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Abstract: Behavior mapping (BM) is a spatial data collection technique in which the locational and
behavioral information of a user is noted on a plan layout of the studied environment. Among
many indoor positioning technologies, we chose Wi-Fi, BLE beacon and ultra-wide band (UWB)
sensor technologies for their popularity and investigated their applicability in BM. We tested three
technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m2 test area
(6 m × 6 m), 0.86 m for the BLE beacon in a 37.44 m2 test area (9.6 m × 3.9 m) and 0.24 m for ultra-wide
band sensors in a 36 m2 test area (6 m × 6 m). We simulated the applicability of these error ranges
for real-time locations by using a behavioral dataset collected from an active learning classroom. We
used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new
39.76 m2 test area (7.35 m × 5.41 m). We considered 26 observation points and collected data for 180 s
for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally,
we demonstrated the use of ultra-wide band sensor technology for BM.

Keywords: sensors and technologies for indoor localization systems; positioning strategies and
algorithms; behavior mapping; activity monitoring; ultra-wide band sensors

1. Introduction

Behavior mapping is an outcome of systematic observation and provides significant design
information through linking spatial attributes to the behaviors of the people observed [1,2].
The observation of human behavior requires an interface to represent the use of different settings and
objects through their location and proximity. Behavior maps provide the locations of people (and
other observed features) in which one can assess the occupancy of the space, the use of features within
that space and social interaction based on the proximity between, and the orientation of, people in
a group. Behavior mapping serves as an innovative way of understanding the relationship between
the environment and human behavior.

A single behavior map ideally consists of a scaled plan layout of the studied area on which
the locations of people and their behaviors being measured by the conducted study are marked [3].
A systematic observation is comprised of observation cycles in which the time interval between each
cycle, which is based on the behaviors studied, is equal. The researcher produces a behavior map for
each observation cycle. After several behavior maps are collected on a plan layout, they are overlapped
to make an overall map. This overall map is an important source for understanding behavioral patterns
in a given space, since it provides visual data about the observed activities [4]. By consulting these
overall maps, design researchers and practitioners can start to question why some settings are used
more often than others, how the environment being studied works for different user groups throughout
the day and the relationship between design features and the behaviors they support. These questions
are often connected to theories used for understanding the environment and behavior [1,5].
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Behavior mapping as a method has been used in studies of both indoor and outdoor environments.
One of the earliest studies conducted on indoor spaces utilized behavior mapping to show differences
in social interaction between patients in single-, double- and multiple-occupancy rooms [6]. Moore
used behavior mapping to study the differences in the use of the outdoors, with emphasis on differences
in the outdoor behavior of girls and boys after the reconstruction of a playground [7]. The method
was widely used in studying outdoor settings such as outdoor children’s museums and neighborhood
parks due to its unobtrusive applicability in public spaces [4]. Indoor applications of this method
in design research, on the other hand, have been fairly limited, with those having been carried out
focusing largely on seniors housing [8–10].

The term behavior mapping is sometimes used in reference to pre-designed tables, which are
prepared for systematic observation and which include a list of space names and behavior codes to
be observed [11]. Often referred to as a behavioral table or a behavior mapping matrix, this data
collection method does not include a plan layout for recording people’s locations. A literature review
carried out in the mid-1980s indicated that the use of behavioral tables for data collection with regard
to indoor settings was a popular method at that period [11]. In work on hospitals, behavioral tables
were adopted instead of a plan layout [7]. Similarly, in more recent research on hospitals, behavioral
tables have been preferred for recording data during observation cycles [12,13]. The main reason
for the use of tables rather than a plan layout for data collection in these studies can be attributed
to researchers’ own preferences. As non-designers, it is possible that they were more familiar with
collecting data using tables instead of plan layouts. Moreover, some of the most popular research
software for behavior mapping, mostly used by researchers in other disciplines, codes the spatial
location superficially; in other words, when this software is used, the “location” is reduced to merely
the name tag of the observed area.

Cosco et al. proposed using the behavior mapping technique along with other established
instruments for a similar purpose for physical activity research in outdoor children’s playgrounds [14].
Unlike behavior mapping, the aforementioned, established observation instruments require training for
observers and include certain measures intended to maintain inter-rater reliability and validity [15,16].
The power of behavior mapping lies in its ability to reflect the connections between elaborative features
of the environment and observed behavior. However, issues with establishing the instrument’s validity
may hinder its adoption by disciplines other than design.

Traditionally, the behavior mapping technique used hand-written records known as the
paper-pencil method. With Van Andel’s research [17], in which behaviors and attributes of the
built environment in outdoor settings were recorded digitally, we see the initial efforts to introduce
the use of digital means to this technique. Early on, time-lapse photography and video technology
were also used while documenting observed behaviors [3]. More recently, digital devices, such as
personal digital assistants (PDA) and tablets, have made it possible to record more variables in
a shorter amount of time [4]. Studies at the time, which were mostly conducted outdoors, began to
incorporate geographical information systems (GIS) for behavior mapping. Although the inclusion
of GIS technologies followed a procedure similar to the way researchers manually collected data
with a paper and pencil, it also offered the possibility of using powerful data analysis tools [4,18].
Thus, despite utilizing digital technologies during analysis, the data collection procedure still has
room for manual methods for data collection through the use of the traditional “pencil on paper”
method [8,10,19]. Due to methodological issues and the researcher bias mentioned above, Sommer and
Sommer stated that behavior mapping can be time and resource consuming [20]. Although there are
new technologies used for behavior mapping, they do not really offer any innovation in data collection:
instead, they provide tools for data management and visualization.

Some other disciplines that use observation in the field to record behaviors have adopted
technological innovations rapidly to cope with problems associated with the technique. In his review
of the uses of field-based observation instruments to measure physical activity, McKenzie concluded
that “these techniques are underused” for various reasons [15]. In parallel to this argument, much
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valuable effort has been expended in tracking outdoors travel behavior automatically by using the
Global Positioning System (GPS). Cycling and walking activities have been tracked successfully by the
use of GPS technologies [21,22]. GPS has also been employed to study the role of the built environment
in obesity [23]. The use of GPS along with accelerometers has provided invaluable information
about features of the urban environment and physical activity, without the burden of exhaustive
field research. Although GPS tracking is limited to the outdoors, the improvement it brings to field
research by eliminating observation has also inspired researchers to look for similar alternatives that
would work indoors. This study aims to test candidate technologies, which can be used to determine
individuals’ locations with adequate accuracy to allow behavior mapping indoors. Earlier efforts in
indoor positioning remain at the level of specific applications for a given problem rather than linking
the indoor environment to behavior.

Our literature review has shown that the adoption of this tool goes well beyond the design research
and has several applications that inform disciplines including medicine, nursing and exercise sciences.
It can be stated that behavior mapping is a holistic and inclusive tool providing complex information
that can be analyzed in accordance with different research problems. By employing behavior mapping,
one can inquire into and discover patterns of behavior that may otherwise not be possible and develop
research-based insights for innovation. Yet, due to its time-consuming protocol for the collection
of data and its questionable reliability due to human error, behavior mapping does not receive the
reputation it deserves as a field technique. On the other hand, indoor positioning technologies solve the
problems associated with behavior mapping by removing the presence of an observer and providing
reliable data. However, real-world applications of indoor location positioning are often built around
well-defined engineering problems and overlook the complexity of the spatial information collected.
Thus, they reduce people’s locations to the position of tags in interior space and do not study the
complex patterns of people’s natural movement, the self-selection of spaces to occupy, the self-selection
of the use of tagged objects, the formation of groups or social interaction based on proximity between
people. The use of sensors for automated behavior mapping will fill an important gap, marrying the
engineering fields that study indoor positioning and other disciplines that employ an understanding
of human behavior for decision-making.

This study first reviews the literature on behavior mapping and then reviews the literature of
indoor positioning systems with emphasis on technologies selected to be further studied in the scope
of this paper. The contribution of the study is three-fold. Firstly, it broadens the understanding of
indoor location positioning from the level of a well-defined engineering problem to that of a tool that
serves as a visual database to enquire into a complex set of questions regarding the time spent in
different locations, the use of objects and the social interaction between people based on proximity.
Secondly, it employs a real behavioral dataset to demonstrate how these technologies would work
for behavior mapping if selected. Thirdly, we produced a behavior map through employing UWB
sensor technology.

2. Testing Candidate Technologies for Behavior Mapping of the Indoors

“Real-time location system” (RTLS) is the most common name for the technologies used for
detecting a current geographic location. An RTLS consists of wireless nodes that send and receive
signals and process the signals received. Current RTLS are based on wireless technologies, such as
infrared positioning, ultrasonic positioning systems, radio frequency identification (RFID), Wi-Fi,
Bluetooth and ultra-wide band (UWB), and are based on the other technologies including, but not
limited to, long-range capacity sensing [24], pressure on the floor or air, acoustic, infrared and light
(camera and image processing) [25]. A comparison of RTLS and behavior mapping (BM) can be found
in Table 1. Two extensive reviews conducted in the last decade have been pointing out challenges
and opportunities of RTLS as summarized in Table 1 [25,26]. Our literature review also illuminated
challenges and opportunities of behavior mapping through critical analysis.
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Table 1. Comparison of behavior mapping (BM) and real-time location systems (RTLS).

Method Challenges Opportunities

Behavior Mapping Time and resource consuming; reliability
problems; manual; limited apps

Detailed information relates location to
design (built environment)

Real-Time Location System Varies in accuracy based on technology
used; prone to interference

Automated; various alternatives; easy
to implement with new technology

2.1. Technologies for Use in Indoor Positioning-Related Work

The Global Positioning System (GPS) is a technology that is both suited to and efficient for
outdoor spaces [27]. If the position detection is performed outdoors, it is carried out using a GPS
signal provided by the satellites or an assisted-GPS signal provided by the Global System for Mobile
Communications (GSM) operators. The average error is one to five meters. For outdoor locations, GPS
is the most widely-used location and tracking technology in the world [27]. If indoor positioning is
considered, then position detection can be performed via infrared, ultrasonic, cellular, RFID, Wi-Fi,
Bluetooth or UWB sensors. In this case, depending on the technology used, the average error can be
reduced from the meter level to the centimeter level. Before providing the details of the current study,
a brief overview of existing indoor positioning systems is necessary.

Active badges were the first indoor positioning system developed by AT&T Cambridge [28].
In this system, each employee wears a small device that transmits a unique infrared. A central
database collects the data from the infrared sensors and, thanks to the RF tags worn by each user,
allows the location of all users to be determined. However, this technique can only be used for
short-range communications. Moreover, the infrared technique requires a line of sight (LOS) between
the transmitter and the receiver.

AT&T Cambridge then developed an ultrasonic tracking technology named Active Bats, which
provided better accuracy than active badges. In this system, the user wears small badges that emit
ultrasonic pulses for the transmitter [29]. The system uses a triangulation algorithm and measures
the time-of-flight (ToF) of this pulse from the transmitter to a known point in the ceiling. With this
measurement, the distance between bats to each receiver can be calculated since the speed of sound in
air is known. The implementation of the active bats system is quite difficult due to the high number of
transmitters that must be installed and the fine-tuning they require.

RFID technology stands out due to having a lower cost than ultrasonic positioning systems.
It is an automatic identification technology that uses radio signals to track and to estimate the exact
locations of people or “objects” like devices and vehicles. In this system, objects have RFID tags, which
are identified using an RFID reader [30,31]. These tags have unique ID numbers for the purposes of
identifying which reader is interrogating a tag. When these unique tag IDs are associated with the
people who carry them, the location of individuals can be detected.

RFID has been a reliable technology for selective object identification. Recently, Bluetooth
low energy (BLE) beacons and UWB sensor technologies have been used as an alternative option
for tracking and indoor positioning [32]. Bluetooth networking communicates on a frequency of
2.45 gigahertz. BLE beacons have a reachability range of about 15 m, which is much wider than those
of an RFID sensor. The use of received signal strength indications (RSSI) is recommended to help with
positioning [33]. As the distance between the sender and receiver decreases, the RSSI value decreases,
as well. Trilateration is a method of estimating the locations of points by distance measurements, using
the geometry of a minimum of three transmitters [34]. The traveler’s position is determined as the
point of intersection of three circles, each centered on one of the BLE beacons. Performance analysis
shows accuracy that is within five meters. This is not sufficient for indoor positioning, but can be
acceptable when providing directions and routing [34].

Wi-Fi (to IEEE 802.11 standards) is the most popular technology used for wireless communication
today. Wi-Fi operates on different bands including 2.4 GHz and has a coverage range of 50 to 100 m [33].
Most electronic devices, including computers and mobile phones, have Wi-Fi adapters. Moreover,
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almost all public buildings (e.g., universities, hospitals, etc.) have wireless local area network (WLAN)
infrastructures. Since this technology is already a part of our daily life, it can be used for estimating
location in an indoor environment. Within the WLAN system, wireless access points (APs) act as the
stations that transmit and receive data. Multiple APs can serve multiple users; when a user moves
beyond the access point’s range, they are automatically handed over to the next one. RSSI is a value that
indicates strength when the propagated radio wave is received. In order to determine the relationship
between RSSI and distance, AP is kept at a fixed known point, and RSSI are collected while slowly
moving away from the transmitter. Time-of-arrival (ToA) measures the round-trip time (RTT) between
the signals of transmitter and receiver [35]. The RTT basically measures the total time of the signal
traveled between the source and destination. The Euclidean distance between transmitter and receiver
can be calculated by the multiplication of travel time by wave speed [36]. ToA requires clocks on the
transmitter and receiver to be very accurate and synchronized since measurement accuracy is crucial
when determining location accuracy.

Ultra-wide band (UWB) is a radio technology for short-range high-bandwidth communication.
UWB can be ideal for indoor distance estimation, localization and tracking [37]. UWB has a very
large bandwidth, greater than 500 MHz, and for this reason, signals often arrive at the receiver via
multiple paths. However, its large bandwidth also allows for diverse frequencies to be used at different
times, which can be used as a solution to multipath problems and interference [38]. UWB transmitters
consumes a low amount of power in comparison with other positioning technologies, allowing
better power efficiency and a longer battery life for UWB devices than other options. The power
consumption of UWB transmitters that are worn by people is generally less than 1 mW, whereas
the power consumptions of UWB receivers are around 400 mW [39]. The UWB frequency range
for communication applications is 3.1 to 10.6 GHz in the Federal Communications Commission
(FCC)-approved UWB band [40]. This eliminates the need for an additional 2.4-GHz radio link and
operates only in the FCC-approved UWB band [41]. In the presence of other people and objects,
the LOS path can be blocked, causing the initial direct path to be mapped with a delay and, thus,
causing a bias. It is natural to expect non-line-of-sight-based errors, yet it is hard to conclude that the
absorbent effects of the human body will increase these errors [42,43]. ToF and ToA measurements
are used for precise indoor positioning with an average error of less than 0.30 m. Apart from a few
industrial implementations, UWB has not entered the mass market because it requires a dedicated
transmitter and receiver infrastructure [36]. The use of UWB sensors with the time difference of
arrival (TDoA) has received particular attention in medical applications, with an accuracy of 3 to
5 mm [41,44,45]. The angle of arrival (AoA) technique compares an estimation of the angles from
which signals are received from at least two sources with the amplitude of the signal. The location of
the object can be found from the angle at which the signals intersect [46]. The AoA technique can be
used together with other techniques as a hybrid method to increase its accuracy [47].

Zhang et al. used UWB sensors and accelerometers to understand the use of workstations in
a non-territorial office space [48]. Yet, this study used predetermined zones to embed sensors to
understand use. Wearable UWB sensors carried by employees provided dichotomous (zero and one)
information whenever they were detected in the zone. An open office plan layout was divided into
several zones to understand the use of each zone by different groups of employees. This is similar
to a type of behavior mapping where use of a specific place is recorded on a tally sheet with a name
tag. However, this study did not report accuracy as a concern, since researchers were interested
in the headcount of the type of users in predetermined zones. Thus, this effort employing UWB
technology to understand location in an indoor setting did not accurately determine the indoor
location of an individual, but reported the use of a predetermined zone. This application is based on
an older type of behavior mapping that took only the name of the used space into consideration and
that cannot be regarded as predecessor of our study.

In order to carry out the automated behavior mapping, it is necessary to specify the indoor
positioning technologies to be used. Thus, this research focused on the three particular technologies
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that have been selected as the most likely candidates for achieving the highest rate of accuracy with
the least intervention to the indoor design. First Wi-Fi, then BLE beacon and, finally, ultra-wide band
(UWB) sensor infrastructures were installed, and various tests were conducted. A comparison of the
selected indoor positioning technologies is given in Table 2.

Table 2. Comparison of selected indoor positioning technologies.

Technology Infrastructure Hardware Weaknesses-Threats Strengths

Wi-Fi
Uses building’s

existing
infrastructure

Access points,
mobile Low accuracy

Low cost; easy to implement,
calibration is not necessary;
no need for extra hardware

BLE Beacon
Dedicated

infrastructure
required

BLE beacons,
mobile

Difficult to calibrate each BLE
beacon; need extra hardware,
medium accuracy; requires
a greater number of cells for
better accuracy; prone to
radio interference

Easy to setup; easy to operate;
inexpensive; low energy
consumption

UWB
Dedicated

infrastructure
required

Anchors, wearable
sensors

Need extra hardware;
expensive compared to
other technologies

Central calibration; high
accuracy positioning even in
the presence of severe
multipath; does not interfere
with existing RF systems

2.2. The Methodology and the Test Results

In our earlier pilot experiments, we had installed Wi-Fi, Bluetooth low energy beacons and
the ultra-wide band sensor infrastructures in the test areas that we set up at the university campus.
We conducted several accuracy measurement tests with each of these technologies, all of which used
variations of RSS-based lateration algorithms. We implemented lateration with the least squares
algorithm, as described in [49]. We assume that there are three access points AP1, AP2 and AP3.
These access points are located at the (x1, y1), (x2, y2) and (x3, y3) coordinates, respectively. The RSS
measurements can be converted into distance values. Typically, the RSS values are measured in dBm
and usually range between 0 dBm (excellent signal) and –100 dBm (poor signal). A decrease is observed
in the RSS values as the distance between the transmitting and measuring devices increases. It is
possible to show the relationship between the transmitted and received power with respect to the
distance between the transmitting and receiving devices [33]. Therefore, after measuring the received
power at the target location, the distance of a target from the transmitter (APs) can be calculated. As we
mentioned in [49], we used the following equation to compute the RSS indication (RSSI) specified
by [50]:

RSSI = −(10 n log10d + A) (1)

where n is signal propagation constant, d is the distance from the sender and A is the received signal
strength at a distance of one meter. Then, the linear RSSI equation can be obtained as:

ni = −
(

RSSIi − A
10 log10di

)
(2)

The RSSI values are then converted to distances by considering the calibrated propagation
constant. As noted earlier, the RSS measured values are affected by the position of the Wi-Fi antennas,
the construction materials of the building and the walls. Thus, in order to overcome these handicaps,
we utilized data fitting by least squares in order to increase the accuracy of the algorithm.

Here, we first present the Wi-Fi test results. Wi-Fi uses least squares lateration. For lateration,
the raw RSS data obtained through the measurements from three different access points are used.
For least squares lateration, the raw RSS data are fitted by least squares, and the estimations of RSS data
were used. A 36 m2 area (6 m × 6 m) was selected as the test bed for Wi-Fi, and wireless modems were
placed at the three corners of the test area. The test area was then divided into 40 cm × 40 cm sections,
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and the corners of these sections inside the test area were identified as 196 (14 × 14) measurement
points. For least squares lateration, the three access points were placed at the coordinates (0 m, 0 m),
(6 m, 0 m) and (0 m, 6 m). The results for least squares lateration algorithm for the Wi-Fi were obtained
with a 1.39 m average error and 35.20% accuracy for 0 to 1 m.

At the second test phase, we installed the Bluetooth low energy beacons. We used the radio
frequency fingerprint method, which uses a set of location-dependent radio frequency signal
parameters, such as RSSI. In most applications, even small changes lead to an impairment in the
mapping between a fingerprint and a certain position. Therefore, the correlation database (CDB),
which is a collection of fingerprints, needs to be updated for each new application. Fingerprints
are collected during the training phase and stored in the correlation database. Each fingerprint is
associated with a unique set of indoor coordinates. We use search space reduction techniques, which
include a two-level filtering of received data with respect to CDB. The first level filtering compares the
maximum RSSI of the received data with the maximum RSSI values of the CDB in order to minimize
the search area. The second level filtering further minimizes the search area by comparing the RSSI
ordering of the received data and the reference data. It is possible to increase the number of these steps
as more variables are added to the CDB. To find the maximum correlation and minimum difference
between received and reference values to match to a grid, three different matching algorithms are
implemented. These are absolute differences matching, Euclidean distance matching and Spearman
rank correlation matching. The best results were obtained with Euclidean distance matching [36].
It should be noted that no further estimation or smoothing algorithms are used. We have ongoing
research projects implementing genetic algorithms based on a natural selection process that mimics
biological evolution. Both methods repeatedly modify a population of individual solutions.

As the test bed for the BLE beacons, a 37.44 m2 area (9.6 m × 3.9 m) was selected, and the
BLE beacons were placed between the grids. There were 12 grids (4 × 3) in the test bed. Each grid
size was 2.4 m × 1.3 m. The BLE beacon advertising period was 800 ms, and the scan period was
200 ms. Two-and-a-half minutes of training data for each grid were used to form a reference correlation
database with an average RSSI for each BLE beacon in each grid. The results for the genetic algorithm
with Euclidean distance matching of BLE beacons had an average error of 0.86 m and 75.73% accuracy
for 0 to 1 m.

Our third, and final, test bed was installed for the UWB sensors. With this technology, we used
three anchor devices (transmitters) and a tag device (receiver) for implementation. It was necessary to
obtain the sensitive positions of each anchor device and the ToF of the radio package between the tag
and anchor devices to calculate the exact indoor location of the tag devices. When N pieces of ToF
information belonging to a tag device are received, we use the trilateration method to calculate the exact
position of the tag device. It is possible to consider the trilateration problem as an optimization problem,
and we can solve it with the least squares method. We used the Levenberg–Marquardt algorithm [51]
to obtain the result. In general, we need to calculate the distance value as in the trilateration algorithm
or to calculate the time as in the ToF algorithm. Thanks to the Levenberg-Marquardt algorithm, it is
sufficient to count the clock pulses alone to determine the distance or to calculate the time taken.

The test bed for the UWB signals was a 36 m2 (6 m × 6 m) area. Anchor devices were placed
at the corners of the test area. The UWB sensor kits used in this study spanned six RF bands from
3.5 GHz to 6.5 GHz [52]. The anchors and tags used in our test bed supported Channel 2 (4 GHz) or
Channel 5 (6.5 GHz), and all tests were performed at 6.5 GHz. The test area was then divided into
1 m × 1 m areas, and the corners ((0 m, 0 m), (0 m, 6 m), (6 m, 0 m)) of these areas inside the test area
were identified as 49 (7 × 7) measurement points. No measurement was taken for the points that were
occupied by three anchors, resulting in 46 measurement points for the UWB test area. We conducted
150 measurements in each of 46 points: a total of 6900 measurements (see Figure 1) and obtained
an average error of 0.24 m in total.
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Figure 1. Test results of ultra-wide band sensors in a 36 m2 (6 m × 6 m) test area for 6900 measurements
and the cumulative distribution function (CDF) of the test points of minimum, maximum and average
localization errors (in meters) determined by the UWB positioning system.

The test results for the trilateration and ToF with the Levenberg–Marquardt algorithm of UWB
sensors were obtained as a 0.24 m average error and 100% accuracy for 0 to 1 m. UWB technology
predicts indoor location better than the other tests conducted with BLE beacons and Wi-Fi technology,
which yielded average error of 0.86 m and 1.39 m, respectively. As shown in Table 3, the accuracy
(error ranges) and average error of UWB technology is much better than the other two technologies.

Table 3. Comparison of accuracy results.

Method Accuracy for
0 to 1 m

Accuracy for
1 to 2 m

Accuracy for
2 to 3 m

Minimum
Error

Maximum
Error

Standard
Deviation

Average
Error

Wi-Fi 35.20% 41.33% 20.92% 0.05 m 3.51 m 0.72 m 1.39 m
BLE

Beacon 75.73% 13.47% 4.93% 0.00 m 2.91 m 1.10 m 0.86 m

UWB 100.00% 0.00% 0.00% 0.15 m 0.33 m 0.04 m 0.24 m

In Figure 2, the accuracy errors in determining the reference points using Wi-Fi, BLE beacon and
UWB sensor technology are given. In a Wi-Fi test, the number of the reference points with an accuracy
error of less than 1 m is 69, so this is 35.20% of a total of 196 reference points. In the BLE beacon test,
the number of the reference points with an accuracy error of less than 1 m is nine, so this is 75.73% of
a total of 12 reference points. In the UWB sensor test, the number of reference points with an accuracy
error of less than 1 m is 46, so this is the total number of reference points. Thus, applying the UWB
sensor technology to indoor positioning significantly improves the performance of indoor positioning.

It should be noted that in all three tested technologies, a single transmitting sensor is worn at the
chest level. Thus, the placement of the sensor on the body is held constant during all experiments
controlling any bias due to this factor. When there is more than one transmitting sensor to be positioned,
placement of the sensor on people is even more crucial since it provides the orientation of people and
affects line of sight.

These three tested technologies have never before been assessed for their applicability for indoor
behavior mapping. Generally, in the indoor positioning literature, these technologies have been tested
in a given scenario against a predetermined well-defined problem. Thus, previously, the accuracy of
measurements were considered only in terms of those that worked best in scenarios that were very
limited when compared to the complex behavioral information that can be gathered via behavioral
mapping. Understanding human behavior through their locations requires evaluating their proximities
to other people and objects, rather than providing solutions to a location-based problem.
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3. The Use of an Active Learning Center Behavioral Dataset to Simulate Tested Technologies

To simulate how tested technologies would work for behavior mapping, we used a real behavioral
dataset collected from a classroom. The context of the observation is a state-of-the-art active learning
environment, which is a classroom furnished with moveable furniture, providing multiple choices
for seating. The walls are clad with ceramic-steel surfaces that can be used for projection, writing or
displaying posters by attaching magnets. The classroom also has a table for the presenter, a console for
a projector (in addition to two fixed projectors in the ceiling), a caddy for hand boards and a small
storage unit, all easily moveable. Located at the ground floor of a building on the campus, the classroom
is easily accessible from the main entrance and opens up to a social area. Designed for small classes,
the capacity of the classroom is limited to 28 people and space is designed to provide maximum control
to the users; it has individually operable lights, HVAC and windows. There are multiple outlets on
the floor and around the baseboard, supporting a flexible use of the environment while working on
laptops. All of these design features are expected to act as affordances and support students’ use of
all locations in the classroom serving their different behavioral patterns. With these features, every
seat in the active learning center (ALC) is a “good seat”, and the configuration of the furniture can be
changed in a matter of minutes to accommodate all types of classes (Figure 3).
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Figure 3. Active learning center (ALC) configuration supporting group studies.

The ALC behavioral dataset was collected during a three-hour workshop. There were 19 students
and one professor in the classroom during observations. All participants were free to go in and out of
the classroom at any time during the workshop. In addition to 13 observation cycles, multiple photos
were taken from different angles. We opted for a 15-min interval between taking photos in order to
capture the changes in the room objectively without disturbing the participants and the natural flow
of the workshop. Later, these photos were used to produce each observation on a plan layout for
each of the observation cycles. Changes in the location of the furniture were carefully updated in all
observations. An observation cycle contains people observed at the time of observation along with
their indoor locations. All 13 observation cycles were overlapped to make an overall map containing
247 observations where each observation is an individual. The process of obtaining an overall map took
nearly 40 h of work, excluding the time spent for the preparation of the groundwork for this research.
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After manually creating the overall map, we randomly selected two participants marked with
the colors red and green, as shown in Figures 4 and 5. We isolated locational data related to these
participants to create a simulation of how these locations would be visualized if their data were
collected by any one of the three tested indoor positioning systems. The locations of the participants
were not fixed since, in line with the requirements of the workshop, the students needed to use writing
surfaces, work on media projected on the walls, enter the data into their laptops and work with
other students.
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The isolated data showed that one of the participants was more active (shown as green) than
the other (shown as red), and she was either standing or moving around most of the time (Figure 5).
The other participant, on the other hand, was seen sitting during all observation cycles. Through the
isolated data pertaining to these two, a special overall map was produced. In order to further discuss
whether the simulations we made can provide any information besides the location, the furniture used
by the participants was also marked on this map.

As shown in Figure 6, the simulated maps are created by applying localization uncertainty zone
of the accuracy measures obtained by testing each of the three aforementioned technologies. The plus
sign represents the observed locations of the two students selected, and the circle around each location
represents the localization uncertainty zone measured by each tested technology. Each student’s
location is represented by a transparent color. When the localization uncertainty zone (measured
accuracies) of each observation overlap, then the colors get darker. In low accuracies, the circles
are larger, reducing the chance of understanding discrete locations. The green represents a mobile
student, whereas the red represents a static student. As the signals are transmitted in circular patterns,
these localization uncertainty zones show the area in which real indoor positioning can be located.
The localization uncertainty zone for Wi-Fi is a circular area with a radius of 1.39 m within a 6.07 m2

space. For the 0.86 m average error of the BLE beacon, the area of the localization uncertainty zone is
2.32 m2, covering 2.6-times less area accurately than that of the Wi-Fi. Finally, the area for the UWB
sensors with a 0.24 m average error is 0.18 m2, far smaller than the localization uncertainty zone of the
Wi-Fi or BLE beacon.

When the maps produced based on these three scenarios utilizing each of the three technologies
are examined, we see that they look similar to the photographs of different resolution levels.
As photographs of low, medium and high resolution serve different purposes, indoor positioning
performed through employing Wi-Fi and BLE beacon technologies may be beneficial for scenarios
other than behavior mapping. However, the complex task of behavior mapping requires a highly
accurate location positioning that cannot be achieved by these two technologies.

It should be noted that the data used to visualize these three scenarios are based on observational
data collected from an actual environment. In other words, if we had used the actual hardware of
the tested technologies, there would also be an offset from the captured signal due to the placement
of the devices on the participants’ body. In Wi-Fi and BLE beacons, this would have worsened the
already low average error. However, with a 0.18 m2 localization uncertainty zone, the third technology,
the UWB, would fall right into the personal spaces of the people observed.

All of the technologies tested provide information on the mobility of the participants through
tracking the changes in the (x, y) coordinates of the signal. However, UWB is the only technology
that captures z coordinates, among tested technologies: this means that, based on the placement of
the wearable device, it is possible to detect whether the person being observed is sitting or standing.
Based on our tested accuracies and simulations, the best technology for behavior mapping is UWB for
three main reasons. First, the map produced by the simulated data and behavior map of the real data
is almost identical. Second, both maps clearly indicate a relationship between the observed people
and their immediate environment. Third, even when there is a limited change in location, separate
observations can be recognized, staying within a very small localization uncertainty zone.

Based on the selection of the technologies we tested for automated behavior mapping, one might
claim that the ranking of measured average errors was obvious from the beginning. However, these
tests are not being carried out to rank average errors, but to simulate them for their suitability in
understanding human behavior through location. The occupancy of space happens in a personal space
that is a sort of invisible bubble surrounding us, and social interaction happens at an interpersonal
distance that can be measured by the proximity between, and orientation of, different people. If the
BLE beacon and Wi-Fi technologies were more accurate in our tests when used with their regular
settings, then they might have some potential for behavior mapping by providing information on the
use of space and proximity of people. In Figure 6, the occupancy of space by two people intersect and
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become blurred in BLE beacon and Wi-Fi simulations when we applied measured average errors as
the localization uncertainty zone. Yet, discrete locations are nearly readable in the UWB simulation
allowing one to understand the use of space by each person. Finally, as we continue our own research
employing UWB sensors, the broader research community can make use of the presented simulations
for their adaptations of other not-so-accurate technologies, such as BLE beacons and Wi-Fi.
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Figure 6. Simulation of observations using the three tested technologies. This simulation was made
by incorporating the real locations of two students selected from a behavioral dataset collected from
an active learning classroom during a three-hour workshop. From left to right, top to bottom: real
locations, Wi-Fi, BLE beacon and UWB.

4. Test Setup for the Realization of Behavior Mapping of an Active Learning Classroom

We set up a 7.35 m × 5.41 m test area in an active learning classroom where we collected
a behavioral dataset that we used for the simulations presented earlier in this paper. We also established
a ceiling system that held anchors on the exact corners of the testbed at a constant height of 2.85 m.
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The ceiling system was developed to provide better line of sight and direct path between the tags
and the anchors. A decaWave (Dublin, Ireland) DW1000 kit was used to conduct this experiment,
by incorporating three anchors in the developed ceiling system and two tags for participants.

We marked 26 locations of two people on the floor and used green and red dots to identify
13 locations for each person. These locations were exactly the same as the ones we had used for the
simulations presented earlier. Each test participant was given a UWB sensor tag to wear around his/her
neck at chest level, and then, we collected the location data of two people to replicate the observations
used in the simulations. Green and red colors were also assigned to tags for easy identification and
to keep consistency in representation throughout the study. The furniture associated with observed
behaviors were also set up as they were in the original observations. The ceiling system, test area
defined in the active learning classroom, participants with tags and sample of cluster of observation
points can be followed in Figure 7.

Sensors 2017, 17, 2925 14 of 22 

 

experiment, by incorporating three anchors in the developed ceiling system and two tags  

for participants.  

We marked 26 locations of two people on the floor and used green and red dots to identify 13 

locations for each person. These locations were exactly the same as the ones we had used for the 

simulations presented earlier. Each test participant was given a UWB sensor tag to wear around 

his/her neck at chest level, and then, we collected the location data of two people to replicate the 

observations used in the simulations. Green and red colors were also assigned to tags for easy 

identification and to keep consistency in representation throughout the study. The furniture 

associated with observed behaviors were also set up as they were in the original observations. The 

ceiling system, test area defined in the active learning classroom, participants with tags and sample 

of cluster of observation points can be followed in Figure 7. 

 

Figure 7. Introduction of the custom-designed ceiling system, the test bed setup with two tags (red 

and green), three anchors (A0, A1 and A2) and marked locations for each participant wearing a tag. 

Both participants stayed together in the testbed for three minutes for each location providing 

180 samples for each marked location adding up to a total of 4680 (26 test points × 180 samples) 

location measurements collected. Three points, all from the green tag, were out of the test area, but 

we still included them in our tests to understand how the UWB system behaves for points that are 

outside of the test area. 

The mean average error measured for each marked locations are given in Table 4. Thirteen test 

points were selected for each participant, so there were 26 test points available in the test. The 

locations of each test point were given by its x and y values, and the average error was calculated. 

Twenty-three test points were inside the test area out of 26 test points. The average error of these 23 

tests points was 0.2072 m. On the other hand, the average error of the total of 26 points was 0.2193 m. 

Figure 7. Introduction of the custom-designed ceiling system, the test bed setup with two tags (red and
green), three anchors (A0, A1 and A2) and marked locations for each participant wearing a tag.

Both participants stayed together in the testbed for three minutes for each location providing
180 samples for each marked location adding up to a total of 4680 (26 test points × 180 samples)
location measurements collected. Three points, all from the green tag, were out of the test area, but we
still included them in our tests to understand how the UWB system behaves for points that are outside
of the test area.



Sensors 2017, 17, 2925 15 of 22

The mean average error measured for each marked locations are given in Table 4. Thirteen test
points were selected for each participant, so there were 26 test points available in the test. The locations
of each test point were given by its x and y values, and the average error was calculated. Twenty-three
test points were inside the test area out of 26 test points. The average error of these 23 tests points was
0.2072 m. On the other hand, the average error of the total of 26 points was 0.2193 m. We obtained
a 0.0896 m minimum error value and a 0.4329 m maximum error value. The cumulative distribution
function (CDF) of the test points of minimum, maximum and average localization errors determined
by the UWB positioning system are given in Figure 8.

Table 4. The mean average error of 180 measurements per test point, with a total of 4680 (26 test points
× 180 samples) measurements from 26 test points for ultra-wide band sensors. The mean average
was reported as 0.2072 m, including 23 test points inside the test bed, and 0.2193 m, including all
26 test points.

Green Tag

Test Point
Number x y Average

Error (m) Min. x Min. y Max. x Max. y Mean x Mean y

1 5.48 5.31 0.2101 5.6219 5.2820 5.7489 5.3657 5.6879 5.3320
2 5.60 4.30 0.1005 5.5439 4.2724 5.6684 4.4547 5.6007 4.3854
3 5.61 4.06 0.1742 5.7336 3.9189 5.8042 4.0188 5.7604 3.9744
4 5.88 3.62 0.2191 6.0387 3.4531 6.1440 3.6767 6.0884 3.5691
5 6.56 2.98 0.1052 6.4261 3.0260 6.6562 3.0960 6.5337 3.0640
6 3.96 1.12 0.3165 3.8702 0.4980 4.1510 1.1555 4.0197 0.8231
7 2.53 1.01 0.1777 2.5639 0.6792 2.6483 1.0514 2.6178 0.8734
8 2.57 0.92 0.2021 2.5741 0.6181 2.6831 0.8364 2.6358 0.7312
9 2.64 0.85 0.2232 2.6058 0.5309 2.7248 0.8004 2.6635 0.6304

10 2.78 1.00 0.2695 2.8848 0.7262 3.0004 0.9207 2.9524 0.7948
11 7.72 2.81 0.2994 7.3400 4.0374 7.9106 4.4092 7.6788 4.3201
12 7.64 4.20 0.2027 7.7133 2.7958 8.0817 3.1790 7.8698 3.0514
13 4.04 −0.13 0.4329 4.0472 −0.6171 4.1280 −0.5137 4.0938 −0.5591

Red Tag

Test Point
Number x y Average

Error (m) Min. x Min. y Max. x Max. y Mean x Mean y

1 2.71 3.60 0.1727 2.7441 3.4101 2.8458 3.5205 2.7876 3.4486
2 4.08 2.24 0.2720 3.8532 1.7055 4.2356 2.4234 4.1734 2.0008
3 4.19 2.24 0.1477 4.2990 2.0291 4.3396 2.3070 4.3112 2.1956
4 4.12 2.16 0.2158 4.2437 1.8777 4.3479 2.1210 4.2949 2.0381
5 4.21 2.13 0.3263 4.4053 1.8652 4.5344 2.1505 4.4828 1.9623
6 4.19 2.07 0.2934 4.4128 1.7713 4.4632 2.0224 4.4390 1.9216
7 4.13 2.08 0.1336 4.1672 1.7454 4.2507 2.1981 4.2252 2.1064
8 4.05 2.05 0.0896 4.0171 1.8666 4.0526 2.0510 4.0316 1.9639
9 4.09 2.01 0.1443 4.0779 1.5376 4.2647 2.0248 4.1817 1.9164

10 4.11 1.99 0.2541 4.2792 1.8492 4.4120 1.9858 4.3541 1.9247
11 4.22 1.97 0.2702 4.1872 1.7236 4.5428 1.8153 4.3797 1.7694
12 5.75 0.67 0.2270 5.7826 0.3007 5.8272 0.5966 5.8098 0.4513
13 5.96 0.69 0.2216 6.0483 0.4111 6.1298 0.6740 6.1038 0.5247

Total 23 point average inside the test bed 0.2072 m

Total 26 point average all points included 0.2193 m

Min. 0.0896 m

Max. 0.4329 m

As shown in Figure 9, the mean average errors calculated for each location are drawn on the plan
layout as localization uncertainty zones. Within the measured average errors, note that the location
of the participants is easily noticeable and provides behavioral information. For the participant with
the green tag, he was mobile and located in different parts of the classroom, used the board and sat
on the chair. Although the average errors of the three locations that fell outside the test area are less
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clear, they still provide meaningful information. The participant with the red tag sat in two different
locations for all observations, and his location fell right on the chair.
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Figure 8. Behavior mapping test results of ultra-wide band sensors for 4680 measurements,
the cumulative distribution function (CDF) of the test points of minimum, maximum and average
localization errors determined by the UWB positioning system (23 test points inside; three test points
outside, the test bed; and 180 measurements per point).
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Figure 9. Plan layout showing mean average errors based on new UWB sensor data collected from
26 locations inherited from the simulations. One-hundred eighty location data per point were collected
and added up to 4680 measurements. Note that three points fell outside the test area due to the shape of
the room, the projection of the ceiling system where anchors were placed and accompanying furniture.
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5. Behavior Mapping Demo

We later reconstructed the observation cycles by replicating behaviors. The mobile student first
walked to the board, wrote something and then walked to the opposite side of the class to sit on a table.
He sat for a short time, walked slightly back to the table, and stood there.

The static student sat most of the time, but changed their location to move from one table to
another to sit down. Figure 10 shows that these locations and the movements to these locations were
clearly captured via UWB sensors. Tracked movement of the mobile and static students are represented
by the green and red dots, respectively.
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Figure 10. Behavior map representing the live capture of the location of two people captured by two
tags and three anchors placed on a custom-developed ceiling system.

Readily available indoor positioning software is limited to displaying the read locations on screen
to last 99 measurements. When the measurements exceed 99 in quantity, the last 99 remained on the
screen. The locations read from each tag were each represented by a different color and gradually
faded out as new readings appeared.

We captured the screen while two subjects followed the scenarios described above. All the
scenarios described above can be clearly followed in the behavior map, where one can follow the
movement and locations of the participants with ease. Based on these locations, one can also estimate
the set of probable behaviors associated with standing in front of the board (writing, presenting, etc.)
and sitting (studying, writing, reading, etc.). In a whole class, the collected location information of
these two students provides enough information to understand in which activities they were involved.
Tracked routes of these two students crossed, but they passed the same locations at different times
(note the difference in the intensity of the colors). If they have had stopped facing each other and had
spent some time, this would have been estimated as a social interaction. From a socio–environmental
perspective, location provides more than the position and an indicator of behaviors. When all people in
the active learning classroom wear UWB sensors, the social interaction among peers, social interaction
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between the professor and the students, group formation patterns and the duration of the interactions
can be estimated. Moreover, the use of resources in the classroom that were included to improve
participation (including furniture, wall-to-wall board system, hand boards, etc.) can be tracked.
The collected data of all sensed activities will inform all parties involved in the design and use of
these environments.

While indoor positioning software is powerful in capturing locations as coordinates, it is limited
in the visual display and analysis of the collected data. Our future work will incorporate the use of the
geographical information science and associated software for visualization and analyses. We will also
include more than two tags to be used simultaneously and both give them to people and attach them
to objects.

6. Discussion

To be able to make sense of the significance of the behavior mapping methods utilized in the
present study, we need to revisit the core concepts and methodological issues of traditional behavior
mapping (with pencil on a paper or with stylus on screen) for the automated version. Traditional
behavior mapping relies on observation cycles with equal time intervals. Different sources suggest
different intervals ranging between 15 min to an hour for each observation cycle depending on how
frequently changes in behavior occurs [3,4,20]. The main aim is to cover a day, or a whole activity
(such as a class or a play break). Statistically, based on what happens in between cycles, observations
from equal intervals may not be representative samples for the whole day or an event. Although
activities that have less of a chance of a regular occurrence are recommended to be observed separately,
it may be difficult to keep tabs on these events, especially indoors where observers quickly record
data and leave in order not to interfere with the scene. When multiple observers are involved in
data collection, inter-rater reliability becomes a problem. Moore and Cosco explained that, outdoors,
two observers may cover large areas by starting from the same location and walking clockwise and
anti-clockwise directions [4]. Similarly, indoors, multiple observers can cover large areas. In the
time spent moving over to an area after finishing observations in another area, the behaviors in
the non-observed area change, and this creates a bias that has, so far, always been considered to
be unavoidable.

In automated mapping of behavior, there are no observers, but sensors that can communicate
the location of the participants at timed intervals. All sensors act unobtrusively, but always present
observers that are programmed to work together in harmony. It is possible to program these sensors to
emit signals at any chosen time interval. Similar to the demo conducted in this study, it is also possible
to program sensors to continuously emit signals. This would completely change the notion of the
overall map that is produced since such a map would be a complete representation of all the sensed
locations on a map rather than one created by a compilation of behavior maps in which only a limited
number of observed locations are mapped. When all locations are sensed, the notion of an “observation
cycle” becomes obsolete. That kind of dataset will serve as big data when the location changes of
non-fixed and semi-fixed spatial features and ambient features of environment are also collected.

It is also possible to attach sensors to furniture and other objects in order to track their locations.
For the presented case, if sensors are placed on furniture and environmental features in the ALC, where
we collected our observational data, their positions will be automatically captured. These coordinates
can later be digitally inserted onto the plan layout for representation. Furthermore, this information
can be shared dynamically with users for direct feedback. In an ALC, students would know their
participation levels through their use of space.

The automated behavior mapping not only solves nearly all of the methodological issues, but it
also changes the terminology and concepts associated with the method. Obviously, the observers’
presence and people’s knowledge of being observed are two known factors that cause bias in the
observational research. Yet, in automated behavior mapping, observed people are not natural research
participants; instead they are people who are given wearable devices to actively participate in the
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research to provide data. Thus, from the participant’s perspective, beyond helping the researchers for
the greater good, there is a good chance that they will receive immediate feedback on their tracked
performance thanks to the interface that will be designed as a part of the future research process.

7. Conclusions

In this paper, three popular indoor positioning technologies have been considered for automated
behavior mapping. Based on the tests conducted and the accuracy levels obtained in parallel with
the literature on indoor positioning systems, UWB sensor technology was selected to be further
studied for automated behavior mapping. Then, we reconstructed a new test area incorporating
a custom-designed ceiling system. We collected new location data by marking locations used in the
simulations for these three tested technologies. Finally, we provided a demonstration of automated
behavior mapping by capturing the live locations of two participants using UWB sensor technology.

The use of UWB sensor technology for behavioral mapping is a ranging problem, not
a communication one. UWB technology, usually used for communications, must be set up differently to
identify locations [53,54]. In a communications setup, through fine-tuning the delay spread and energy
loss in the signal, emphasis is put on maximizing data speed and availability. However, behavior
mapping being a ranging problem, we placed more focus on the accuracy and range. In order to
understand the challenges and limitations imposed by the multipath environment, characterizing
the probability of blockage and the error in the presence and absence of the direct path (DP) must
be provided. One of the solutions for the reception of a direct path signal requires the placement of
sensors to an optimized height [52]. When anchors are placed at an optimal height, the probability
of a better line of sight (LOS) connection will increase, while the probability of the absorption of
a direct path signal will decrease, both of which minimize the negative impact on accuracy through
multipath positioning.

The potential of lifting sensors to an optimal height to provide better reception of sensors is
not a new discovery [28,29]. Our reported efforts included multiple users in a test environment that
incorporated a ceiling system with an optimized height level for anchors to maximize the line of sight
and minimize the absorption effect of the human body. The optimization of the number of anchors
and their height remains as a technical problem in designing any system that improves the line of sight
and, thus, reduces multipath error.

When applied widely, automated behavior mapping will improve the user experience and serve
as an innovative service, even just providing locations. The transition for accommodating automated
behavior mapping will be less of a challenge for organizations that are already utilizing mobile apps,
badges and other wearable devices to track their users’ spatial experiences. In the near future, mobile
phones may include UWB sensors that would even ease behavior mapping of indoors by eliminating
the use of wearable devices [26,55]. High precision Wi-Fi, BLE beacon-based, hybrid or any future
indoor positioning systems can also be applied to the behavioral mapping approach when they meet
the required accuracy. A database of automated behavior maps of buildings of the same type will
also serve as a knowledge base for the design community, facility managers and, most importantly,
the people who are daily users of these spaces. When spatial experiences become available through
automated behavior maps, they will empower users, organizations that invest in the design of these
buildings and the architectural community that has been hesitant in adopting behavioral research in
the design process. Ultimately, automated behavior maps will become a new way of assessing the
success and failure of the built environment through a multidisciplinary approach.
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