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Assessment of mineral liberation spectrum with all its aspects is essential for plant control and optimization.
This paper aims to estimate 2D mineral map and its associated liberation spectrum of a particular chromite
sample from optical micrographs by using Random Forest Classification, a powerful machine-learning algorithm
implemented on a user-friendly and an open-source software. This supervised classification method can be used
to accurately generate 2D mineral map of this chromite sample. The variation of the measured spectra with the
sample size is studied, showing that images of 200 particles randomly selected from the optical micrographs are
sufficient to reproduce liberation spectrum of this sample. In addition, the 2D spectrum obtained with this
classification method is compared with the one obtained from theMineral Liberation Analyzer (MLA). Although
2D mineralogical compositions obtained by the two methods are quite similar, microscopic analysis estimates
poorer liberation than MLA due to the residual noise (misclassified gangue) generated by the classification.
Nevertheless, we cannot compare the reliabilities of the two methods, as there is not a standard produce yet to
quantify the accuracy of MLA analysis.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Mineral liberation by size reduction can be defined as the physical
detachment of valuable minerals from gangue minerals so that they
can be separated at downstream beneficiation stages. Assessment of
mineral liberation is important for control and optimization of grinding
and downstream separation circuits [1–6]. One approach for the assess-
ment of mineral liberation is to estimate the degree of liberation
through mathematical models simulating random or non-random
breakage events [7–11]. However, these models have not been applied
commonly in commercial softwares simulating mineral processing
circuits [12]. Besides, knowing only the degree of liberation may not
be sufficient for the processmineralogy because the degree of liberation
represents a single point of the liberation spectrum [13]. Therefore,
more quantitative data regarding the morphological and compositional
properties, i.e. mineralogical maps, of progeny particles should be
collected. Mineral liberation spectrum or distribution, in this respect,
is the abundance and grade distribution of a selected mineral phase in
a population of progeny particles varying in size [11,12,14–17]. The
spectrum with its associated mineralogical map are particularly used
in the fields of process mineralogy [1–3,18–21] and geometallurgy
[22–26] in order to understand the effect of particle behaviour on
mineral processing and mining applications.
.

Liberation spectrum can be estimated by either point/linear (1D), or
area (2D), or volumetric (3D) analyses [4,15]. 3D spectrum is collected
from bulk samples by using sophisticated methods such as x-ray com-
puterized tomography [27–30]. The commercial application of x-ray
tomography is, however, currently scarce and expensive [31]. 1D and
2D spectra, on the other hand, are more commonly used than 3D
spectrum. 1D spectrum is obtained by counting points or measuring
linear intercept lengths across the area of progeny particles and their
constituent mineral phases [15,16,32], whereas the 2D spectrum in-
volves mineralogical mapping of particles on the whole areal section
[12]. Both spectra are collected from the surfaces of particles mounted
in polished or thin or polished-thin sections. Various stereological
procedures have been developed to convert 1D and 2D spectra to 3D
spectrum [15,16,33–35], as they might be biased estimates of 3D
spectrum [15]; however, such steorological conversions are out of the
scope of this research.

1D and 2D spectra can be obtained with scanning electron micro-
scope (SEM)-based tools [24,36] or optical microscopy [37]. Mineral
liberation analyzer (MLA) is one of the SEM-based tools which adopts
backscattered electron imaging (BSE) and energy-dispersive x-ray
spectrometer (EDX) for automated phase discrimination and mineral-
ogical mapping, respectively [16,36,38–40]. Optical microscopes, on
the other hand, utilizes visible light and a series of lenses to generate
magnified visuals of particles, and a light-sensitive camera to capture
those visuals in digital micrographs. These optical micrographs are
then evaluated with reliable methods for mineral identification and
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Fig. 1. X-ray diffractrogram of the chromite sample used in this study.
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mineralogical mapping. Image processing, in this context, may be used
as an automated tool to segment images of rock particles into color
channels, each channel representing a different mineral type. It has
been used in the fields of geology [41,42], mining [43–47] and mineral
processing [3,18,21,25,48–51] for automatic identification or quantifica-
tion of rock-forming minerals. The basic image processing method for
mineral classification is color thresholding as long as the micrographs
of minerals have uniquely different color values. However, the micro-
graph of any mineral might contain different colors because of its tex-
ture (e.g. fractures, pits, scratches) or because of the poor acquisition
of images by light deficiency. Even the classification will be tedious
again if different minerals have uniform yet slightly different color
values. Such drawbacks on mineral classification orient researchers to
develop more sophisticated ways on image acquisition and/or process-
ing techniques. Examples involvemultispectral imaging to discriminate
mineral surfaces [18,21,49,51], closed-software routines involving some
image operators and color thresholds [3,21,25,50], image classification
algorithms such as Naive-Bayes [48] and Process Tree [49]. However,
the experimental procedures defined in these studies are either too
costly or user-specific, being tedious particularly for the end-users
who do not have enough experience in image processing.

The objective of the method presented here is to apply a user-
friendly and cost-effective supervised image classification method for
the assessment of 2D liberation spectrum through optical micrographs.
The 2D spectrum obtained with microscopic analysis was later com-
pared with the one obtained from the MLA. In addition, reproducibility
of the proposedmethodwasmeasuredwith the replicated classification
algorithms. The proposed method was based on estimating mineralog-
ical map of an unknown sample of particles from sample features of
the constituent minerals using Random Forest Tree (RFT), a powerful
machine-learning algorithm [52,53]. The user, in this case, should only
select characteristic sample features of minerals whose statistical prop-
ertieswere extracted by the classifier software. RFT uses these statistical
properties in a voting process to classify automatically an unknown
image of particles. The strength of this method lies in its feature space
which allows the algorithm to evaluate not only the individual colors
but also the texture of minerals [54]. Therefore, minerals that even
Table 1
Semi-quantitative mass distribution of minerals within the experimental material.

Mineral species Semi-quantitative distribution (%)

Chromite 18
Forsterite 33
Lizardite 49
have little color contrast may be classified with RFT by virtue of
its texture evaluation, which is not possible with conventional color
thresholding. This method has the potential to distinguish various
metallic ore minerals from gangue minerals because light interacts
with these mineral surfaces in different paths (reflection or refraction),
yielding dissimilar textures on micrographs. The misclassification, on
the other hand, may occur when the objects have low contrast in
texture. Such low contrast has been observed between the surfaces of
non-opaque (gangue) minerals and epoxy [21], which may deter the
extraction of particles from epoxy by using RFT. Another weakness
may arise from user-based selection of sample features, which may
introduce bias to the classification. However, the classifier software
has a user-friendly interface to edit sample features; thus, any possible
bias from feature selection can be minimized [54]. The method might
not also classify individual grains whose sizes are near to 0.2 μm,
as this is the best theoretical resolution of light microscope [55]. If the
traceminerals or rare-earths have such small grain sizes, their classifica-
tion on micrographs will be problematic. In fact, it is already suggested
that image analysis methods on micrographs can be used to determine
the quantity of ore minerals down to about 0.1% [16].

2. Experimental material and procedure

The experimental sample was a chromite ore within the size range
of −600 + 150 μm. The mineral species of the sample were detected
with Rigaku Ultima IV X-ray diffractometer (XRD) with a Cu-Kα X-ray
tube, operating at 40 kV and 30 mA. The qualitative XRD analysis re-
vealed that the major minerals within the sample are chromite,
forsterite and lizardite (Fig. 1 and Table 1).

TheMLA analysis was performed on FEI-QUANTA Scanning Electron
Microscope adapted with EDAX Genesis XM4i x-ray microanalysis
system. Image acquisition and microscopic analysis were accomplished
with binocular Wetzlar 21-D6330 reflected microscope attached with
Cnscope 5 MP digital CMOS camera. The scale of the image was deter-
mined using a micrometer. The polished sections of the experimental
sample were prepared in a cold-mounting Epofix resin kit, further
ground and polished on a series of diamond and velvet discs using
Struers Tegramin 25 equipment. Meanwhile, additional polished
sections were prepared from chromite-rich and silicate-rich fractions
of the sample separated in the heavy liquid of bromoform. Images of
these additional polished sections were used in mineral identification
during image classification.

All the image analysis routines were performed in freely-distributed
and open-source Fiji-ImageJ software, which is particularly used in life
sciences [56]. Meanwhile, the trainable Weka Segmentation toolbox



Fig. 2. A schematic diagram showing the stages of image processing for mineral classification.
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developed and implemented into Fiji by Arganda-Carreras [54] was
used for image classification. The toolbox contains various supervised
classification algorithms to segment any unknown image or a stack of
images. Besides, the software is capable to classify several image types
taken from light or scanning electron microscopes.

2.1. Acquisition of the liberation spectrum from optical micrographs

The methodology used to obtain the liberation spectrum by image
analysis consists of (i) pre-processing, (ii) training data extraction,
(iii) image classification, (iv) post-processing and evaluation. Fig. 2
shows steps of the image processing methodology.

2.1.1. Image pre-processing
This stage involves firstly removing background (image of epoxy)

from particles, and then minimizing the unwanted noise and other
artifacts inherent on the images of particles. The former was done by
manually selecting and extracting images of particles to a white
background, using the blow/lasso tool (Fig. 3). Then, the Kuwahara
(Fig. 4a) and the median (Fig. 4b) filters were applied to the epoxy-
free images of particles to eliminate noise and other artifacts form the
image. The Kuwahara filter is a non-linear smoothing filter used for
adaptive noise reduction while keeping the edges of the objects
unaffected [57]. Similarly, the median filter is a non-linear technique,
inwhich the pixels are sorted into grids of certain sizewhere the central
pixel replaces the median value [58]. For this study, the Kuwahara
Fig. 3. The raw image of particles manua
and the median filters were applied on a 5 × 5 and 3 × 3 pixel
sub-regions, respectively.

2.1.2. Training data extraction and sample feature selection
Training sample datawas constructed from images of particles taken

from chromite-rich and silicate-rich polished sections (Fig. 5). Four
classification classes (chromite, lizardite/olivine, unknown, and back-
ground)were assigned for the images, and then various sample textures
and training features of these classes were selected manually (Fig. 6).
The software generates training data to be used on the classification of
unknown samples.

2.1.3. Image classification
Image classification was performed using the random-forest tree

(RFT) method. The goal was to generate a model predicting the value
of a target variable based on several input variables, using individual
decision trees (meta-learners) estimated from the sample training
data. RFT combined multiple random trees that vote on a particular
outcome where each vote is given equal weight. The Forest chooses
the classification that contains the most votes. The method offers
visualization for high-dimensional data (many columns), clustering,
outliers and error detection.

2.1.4. Post-processing and evaluation
Post processing stage involves removing the residual noise and

artifacts after image classification. For that purpose, the Kuwahara
and the median filters were applied to the classified image, on 5 × 5
lly selected from chromite sample.



Fig. 4. Illustrative application of (a) Kuwahara Filtering (b) Median Filtering on an arbitrary particle surface.
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and 3 × 3 pixel sub-regions respectively. The classified image (Fig. 7)
shows well-classified data with respect to the original image, based on
visual perception.
Fig. 5. Surface images of particles taken from (a
Evaluation of the resultswere achievedwith an accuracy assessment
method, which is widely used in remote sensing [59–61]. The assess-
ment involved generation of 250 arbitrary yet spatially identical points
) chromite-rich, (b) silicate-rich fractions.



Fig. 6. Selection of sample textures and training features for classification.
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on both of the classified (Fig. 7) and original (Fig. 3) images. Then, point-
by-point comparison was made between classifier prediction and the
true value decided by the user. Meanwhile, the user-bias on the true
values wasminimized by referring to the puremineral surfaces of chro-
mite and gangue on the training image (Fig. 5). The point-by-point com-
parisons were then summarized in an error matrix (Table 2) where
diagonals represent correctly classified points. This matrix can be used
to determine various indicators for accuracy. Overall accuracy is the
number fraction of the correctly classified points (sum of all diagonals)
to the total points measured. Another accuracy indicator that is derived
Fig. 7. Final classified image
from the same data is the Kappa statistic, which is the difference be-
tween actual agreement of classification and the agreement by chance,
analogous to R-squared value. Although the overall accuracy and the
Kappa statistic both give the average error bands for the whole classifi-
cation process, they do not indicate the error and its source for each
mineral class. Errors may arise because of the random-forest classifica-
tion or the user-dependent feature selection. Error in the former ismea-
sured with the producer accuracy, which is the number fraction of
correctly classified points of each class in the original image (Fig. 3).
Error in the feature selection, on the other hand, is shown with the
after post-processing.



Table 2
Accuracy assessment and Kappa statistics.

Class types taken from the reference image (Fig. 3)

Class type Background Chromite Lizardite/forsterite Unknown Row total User accuracy

Class types assigned at the
classified image (Fig. 7)

Background 12 0 0 0 12 1
Chromite 0 92 3 0 95 0.97
Lizardite/forsterite 0 1 118 0 119 0.99
Unknown 0 1 6 17 24 0.71
Column total 12 94 127 17 250
Producer accuracy 1 0.98 0.93 1

Overall accuracy 0.96
Kappa statistic 0.93
Observed agreement 0.96
Expected agreement 0.39
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user accuracy, the number fraction of true points of each class in the
classified image (Fig. 7). All the abovementioned indicators in Table 2
indicate accurate classification, except for the low user accuracy of
unknown class, possibly because of the biased selection of unknown
class to the training data set (Fig. 6).

The data for the liberation spectrumwere collected by using Clemex
Vision software based on a series of simple procedures involving gray
thresholding and Boolean operators (Fig. 8). Particle diameters were
measured as equivalent circle diameters both in microscopic and MLA
analyses. Meanwhile, the areas were both measured in squares of μm.
Then, the area-based chromite grade (gi %) of any particle i was
calculated as:

gi ¼ 100 � Achr;i= Achr;i þ Agang;i
� �� � ð1Þ

where Achr,i and Agang,i are the areas of chromite and gangue, respec-
tively, in particle i. Unclassified regions on the mineral map (Fig. 7)
were excluded for grade estimation in Eq. (1) because their content
had not been identified. The liberation spectrum was constructed
by plotting the probability (or cumulative) density function of gi
classes. Meanwhile, grade-recovery curve was constructed by plotting
the area-based recovery (%) of the total chromite content to each
one-sided gi class (e.g. N0%, N10%, N95%, etc.).
Fig. 8. Acquisition of 2D liberation spectrum on the classified ima
3. Results and discussion

Fig. 9 shows that the overall mineralogical contents measured
with MLA and microscopic analysis are in good agreement. The
other minerals (dolomite, calcite, augite, diopside, biotite, hematite,
ankerite, zincite, clinochlore and quartz) measured withMLA occupy
minor amounts in the experimental sample. Therefore, neglecting
these trace minerals in the microscopic analysis would not change
the liberation spectrum.

A possibly conflicting result is the discrepancy of the area-based
mineral abundances (Fig. 9) from the mass-based mineralogical
composition (Table 1). This discrepancy might be expected if the
area-based mineralogical map and composition are biased represen-
tatives of their mass-based equivalents; however, there is not a
consensus in the relevant literature data whether such bias is
present [4,29,62,63] or not [35,62]. On the other hand, if we assume
surface composition is the unbiased representive of the bulk, the
discrepancy might be due to the preferential settling of chromite
on the polished surface, which is expected when minerals in the
polished section have large differences in density [16,21]. Nevertheless,
we cannot conclude why surface compositions measured by MLA and
microscopic analysis differ from the bulk composition, given that nei-
ther MLA nor microscope gives direct information about the bulk of
the sample.
ge by a routine of gray thresholding and Boolean operators.
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Based on the relative abundance of grade classes, the spectra
of microscopic analysis and MLA seem to be consistent (Fig. 10).
However, microscopic analysis predicts the middling content more
than MLA does, causing a substantial decrease in the measurement of
the liberated gangue (0–10%). As a result, microscopic analysis esti-
mates a grade-recovery curve which shows poorer liberation (Fig. 11).
The reasons why microscopic analysis estimates poor liberation than
MLA might be linked to its biased population and/or residual noise
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(misclassified minerals) generated by RFT. The former is inevitable
since, unlikeMLA, the sample for themicroscopic analysiswasmanually
selected. Such a manual selection would bring out a biased population
in which the amount of fine particles are underestimated (Fig. 12).
Then, the absence of fine particles may alter the resultant spectrum if
the spectrum varies with particle size. To observe the variation
of the spectrum with particle size, the spectra of three size classes
(−300/+212 μm, −212/+150 μm and −150/+106 μm) from the
whole sample were extracted by microscopic analysis and MLA. These
size classes were selected because they occupy nearly the same
frequency in both measurement methods (Fig. 12), eliminating the
effect of biased selection on the liberation spectrum. Results show that
neither method estimates a variation of the spectrum with particle
size (Figs. 13, 14 and15), indicating no correlation between sample se-
lection and liberation spectrum. Meanwhile, in each of these size
classes, microscopic analysis demonstrated higher middling content
with a decrease in liberated gangue. This characteristic change indi-
cates that the residual noise left on the surfaces of lizardite/forsterite
causes to underestimate chromite liberation (Fig. 11) bymisgrading lib-
erated lizardite/forsterite particles as middling (Fig. 10). Nevertheless,
we cannot conclude if the residual noise causes the resultant spectrum
and grade-recovery curve to diverge from their true values since the
accuracy indicators in microscopic analysis are still high (Table 2). We
could not even conclude if MLA is more accurate than the microscopic
analysis due to the lack of standard procedures on reference mineral
surfaces to quantify the accuracy and precision of MLA [39].
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In the case of microscopic analysis, it was of interest to measure the
variation of the measured spectrum, mineralogical composition and
grade-recovery curve with the number of particles that are randomly
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Fig. 14. Liberation spectra of−212 + 150 μm size frac
selected for analysis so that a sufficiently small sample size could be
determined for a statistically meaningful analysis. For this purpose,
sub-samples having different number of particles were randomly
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tion obtained with microscopic analysis and MLA.
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selected from the original image (Fig. 7). It is clear fromFigs. 16–18 that a
sub-samplewith 200 particleswould be sufficient for the tested ore sam-
ple to reproduce data for its liberation spectrum (Fig. 16), mineralogical
composition (Fig. 17) and grade-recovery curve (Fig. 18). This finding
was also statistically supported by the chi-square goodness-of-fit test
that was applied to the liberation spectra of the sub-samples with 50,
100, 200, and 400 particles to check if their spectra are statistically
different or not from the spectrum of the whole sample containing
590 particles. The test results are summarized in Table 3. The P values
of the test for sub-samples including 200 and 400 particles are too
large to reject the null hypothesis that their spectra are statistically
different than the spectrum of the whole sample. This allows us to
conclude that the sub-sample size for this test sample (Fig. 7) should
be no b200 particles. For any other rock samples, sub-samples larger
than 200 particles may be required to reproduce liberation spectrum,
especially if its constituent minerals have lower grades and/or finer
grain sizes. In fact, Vigneau et al. [64] showed that 500 particles
are required to assess reasonable precision in the size distribution of
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Fig. 16. Spectrum measurements
very-fine granules (with a median around 10 μm) under microscope.
Assuming precise size distribution ensures precise mineralogical
map, 500 particles at most will be sufficient to reproduce liberation
spectrum, regardless of the grain sizes of minerals.
4. Conclusion

Supervised image classification in microscopic analysis can be
easily used to generate an accurate 2D mineral map of chromite
samples from which 2D liberation spectrum can be extracted. This
classification algorithm and its associated software can be used
without getting involved with the intricacies of image processing
as the software has an open-source and user-friendly environment.
The proposed classification algorithm (Random Forest Tree) is
capable to evaluate the texture of mineral surfaces, unlike color
thresholding, which makes it a potential candidate to distinguish
metallic ore minerals from gangue minerals.
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with different sample sizes.
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Using the proposed microscopic analysis method, area-based lib-
eration spectrum, mineralogical composition and grade-recovery
curve of this particular chromite sample could be reproduced with
a minimum sample size of 200 particles randomly selected from
the original micrographs. This population size, however, may vary
for other ore samples, depending on the grade and grain size distribu-
tion of their constituent minerals.

The mineralogical composition of the sample obtained by the
microscopic method agreed quite well with that obtained by the
MLA method. However, the mineral spectrum and grade-recovery
curves obtained by the microscopic method predicted poorer libera-
tion than MLA does. One reason for this could be the residual noise
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Fig. 18.Measurements of the grade-recovery curves with different sample sizes.

Table 3
The indicators of chi-square goodness-of-fit test on the liberation spectra of sub-samples.

Population size of sub- samples Reference sample (Population size: 590)

Chi-square statistic P-value

50 20.5141 0.015
100 6.90236 0.647
200 3.15584 0.958
400 2.44592 0.982
on gangue (lizardite/olivine) surfaces generated by the Random
Forest classification, particularly misgrading of liberated gangue
into middlings. Nevertheless, we cannot compare the reliabilities
of the two methods since there is not any standard procedure on
reference mineral surfaces to quantify the accuracy of MLA. Then,
the comparison of the reliabilities of the two methods should be
the subject of further research.
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