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Figure 5.3: Binding site regions pertaining to the hDAT_MS-ligand complexes. 

Protein is shown in line, and ligands are shown in CPK representation. Orange color 

cocaine, white color methamphetamine, purple color 5-hyroxydopamine, yellow 

color benzenediol, red color tyramine, green color amphetamine, blue color 6-

hyroxydopamine and pink color dopamine. 

 

As seen in the Figure 5.3, 5-hyroxydopamine, cocaine and methamphetamine 

molecules are found to bind with the DAT in different regions from other molecules. 
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5.3.2.2 Binding sites in complexes of hDAT_robetta 
 
Table 5.5: The residues in the binding sites pertaining to the hDAT_robetta-ligand 

complexes. Common residues found in these regions are shown in dark.  

 
   LIGAND 
 

          BINDING SITES    LIGAND                BINDING SITES 

  5-hydroxy 
Dopamine 

VAL152   ASP79   GLY426 
PHE326    SER321  SER422 
GLY323   ALA81   ALA423 
LEU322    ALA77   TYR156 
PHE320 

  Cocaine ALA77    PHE326  GLY426 
PHE76     PHE320   SER149  
SER321   ALA423   GLY153   
LEU322   LEU329    VAL152  
ASP79     VAL328    GLY323   
TYR156 

  6-hydroxy 
Dopamine 

ALA423   ALA77   VAL328 
SER422   ALA81    PHE326 
PHE76     TYR156   PHE320 
ASP79     GLY426  GLY323 
LEU322   SER321 

  Dopamine PHE326   ALA77    TYR156 
GLY323    ASP79     ALA81       
GLY426   VAL152   SER321 
PHE320    LEU322   PHE76         
SER422     
     

       
Amphetamine 

SER321    PHE326   PHE76 
LEU322    ALA81    SER422 
PHE320    ALA77   TYR156 
GLY323   ASP79     VAL152 

      Meth- 
amphetamine 

ASP79    PHE76     VAL152 
ALA81    TYR156   PHE326 
ALA77    GLY426  GLY323 
SER422   GLY153   PHE320 
SER321 

5-(2-amino  
ethyl) 
Benzene 
-1.3-diol 
(benzenediol) 

ASP421   VAL328     ASP79 
SER422   SER149     ALA81 
ALA423   PHE326    SER321 
GLY425   GLY323    PHE320   
GLY426   ALA77      LEU322 

    Tyramine LEU322    ASP79    SER422 
SER321     TYR79   GLY426 
PHE320    TYR156  ALA423 
ALA81      GLY425  MET427 
 

 
As seen in the above table, ASP79, PHE326, LEU322, GLY323, SER321, 

SER422, TYR156, PHE320 and GLY426 are the common residues that are 

commonly in interaction with all other ligands. Especially, ASP79 residue is in 

interaction with all the ligands. ASP79, which is a negatively charged aminoacid 

present in the side chain of the protein, is an important residue in electrostatic 

interaction with the dopamine. As a conclusion, the ASP79 residue is present in 

binding site region of all the ligands for this model.  
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Figure 5.4: Binding site regions pertaining to the hDAT_robetta-ligand complexes. 

Protein is shown in line, ligands are shown in CPK. Orange color cocaine, white 

color methamphetamine, black color 5-hyroxydopamine, yellow color benzenediol, 

red color tyramine, green color amphetamine, blue color 6-hyroxydopamine and pink 

color dopamine. 

 

As seen in the Figure 5.4; all ligands are computed to bind to the same place in 

the DAT. 
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5.3.2.3 Binding sites in complexes of rDAT_robetta  
 
Table 5.6: The residues in the binding sites pertaining to the rDAT_robetta-ligand 

complexes. Common residues found in these regions are shown in dark.  

 
LIGAND           BINDING SITES         LIGAND         BINDING SITES 

  5-hydroxy 
Dopamine 

GLY322    PHE76      VAL327 
SER320     LEU321    GLY424   
ASP79       ALA77      VAL152  
PHE319    TYR156    SER421 
ALA81      

 Cocaine ALA479    ARG85    ILE311 
ASP476     GLY480  THR315 
LEU475    THR481   SER538 
LEU89      LEU484   THR472 

  6-hydroxy 
Dopamine 

VAL152    GLY322  ALA77 
SER421     ASP79     SER320 
LEU321    ALA81    TYR156 
PHE325    PHE319   VAL327 
PHE76 

 Dopamine GLY425   LEU321    ALA81 
GLY424   PHE325    SER320 
VAL327   ASP79      TYR156 
SER421   PHE319   GLY322 
PHE76     ALA77     VAL152 

       
Amphetamine 

PHE76      PHE319   ALA77 
PHE325    SER320    LEU321 
SER421    ASP79      GLY322 
VAL327   GLY425   ALA81 
TYR156   

   Meth- 
amphetamine 

GLY425   PHE325     ALA77 
VAL327  TYR156    GLY322 
GLY153  PHE76      PHE319 
VAL152   ASP79      SER421 
SER149    SER320 

5-(2-amino  
ethyl) 
Benzene 
-1.3-diol 
(benzenediol) 

PHE319    SER320   SER421 
ALA77     GLY322   GLY425 
ASP79      PHE325    GLY424 
TYR156   LEU321    VAL327 
PHE76     VAL152 

 Tyramine ALA422   PHE76      ALA77 
GLY424   PHE325    ASP79 
GLY425   ALA77     VAL152 
SER421    TYR156   LEU321 
GLY322   PHE319   SER320 
ALA81 

 
According to the above table, SER421, GLY322, SER320, ASP79, PHE319, 

PHE76, ALA77 and TYR156 are the common residues that are present in every 

protein-ligand binding site region except for cocaine. These binding sites results are 

depicted visually in Figure 5.5. 
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Figure 5.5: Binding site regions pertaining to the rDAT_robetta-ligand complexes 

Protein is shown in line, ligands are shown in CPK. Orange color cocaine, white 

color methamphetamine, black color 5-hyroxydopamine, yellow color benzenediol, 

red color tyramine, green color amphetamine, blue color 6-hyroxydopamine and pink 

color dopamine. 

   

In the Figure 5.5, all ligand molecules except for cocaine can apparently be 

seen to bind with the DAT in the same region.  

 

According to the docking analysis performed with three different DAT (two of 

them belonging to human and one for rat) and eight different ligands in this section, 

binding site regions pertaining to the hDAT_robetta-ligand and rDAT_robetta-ligand 

complexes have been found to be in harmony with each other, and it has been 

detected that only the binding site region pertaining to the rDAT_robetta-cocaine 

complex is different from the other ligands. Docking analysis pertaining to 

hDAT_MS-ligand complexes has been found incompatible with these studies.  

 

ASP79, GLY323, SER422, SER321, TYR156, PHE320 residues are the 

residues that are commonly present in the binding site regions of both 

hDAT_robetta-ligand and rDAT_robetta-ligand complexes.  
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As a result of our overall binding site studies, the residues present in the 

binding site regions of the hDAT_robetta-ligand and rDAT_robetta-ligand 

complexes were detected to be similar. 

 
      

  
(A)                                                                       (B) 

 
Figure 5.6: Molecular interactions between hDAT_robetta and dopamine (A) 

hDAT_robetta and cocaine (B) in their binding sites. Dopamine and Cocaine are 

shown in ball-and-stick and protein in lines. 

 

As seen in the above figure, dopamine and cocaine molecules bind with the 

hDAT_robetta protein through similar regions. The molecular orientation of ligand 

molecules are also observed to be similar. For example, the aromatic group is found 

to exist close to the residues GLY426 and TYR156. Furthermore, the amine group of 

the ligand molecules are found to be in interaction with ALA77 residue. 
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(A)                                                                   (B) 

 
Figure 5.7: Molecular interactions between rDAT_robetta and dopamine (A) 

rDAT_robetta and cocaine (B). Dopamine and Cocaine are shown in ball-and-stick 

and protein in line 

 

In Figure 5.7, the binding sites for rDAT_robetta are shown together with 

molecular interaction details. 

 

On the contrary to the results of binding site analysis of hDAT_robetta, 

Figure5.7 shows that the cocaine binds with the rDAT_robetta protein in a region 

different from the binding region of the dopamine molecule.  
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Figure 5.8: Binding region of cocaine on the surface of rDAT_robetta. The rat DAT 

protein, rDAT_robetta, indicated as opaque surface and cocaine indicated with CPK 

representation. 

 
As seen in the above figure, cocaine had interaction with the external surface of 

the rDAT_robetta protein and the binding energy score has been calculated as -4.26 

kcal/mol for this position as seen in the section 5.3.1. However, cocaine and 

hDAT_robetta protein bind in an internal cavity and the binding energy scores for 

this pose has been calculated as -9.28 kcal/mol. This internal binding cavity is shown 

in Figure 5.9. 
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Figure 5.9: Binding region pertaining to hDAT_robetta-cocaine. hDAT_robetta 

indicated as transparent and cocaine indicated as VDW. 

 

As seen in the figure of hDAT_robetta complex, cocaine binds in an internal 

cavity, which overlaps with the binding site of dopamine. Since, cocaine bounds in a 

way to the residues ASP79-TYR156, and thereby formed a closed binding pocket, 

when both ligands exist at the same time dopamine can not bind with DAT. As a 

result of this study, cocaine can be identified as a competitive inhibitor of 

hDAT_robetta for the transport of dopamine.  

 

However, as seen in the study regarding the rDAT_robetta, whose similarity 

sequence with the hDAT_robetta is 93.2%, cocaine didn't bind in the DAT internal 

cavity. This might have resulted from the 6.8% difference in sequence between the 

two structural models. Because, even a small difference occurring in the structure 

also affects the binding affinity between cocaine and the protein.  

 

Furthermore, a set of experimental studies have been conducted for analysing 

the cocaine’s effect on mice [42]. According to these experiments, the differences 

between the responses of human and mice to cocaine were determined. The relation 

between the two molecular structures and these differences in responses should be 

examined, to see whether there exist any correlation or not. 
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5.3.3 Atomic interactions between DAT and ligands 
 
5.3.3.1 Interactions of hDAT_MS with ligands 
 
Table 5.7: The hydrogen-bonding (HB) interactions between DAT and eight ligands 

in the hDAT_MS-ligand complex. 

 
Ligand Name Residue Donor Acceptor Hb dist(Ao) 
    5-hydroxy 
    dopamine 
 

ASP476 
 
 

N-HA 
N-HC 

OD1 
OD2 

2.2 
2.2 

    6-hydroxy 
    Dopamine 

 
ASP79 

N-HA 
N-HC 

OD2 
OD2 

2.7 
2.4 
 

 
 
   Benz-1,3-diol 

THR48 
GLY323 
VAL73 
SER72 
SER45 
GLU117 
 

O-HA 
O-HA 
N-HE 
N-HC 
O-HB 
O-HB 

OG1 
O=C 
O=C 
O=C 
OG 
OE2 

2.2 
2.0                                
2.0 
2.3 
2.2 
2.0       

      Dopamine  
SER44 
 
SER45 
LEU322 
 

N-HB 
N-HC 
 
N-HB 
N-HA 

O=C 
O=C 
 
OG 
O=C 

2.2 
1.8 
 
2.0 
1.8 
 

        Meth- 
  Amphetamine 

 
ASP476 
 

N-HA 
N-HB 

OD1 
OD1 

2.2 
1.8 

     Tyramine  
GLU117 
 
 
SER45 
 
 
SER44 
VAL73 

N-HC 
N-HD 
 
 
N-HC 
N-HD 
 
N-HC 
O-HA 

OE2 
OE2 
 
 
OG 
OG 
 
O=C 
O=C 

2.1 
2.4 
 
 
2.4 
2.3 
 
2.1 
1.7 

 
As seen in the above table, Table 5.7, a strong hydrogen bonding interaction 

has been observed between the hydroxyl group of DAT's SER45 residue and cationic 

head of all the ligands except for three; 5-hydroxydopamine, 6-hydroxydopamine, 

and methamphetamine. And looking at the table, we see that the hydrogen bond 

distances between the ligand and protein functional groups are varying from 1.7 Ao to 

2.4 Ao. 

 

To illustrate the 2D and 3D representations of interactions are depicted for 

Tyramine in Figure 5.10 and Figure 5.11. 
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Figure 5.10: 2D representation of the atomic interactions between the hDAT_MS-

Tyramine. Tyramine is shown with ball-and-stick model. 

 

 
 
Figure 5.11: 3D representation of the atomic interactions between the hDAT_MS-

Tyramine. Tyramine is shown with ball-and-stick model. 

 

From the figures, it is seen that the nearest hydrogen atom on the aromatic ring 

of Tyramine interacts with the aromatic side chain of PHE76, indicating a cation-π 

interaction. And it is also observed in the figures that GLU117, SER45, SER44 and 

VAL73 hydrogen-bonded to the Tyramine. Similarly, other ligands can be visualized 

at their binding sites to show the interacting groups. 

 



 

86 
 

5.3.3.2 Interaction of hDAT_robetta with ligands 
 
Table 5.8: The hydrogen-bonding (HB) interactions between DAT and eight ligands 

in the hDAT_robetta-ligand complex. 

 
Ligand Name  Residue Donor Acceptor HB dist (Ao) 
 
 
5-hydroxy 
dopamine 
 

 
SER321 
 
ASP79 
 
 
ALA77 
PHE320 

N-HB 
N-HA 
 
N-HC 
N-HC 
 
N-HA 
N-HA 

O=C 
O=C 
 
OD1 
OD2 
 
O=C 
O=C 

2.4 
2.5 
 
2.1 
2.7 
 
1.9 
1.8 

 
 
 
6-hydroxy 
Dopamine 

 
ALA77 
 
ASP79 
 
SER321 
PHE320 

N-HB 
N-HC 
 
N-HC    
 
N-HB 
N-HA 

O=C 
O=C 
                                                                   
OD1 
 
O=C 
O=C 

2.7 
2.7 
 
2.1 
 
1.9 
2.0 

    
 
 
Amphetamine 
 

 
ASP79 
 
 
ALA77 
PHE320 
SER321 

N-HC 
N-HB 
N-HC 
 
N-HB 
N-HA 
N-HA 

OD2 
OD1 
OD1 
 
O=C 
O=C 
O=C 

2.4 
2.7 
2.1 
 
1.9 
1.9 
2.4 

   
 
   
 Benz-1,3-diol 
 
 

 
ASP79 
 
ALA77 
PHE320 
SER321 
SER422 

N-HE 
N-HE 
 
N-HD 
N-HC 
N-HC 
O=HB 

O=C 
O=C 
 
O=C 
O=C 
O=C 
O=C 

2.0 
2.7 
 
2.0 
1.7 
2.2 
1.9 

     
 
 
  Dopamine 

 
ASP79 
 
 
SER321 
ALA77 
PHE320 

N-HA 
N-HC 
N-HA 
 
N-HB 
N-HC 
N-HB 

OD2 
OD1 
OD1 
 
O=C 
O=C 
O=C 

2.4 
2.7 
2.1 
 
2.4 
1.9 
1.8 

  
Methamphetamine 

ASP79 
 
PHE320 

N-HB 
 
N-HA 

OD2 
 
O=C 

2.8 
 
2.1 
 

      
 
   
        
Tyramine 
 

ALA77 
 
 
ASP79 
 
 
PHE320 
SER422 
SER321 

N-HC 
N-HD 
 
N-HD 
 
 
N-HB 
O-HA 
N-HC 

O=C 
O=C 
 
OD1 
 
 
O=C 
O=C 
O=C 

2.2 
2.1 
 
1.9 
 
 
2.1 
2.0 
1.8 
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As seen in the above table; hydrogen bonding interactions occurred between 

the cationic heads of the ligands and the carbonyl and side chain oxygens (OD1 and 

OD2) of the ASP79, SER321, ALA77 and PHE320 residues pertaining to the DAT 

protein. Also, hydrogen bonding interactions between the Benz-1,3-diol, Tyramine 

ligands and  SER422, SER321 residues were observed. 

 

As an example, the interactions for the ligand Benz-1,3-diol is depicted in 

Figure 5.12 and Figure 5.13 in 2D and 3D respectively. 

 
    

 
 
Figure 5.12: 2D representation of the atomic interactions between the 

hDAT_robetta-Benz-1,3-diol. Benz-1,3-diol is shown with ball-and-stick model. 
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Figure 5.13: 3D representation of the atomic interactions between the 

hDAT_robetta-Benz-1,3-diol. Benz-1,3-diol is shown with ball-and-stick model. 

 

The nearest hydrogen atom on the cationic head of Benz-1,3-diol interacts with 

the aromatic side chain of PHE326, indicating a cation-π interaction. Side chains of 

ALA77, ALA81, and PHE320 interact with the alkyl chain of Benz-1,3-diol from its 

cationic head. GLY426, GLY425 and side chains of VAL328 make contacts 

additionally with the aromatic ring of Benz-1,3-diol. 
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5.3.3.3 Interactıon of rDAT_robetta interaction with ligands 
 
Table 5.9: The hydrogen-bonding (HB) interactions between DAT and eight ligands 

in the rDAT_robetta-ligand complex. 

 
Ligand Name Residue Donor Acceptor Hb dist(Ao) 
 
5hydroxydopamine 
 

 
ASP79 
 
 
 
PHE319 
SER320 
ALA77 

N-HA 
N-HC 
 
 
 
N-HA 
N-HB 
N-HA 

OD1 
OD1 
 
 
 
O=C 
O=C 
O=C 

2.5 
1.9 
 
 
 
1.7 
2.0 
2.1 

 
6ydroxydopamine 
 

 
ALA77 
 
ASP79 
SER320 
PHE319 

N-HB 
N-HC 
 
N-HC 
N-HB 
N-HA 

O=C 
O=C 
 
OD1 
O=C 
O=C 

2.2 
2.1 
 
1.7 
1.8 
1.9 

    Amphetamine 
 

 
ASP79 
 
 
SER320 
PHE319 
ALA77 

N-HA 
N-HB 
 
 
N-HC 
N-HC 
N-HA 

OD1 
OD1 
 
 
O=C 
O=C 
O=C 

2.1 
2.2 
 
 
2.4 
2.0 
1.9 

    
    Benz-1,3-diol 
 
 

 
ALA77 
 
ASP79 
 
 
PHE319 
SER320 
SER421 

N-HD 
N-HE 
 
N-HE 
 
 
N-HC 
N-HD 
O-HB 

O=C 
O=C 
 
OD1 
 
 
O=C 
O=C 
O=C 

2.2 
2.2 
 
1.7 
 
 
1.9 
1.7 
1.9 

        Cocaine HIS476 O=C N-HD 2.2 

         
      Dopamine 
 

 
ALA77 
 
ASP79 
SER320 
PHE319 

N-HB 
N-HC 
 
N-HC 
N-HB 
N-HA 

O=C 
O=C 
 
OD1 
O=C 
O=C 

2.2 
2.0 
 
1.7 
2.0 
1.9 

Methamphetamine 
 

PHE76 
TYR156 

N-HB 
N-HB 

O=C 
O-H 

1.9 
1.9 

      
      Tyramine 
 

 
ALA77 
 
ASP79 
SER320 
PHE319 
SER421 

N-HC 
N-HD 
 
N-HD 
N-HC 
N-HB 
O-HA 

O=C 
O=C 
 
OD1 
O=C 
O=C 
O=C 

2.2 
2.2 
 
1.7 
1.6 
1.9 
2.4 
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As seen in the above table; hydrogen bonding interactions occurred between 

the cationic heads of all the ligands, except for cocaine, and the carbonyl and side 

chain oxygens of the ASP79, SER320, ALA77 and PHE319 residues pertaining to 

the DAT protein.  

 

And finally, for this rDAT_robetta structure, 2D and 3D representation of 

amphetamine interactions were given as an example in Figure 5.14 and 5.15. 

 

 
 
Figure 5.14: 2D representation of the atomic interactions between the rDAT_robetta-

Amphetamine. Amphetamine is shown with ball-and-stick model. 
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Figure 5.15: 3D representation of the atomic interactions between the 

rDAT_robetta-Amphetamine. Amphetamine is shown with ball-and-stick model. 

 
The nearest hydrogen atom on the cationic head of Amphetamine interacts with 

the aromatic side chain of PHE325, indicating a cation-π interaction. Side chains of 

ALA77, ALA81, and PHE319 interact with the alkyl chain of Amphetamine between 

its cationic head. And also, GLY425 and side chains of VAL327 make additional 

contacts with the aromatic ring of Amphetamine. And interactions between 

Amphetamine and the side chains of ASP79, TYR156 and SER421 should be the 

major binding forces anchoring Amphetamine to its binding site.  
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5.4 Conclusion 
 

The differences in binding site prediction between hDAT_MS model and the 

hDAT_robetta model are most likely due to the differences in packing in these 

protein structure. Considering the hDAT_MS-ligand complex data, binding site for 

ligands SER45, LEU47, VAL328, LEU329, GLY323, VAL73, GLU117, and 

ALA77 are the common residues in interaction with all the ligands except for 5- 

hydroxydopamine, methamphetamine and cocaine. And according to the 

hDAT_robetta-ligand complex data, binding site for ligands are buried deep in 

ASP79, PHE326, LEU322, GLY323, SER321, SER422, TYR156, PHE320, and 

GLY426.  

 

However, in the experimental studies conducted previously by a group on the 

hDAT-cocaine and hDAT-dopamine, the residue ASP79, VAL152 and TYR156 

residues had been identified as important residues charged in the interaction between 

cocaine, dopamine and DAT. According to the computational docking study of the 

same group, PHE76, ALA77, ASP79, SER149, VAL 152, TYR156, PHE320, 

SER321, LEU 322, GLY323, PHE326, VAL328, SER422, ALA423 and GLY426 

are the residues that are present in the binding site regions pertaining to the DAT-

cocaine and DAT-dopamine complexes [37].  

 

In addition, in an another experimental study it is reported that; TYR156 is a 

strictly conserved residue between all members in the NSS family and SER422 is 

also conservative. In our studies here we also saw these residues takes place in the 

binding sites as well. And, the mutual interactions between the side chain of TYR156 

and ASP79 are pronounced to possibly act as a latch to stabilize the irregular 

structure around the unwound region of helix 1. The involvement of ASP79 in the 

vital local interactions with both dopamine and Na+ can explain why mutations 

ASP79ALA, ASP79GLY, and ASP79GLU dramatically reduced dopamine reuptake 

as demonstrated in previously reported experimental studies on DAT [1]. 

 

Consequently, through the comparison of our data with the previous studies, 

for hDAT_robetta-ligand complex, binding site for ligands overlaps extensively with 

that of dopamine reported in older experimental studies and computational studies. 
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                                                Chapter 6 

                                        Conclusion 

 

Comparative modelling methodologies allow us to develop a reasonable three 

dimensional structural model of DAT. And further applied molecular docking 

methods enable us to investigate its binding interactions with the ligands of our 

interest. The ligand investigated in our study are 5-hydroxydopamine, 6-

hydroxydopamine, Benz-1,3-diol, Dopamine, Amphetamine, Methamphetamine, 

Cocaine, and Tyramine. 

 

As a result of the comparative (homology) modelling of hDAT using different 

templates two DAT models, hDAT_MS and hDAT_robetta were obtained. The 

RMSD differences between these two models 16.585 A0 for Cα atoms. Even though, 

alpha helices cover the similar regions in both structure models, a small difference in 

the orientation of these helices brings about this RMSD difference, indicating 

variations in 3D structure. 

 

The differences in binding site prediction between the hDAT_MS model and 

the hDAT_robetta model are most likely due to the differences in packing in these 

protein structures. 

 

The hDAT_robetta model created by use of rDAT templates was through to 

have the correct packing, since binding cavity for all the ligands found to be in the 

interior part of DAT. Our hDAT_robetta-ligand complex data suggest a common 

binding site for all the ligands buried deep in the protein between the residues 

ASP79, PHE326, LEU322, GLY323, SER321, SER422, TYR156, PHE320, and 

GLY426. This binding site overlaps extensively with that of dopamine reported in 

experimental studies. In addition the calculated binding energies of the ligands to 

hDAT_robetta model correlate well with experimental results in hand. 
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However, using multiple data from protein databank as templates to create 

hDAT_MS model doesn’t seem to give so accurate results. When we compare the 

experimental and our computational results with this model, we see that they are not 

consistent as much as for the hDAT_robetta model.  

 

The structural differences between these two models are resulted from 

differences between the templates used. For the hDAT_robetta a template of rat DAT 

model with 93.2% sequence similarity is used, whereas the sequence similarity of the 

templates used for the creation of hDAT_MS model structure was less than 30%. 

This means that more structural information is used for hDAT_robetta coming from 

its template. 

 

By the way, the overall results also show the accuracy of the rat DAT template 

as well, since the accuracy of our hDAT_robetta model is dependent also to the 

template used. The rat DAT template was coming from computational study with de 

novo method of Robetta server together with additional Monte Carlo (MC) 

simulations having been performed on that. 

 

As a conclusion when we consider our results for hDAT_MS and 

hDAT_robetta model, we end up with idea that further Molecular Dynamics 

simulations are required to obtain a better equilibrated structure for hDAT_MS 

models. The MC simulations having been performed for hDAT_robetta seem to 

compensate for this imperfection of our studies. 
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