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Introduction

The cyclic nucleotide phosphodiesterase (PDE) is an 
enzyme responsible for the degradation of the second mes-
sengers cyclic adenosine 3′,5′-monophosphate (cAMP) and 
guanosine 3′,5′-monophosphate (cGMP) into 5′-adenosine 
monophosphate (5′-AMP) and 5′-guanosine monophos-
phate (5′-GMP) respectively in many cell types [1–3].

The second messengers, cAMP and cGMP, are essen-
tial for many metabolic processes such as vision, muscle 
contraction, neurotransmission, exocytosis, cell growth, 
differentiation, learning, apoptosis, lipogenesis, glycog-
enolysis, ion channel functions and gluconeogenesis [4–7]. 
The regulation of the level of second messengers in  vivo 
by synthesis activity of the receptor-linked enzymes (ade-
nyl and guanylyl cycases) and hydrolysis into 5′-nucleotide 
monophosphates by PDEs is therefore of crucial impor-
tance [8–11].

Up to now, 11 families of PDE enzyme with different 
substrate specificity, inhibition, substrate requirements, 
gene sequence and tissue distribution have been reported 
[1, 5, 6, 12, 13]. Among these families, the cAMP spe-
cific one is PDE4, which is encoded by four different iso-
forms as A, B, C and D. These isoforms are characterized 
by unique N-terminal regions [10]. The PDE4 subfamily 
has attracted much attention for its usage in the treatment 
of inflammatory and immune disorders such as asthma, 
chronic obstructive pulmonary disease (COPD), rhinitis 
and also as therapeutic agent for rheumatoid arthritis, mul-
tiple sclerosis, type II diabetes, septic shock, atopic derma-
titis, and other autoimmune diseases [14–17].
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In the PDE4 subfamily, among the four isoforms A, B, C 
and D, PDE4B has a specific importance especially in the 
inflammatory responses of lymphocytes [9]. The design of 
novel inhibitors for PDE4B is of significant interest to the 
pharmaceutical industry due to its usage as an attractive target 
for anti-inflammatory diseases. There are many PDE4 inhibi-
tors that have been under clinical trials [9, 10, 18] however 
their clinical utility has often been limited due to their side 
effects like vomiting, nausea and increased gastric secretion 
[19]. It is thus important to design a novel PDE4B selective 
inhibitor with reduced side effects and improved pharmaco-
logical profile.

Designing small molecules with desirable binding affin-
ity and biological activity is one of the major goals in com-
putational biology [20–23]. Molecular docking is a popular 
method used to identify the orientations of molecules into 
the active site of a target protein structure [24, 25]. In the 
last years, docking methods have been improved by adding 
energy contributions or by refining the parameters for scor-
ing functions but there are still some limitations especially 
like sometimes poor correlation between docking score val-
ues and experimental binding affinities [21, 23]. Up to now, 
many studies involving molecular docking, molecular mod-
eling, pharmacophore modeling, the investigation of the 
hydrolysis mechanism and the description of the structure-
activity relationships for PDE4 inhibitors have been pub-
lished. Different series of PDE4 selective inhibitors have 
been studied by Alexander et  al. [26], Kuang et  al. [27], 
Ke et al. [28], Guay et al. [29], Xu et al. [30], Wierzbicki 
et al. [31] and Zhan et al. [32] have focused on the hydroly-
sis mechanism of PDE4 enzyme. In 2002, Colicelli et  al. 
[33] have carried out a molecular docking study of com-
petitive PDE inhibitors. Another molecular docking study 
with development of an empirical binding free energy for 
PDE4 inhibitors in 2006 was performed by Barreiro et al. 
[34], Zhu et  al. [35] have combined multiple pharmaco-
phore modeling and molecular docking process to suggest 
novel PDE4 inhibitors. Another pharmacophore modeling 
study for PDE4 was carried out by Gu et al. [36] However, 
to the best of our knowledge, no study based on performing 
molecular dynamics (MD) simulations and calculating free 
binding energies with different methods for PDE4 family 
has been reported so far with the notable exception of the 
work of Zhao et al. [37] on PDE4D where they have com-
bined molecular docking, MD simulations, binding free 
energy, and bioassay on three natural resveratrol analogs.

In this context, an important goal of computational 
medicinal chemistry is to develop methods that can accu-
rately estimate the free energy of binding, ΔGbinding, and 
that could allow the estimation of the binding strength of 
any drug candidate prior to its synthesis. The free binding 
energies can be represented as:

(1)ΔG binding = RT logK
i

where R is the ideal gas constant, T is the temperature, 
and K

i
 is the dissociation constant of the enzyme–inhibi-

tor complex. The K
i
 constant can be related to experimental 

IC50 values based on the following equation [38, 39]:

From Eq. 2 the binding affinity K
i
 depends on the IC50 

value, the substrate concentration [S] and the Michae-
lis–Menten constant K

m
. For a set of ligands and their 

experimentally measured IC50, there should therefore be 
a linear dependency between K

i
 and IC50 provided that 

the experimental conditions for all ligands are similar: 
the substrate concentration should be identical for all 
experiments and the thermodynamical conditions should 
remain similar (i.e., temperature, pressure, pK

a
, etc.). 

From this point of view, a linear trend between ΔGbinding 
and log(IC50) values should be expected.

There are many computational approaches for free 
energy calculation such as free energy perturbation 
(FEP) [40], thermodynamic integration (TI) [41], linear 
response (LR) [42], Molecular mechanics-generalized 
born/surface area (MM-GB/SA) and Molecular Mechan-
ics-Poisson Boltzmann/Surface Area (MM-PB/SA) meth-
ods [43, 44]. Among these methods, the most accurate 
and rigorous ones are FEP and TI [45]. Despite their 
accuracy, they have found little use in drug design [46] 
due to their convergence only for rather similar ligands 
and computational cost [47]. The MM-GB/SA and 
MM-PB/SA methods, that combine molecular mechan-
ics energy and implicit solvation models, are simple and 
faster than FEP [23]. Therefore, they have been widely 
used in free energy calculations in computational medici-
nal chemistry [20, 21]. It is important to achieve statisti-
cally fully converged results and statistical estimates in 
order to test how well the methods reproduce the experi-
mental data. As Genheden and Ryde have shown, con-
verged results using MM-GB/SA method can be achieved 
by running multiple independent short MD simulations 
starting with different initial velocities and a same initial 
structure rather than by running a single (very) long sim-
ulation [47].

In this project, the aim is to evaluate binding energies 
with the MM-GB/SA method and show the correlation 
between the binding energies and half maximal inhibi-
tory concentration (IC50) values of the ligands. The study 
includes (i) building a database of experimental IC50 val-
ues that include a training and a test set; (ii) performing 
docking process for each ligand, (iii) carrying out inde-
pendent MD simulations for the top ranked poses of each 
ligand and calculating the free binding energy using the 

(2)K
i
=

IC 50

1 +
[ S ]

Km
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MM-GB/SA approach, (iv) analyzing the role of the pos-
sible alternative poses of each ligand from MM-GB/SA 
calculations and finally, (v) applying a linear regression 
method on the training set to establish a relationship 
between calculated ΔGbinding and experimental log(IC50) 
and verifying the reliability of our approach with the test 
set.

Methodology

Training and test sets

For the dataset preparation , the ligands with known IC50 
values from experimental studies of Dal Piaz et  al. [48] 
and Zhang et al. [9] were chosen due to their selectivity for 
PDE4B and their large range of different IC50 values. These 

ligands were also searched in the BindingDB [49] and it 
was found that some of them have more than one IC50 value 
reported, as the ligands cilomilast and npv (see Tables  1, 
2). The training set has been designed to contain IC50 val-
ues from a single source: those of Dal Piaz et al. It contains 
eight ligands for which experimental IC50 values range 
from 0.6 to 9.0 μM. The test set contains seven molecules: 
rolipram, tadalafil, filaminast, mesopram, zardaverine, cilo-
milast and npv. Their experimental IC50 values range from 
0.025 to 9.2 μM.

Protein and dataset preparation

The starting structure for the protein is the human PDE4B 
enzyme (Protein Data Bank entry 1RO6, 2  Å  resolution, 
see Fig.  1). The X-ray structure contains two identical 
chains with rolipram as a co-crystallized ligand and two 

Table 1   Ligand names, 2D chemical sketches and experimental IC50 values for the training set

a Ref. [48]

Training set

Ligand 2D structure IC50 (μM) Ligand 2D structure IC50 (μM)
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metal ions: Zn2+ and Mg2+. All our calculations were car-
ried out on one single active chain which includes the two 
metal ions, Zn2+ and Mg2+, and the water molecule (residue 
#788 in 1RO6) positioned between these two atoms. The 
choice of using the 1RO6 X-ray structure over other avail-
able PDE4B X-ray structures like the apo one (PDB entry 
1F0J) was dictated by the fact that the two structures are 
very similar (the RMSD between the backbones of 1RO6 
and 1F0J is only 0.13  Å) and that the docking procedure 
always yielded lower binding energies for 1RO6 than for 
1F0J (see Supporting Information).

The ligand dataset is a combination of training and 
test sets (Tables  1, 2). The IC50 values of the ligands 
are known from different experimental studies [9, 48, 
51, 52]. The training set contains molecules that have 
been experimentally tested using a single source: guinea 
pig ventricular tissue [48]. The test set contains ligands 
which have been tested for inhibition using PDE4B pro-
teins from various sources: guinea pig [48], human [9, 
52], or rat [51]. All these protein sources share a strong 
sequence homology (>95% of identity). For example, 
the sequence alignment between guinea pig and human 
PDE4B in UniProt [53] has shown that they differ by only 
five residues that are out of the active site.

Table 2   Ligand names, 2D chemical sketches and experimental IC50 values for the test set

IC50 values in parentheses are higher values reported in the BindingDB (see text)
a Ref. [48]
b Ref. [9]
c Ref. [51]
d Ref. [52]

Test set

Ligand 2D structure IC50 (μM) Ligand 2D structure IC50 (μM)
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Docking procedure

The docking process was carried out with AutoDock 
v4.2 [54] For each ligand, ten independent runs were 
performed. A pre-calculated three-dimensional energy 
grid of equally spaced discrete points was generated 
prior to the docking using the program AutoGrid [54]. 
The grid box (32 Å × 72 Å × 31 Å) contains the active 
site and several key residues important for the protein-
ligand interaction. The distance between two grid points 
was set to 0.375  Å. The grid map files were calculated 
by AutoGrid for the ligand atom types: A, NA, C, OA, 
and N. Gasteiger charges and solvation parameters were 
assigned using ADT [54]. For conformational search, 
Lamarckian Genetic Algorithm, which combines a local 
search and a genetic algorithm to provide both efficient 
global space coverage and local search optimization, was 
chosen. During the process, the protein was held rigid. 
The population size was set to 150, the maximum number 
of energy evaluations was set to 2,500,000, the maximum 
number of generations was 27,000, the mutation rate 
was 0.02 and the crossover rate was 0.8. The remaining 
parameters were set as the default values.

At the end of each docking process, the ten docked 
poses of each ligand were clustered based on their RMSD 
values using a cluster RMSD threshold of 0.5 Å. For each 
cluster of each ligand, a representative pose with the low-
est ΔGbinding value was selected and incorporated in our 

analysis in order to take into account the diversity of the 
binding modes.

MD simulations

Ligand atomic charges were calculated with the restrained 
electrostatic potential fit (RESP) method at the B3LYP/cc-
pVTZ level after a full geometrical optimization carried out 
at the B3LYP/6-31G* level. This procedure is compatible 
with the charges obtained for the Amber force field [55] 
used in the subsequent MD runs.

Hydrogen atoms were added to the system with the tleap 
module of AMBER 12 [56]. For histidines, the protonation 
state was determined based on PROPKA [57] calculations 
and hydrogen bond pattern analysis. Counter sodium ions 
were added to neutralize the system. Waters from the crys-
tal structure were deleted except for the water molecule that 
is located between the two metal ions Zn2+ and Mg2+ and 
is hydrogen bonded to the co-crystallized ligand rolipram. 
The system was solvated with TIP3P [58] water molecules 
extending to at least 10 Å from the protein. The system was 
cubic with edge length 74.50 Å and had an initial density of 
1.0 g cm−3.

The MD simulations were performed using the CUDA 
version [59, 60] of the PMEMD module of AMBER  12. 
The Amber ff03 [55] force field was used to model the 
PDE4B protein while the general AMBER force field 
(GAFF) [61] force field parameters were used to model 
the ligands. The SHAKE [62] algorithm was chosen to 
constrain bond lengths involving hydrogen atoms. The 
Andersen temperature coupling algorithm was applied to 
ensure a constant temperature (NVT) ensemble. The time 
step was set to 2 fs.

In gas phase, before the solvation of the system, a short 
minimization followed by one MD run was carried out for 
100  ps at 10  K to optimize the hydrogen atom positions: 
all heavy atoms were restrained to their crystallographic 
positions using a harmonic potential with a force constant 
of 100 kcal mol−1 Å−2. After solvation, the equilibration of 
the system was performed in five stages [63]. First, only 
the hydrogen atoms of the system were allowed to move 
during 100  ps at 10  K (i.e., by applying a force constant 
of 50 kcal  mol−1  Å−2 on all heavy atom positions). Sec-
ond, the water molecules were allowed to move for the 
next 100 ps at the same temperature. Third, the force con-
stant on the protein heavy atom positions was decreased to 
5 kcal mol−1 Å−2 for another 100 ps. Then the whole sys-
tem was free to move during 100 ps at 10 K. Finally, the 
thermostat temperature was smoothly increased from 10 to 
300 K for another 2 ns.

After equilibration, for each ligand representative of its 
cluster, forty independent simulations were performed up 
to 1 ns at 300 K with different initial velocities. During the 

Fig. 1   Cartoon representation of PDE4B X-ray structure generated 
with PyMOL [50]. Chain A is represented in green as cartoon, the co-
crystallized ligand as ball and stick, Zn2+ and Mg2+ are in purple, the 
water molecule is depicted in red color
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production runs, coordinates were saved every 2 ps for the 
subsequent MM-GB/SA calculations. Using NVIDIA Tesla 
M2090 GPU, one 1 ns simulation takes in average 1.2 h for 
a speed of about 20 ns/day.

MM‑GB/SA post‑processing

The free energy of binding for each ligand is calculated 
using the equation:

where RL, R and L stand for receptor–ligand complex, 
receptor and ligand, respectively. The average free energy 
of each system is estimated as a sum of three terms:

where E
MM

 is the molecular mechanics energy of each sys-
tem, including internal, non-bonded electrostatics, and van 
der Waals energies. G

solv
 is the solvation energy which con-

sists of a polar and a nonpolar part. The polar solvation free 
energy is calculated by a Generalized Born (GB) approach. 
The nonpolar solvation free energy is computed by a rela-
tion to the solvent-accessible surface area (SASA). The last 
term TS

MM
 is the product of absolute temperature and the 

entropy.
In this study, the first two terms were calculated using 

the MMPBSA.py module of AMBER  12 with all water 

(3)ΔG binding = ⟨G
RL
⟩ − ⟨G

R
⟩ − ⟨G

L
⟩

(4)G = E
MM

+ G
solv

− TS
MM

molecules stripped off [64]. To evaluate the polar solvation 
free energy, different solvation models have been evaluated: 
GB HCT [65–67], GB OBC [68], GB OBC-2 [56, 68], GB GBneck 
[69], and GB GBneck2 [70]. The hydrophobic contribution 
has been approximated by the Linear Combinations of Pair-
wise Overlaps (LCPO) method [71].

In this study, the entropy term was not included in 
our calculations although it could have been evaluated 
through a usual normal-mode analysis [72]. There have 
been much debate in the literature about the entropy term 
in MM-GB/SA calculations and whether it should be sys-
tematically included or not to improve the accuracy of the 
results [73–77]. In our case, given the high computational 
cost of its calculation and the good prediction that we 
have obtained without including it, we have neglected the 
entropy term component.

Finally, the calculated ΔGbinding values are averaged over 
40 independent simulations for each ligand.

Results and discussion

Best docking scores versus experimental IC
50

 values

The study has started with the docking process of all 
ligands in both datasets into the target PDE4B enzyme 
using AutoDock  v4.2. For each ligand, ten poses are 
obtained from a total of ten docking runs. The best (i.e., top 
ranked) pose with the lowest AutoDock ΔGbinding value is 
recorded and a linear correlation between the ΔGbinding and 
log(IC50) is searched for.

In Fig. 2, the correlation between the lowest AutoDock 
ΔGbinding values and the corresponding log(IC50) values is 
represented for the training set. Only a weak linear corre-
spondence exists between ΔGbinding and experimental log
(IC50) with R2 value of 0.135. That means that, while Auto-
Dock is capable of discriminating between different poses 
and of finding true positive hits, its scoring function is not 
capable of estimating experimental ΔGbinding values in the 
case of PDE4B.

Convergence of the free energy results

Another way to obtain binding free energies is to use 
the MM-GB/SA approach. Here, ΔGbinding energies are 
obtained by post-processing MD trajectories of complexed 
protein:ligand structures. In our cases, we have used as 
starting structures for the MD runs, the complexed struc-
tures obtained by AutoDock. For each docked pose, we 
have performed 40 independent 1  ns MD runs. The con-
vergence of ΔGbinding calculations for two independent 
runs corresponding to the ligand rolipram is represented in 
Fig. 3a. It shows that a 1 ns trajectory is enough to ensure 
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Fig. 2   Correlation between experimental IC50 values and the lowest 
ΔG scores, in kcal mol−1, obtained by a series of AutoDock docking 
computations of the training set (in blue). Vertical error bars repre-
sent standard experimental deviations. Blue dashed line linear fit 
between lowest AutoDock ΔGbinding values and experimental log(IC50)
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the convergence of ΔGbinding for that run. However, two 
independent runs can give rather different results: one MD 
yields ΔGbinding = −54.6 ± 3.6 kcal mol−1 while the other 
yields ΔGbinding = −60.5 ± 3.4 kcal mol−1. As suggested by 
Genheden and Ryde [47], converged MM-GB/SA results 
can be obtained by averaging multiple independent trajec-
tories. Figure  3b represents the convergence of MM-GB/
SA ΔGbinding energies for rolipram as a function of the num-
ber of independent trajectories. Convergence is obtained 
after 40 trajectories (−57.6 ± 1.6 kcal mol−1). Adding more 
trajectories do not change the picture beyond: ΔGbinding =  
−57.8 ± 1.6 kcal mol−1 after 80 runs. Figure 3c represents 
the distribution of free energies that are obtained by cumu-
lating all MM-GB/SA ΔGbinding for all runs. The contribu-
tion of the two independent runs as depicted in Figure 3d 
is also represented. This shows that by cumulating inde-
pendent MD runs, our ΔGbinding values are converged. In 
the following steps, all MM-GB/SA free energies will be 

calculated for every distinct ligand pose representative of 
each cluster using the same protocol: the MM-GB/SA post-
processing of 40 independent MD runs using different ran-
dom initial velocities associated to the structure coordinates 
of the corresponding pose as obtained by AutoDock.

MM‑GB/SA binding free energies of top ranked 
AutoDock poses versus experimental IC

50
 values

The ΔGbinding values have been calculated using the 
MM-GB/SA approach for the top ranked poses of all 
ligands in the training set and the test sets. Figure 4 repre-
sents the correlation between ΔGbinding and the logarithm of 
the experimental IC50. For the training set, the linearity of 
the trend is more pronounced (R2 = 0.788) than when using 
the AutoDock scores (R2 = 0.135). This shows that using a 
molecular force field as the AMBER force field yields more 
accurate results.
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Fig. 3   Convergence of the ΔGbinding MM-GB/SA computations for 
rolipram using multiple MD trajectories. a Convergence of the aver-
aged ΔGbinding, in kcal mol−1, for two independent runs of 1 ns (500 
frames each); b convergence of the averaged ΔGbinding, in kcal mol−1, 
as a function of the number of independent 1 ns long MD trajectories, 
the error bars represent the standard deviation in kcal  mol−1; c bul-
leted dark line: Distribution of ΔGbinding values, in kcal mol−1, after 

averaging 40 independent MD runs, magenta bullets: distribution 
of ΔGbinding values after averaging 80 independent MD runs, white 
filled rectangles: contribution of each 40 MD run to the averaged 
ΔGbinding distribution, blue filled rectangles: contribution of run #04 
to the averaged ΔGbinding distribution, red filled rectangles: contribu-
tion of run #06 to the averaged ΔGbinding distribution. d Distribution 
of ΔGbinding values, in kcal mol−1, for two independent runs
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When the test set is assessed (Fig. 4, error bars in blue), 
most ΔGbinding values are correlated to their experimental 
IC50 counterparts as in the training set. However, one value 
is off the linear region by more than 50  kcal  mol−1. This 
corresponds to the npv ligand for which two IC50 values 
have been reported: 0.049 (Ref. [51]) and 0.650 (Ref. [52]). 
Given the linear trend of the binding free energies found for 
the training set, from these two IC50 values should corre-
spond two possible ΔGbinding: one around −66.3 kcal mol−1, 
the other around −45.4 kcal  mol−1. Using the top ranked 
AutoDock pose, the MM-GB/SA binding free energy is 
computed at −23.4 ± 4.1 kcal mol−1 instead.

Minimum MM‑GB/SA binding free energies 
versus experimental IC

50
 values

If MM-GB/SA ΔGbinding values are better correlated to 
experimental IC50 values than AutoDock ΔGbinding values, 
one can wonder whether alternative poses obtained by 
AutoDock would be ranked similarly if the docking score 
was obtained from a MM-GB/SA computation instead. 
While we cannot change the way AutoDock optimizes 
the poses during molecular docking, we have performed 
MM-GB/SA calculations on a more diverse set of poses: 
one representative pose of each cluster for each ligand in 

the training set was chosen and MM-GB/SA ΔGbinding was 
computed using the same multiple MD trajectory approach 
than for the top ranked AutoDock pose. The number of 
alternative poses per ligand in the training set varies from 1 
(e.g., ligand5) to 5 (e.g., ligand7).

In Fig.  5, the correlation between the calculated 
ΔGbinding and the experimental IC50 values is represented. 
For some ligands, a lower ΔGbinding value than for the top 
ranked AutoDock pose is found. When the minimum aver-
aged ΔGbinding values are used (blue filled circles in Fig. 5), 
a better linear trend is found than when only top ranked 
AutoDock poses are considered (red filled circles in Fig. 5). 
The relationship between computed averaged ΔGbinding and 
experimental log(IC50) is expressed as:

with a correlation coefficient R2 = 0.944

The improvement of the correlation coefficient 
shows that while AutoDock is capable of discriminating 

(5)log(IC50) = 0.110ΔGbinding + 5.060
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between bad and good binding poses, its docking scores 
are not quantitative enough to be used directly to evaluate 
the binding affinity of a ligand for PDE4B. However, by 
using the many different poses extracted from AutoDock 
runs and by applying a protocol that involves MM-GB/
SA calculations on multiple independent trajectories, it 
is possible to recover correct ΔGbinding values that are in 
quantitative agreement with experimental values.

Estimation of IC
50

 values

Using Eq.  5, it is now possible to estimate IC50 values 
from MM-GB/SA ΔGbinding values. Table  3 summarizes 
all the results that have been obtained for the test set and 
the training set when applying one of the three computa-
tional approaches presented here: (i) linear fitting using 
the AutoDock ΔG scores of the top ranked poses; (ii) 
linear fitting using averaged MM-GB/SA values for the 
top ranked AutoDock poses; (iii) linear fitting using the 

Table 3   Linear fitting results, estimated IC50, in μM, for all approaches and comparison with experimental values

aRef. [65–67]    
bRef. [68]    
cRef. [56, 68]    
dRef. [69]    
eRef. [70]
fRef. [48]
gRef. [9]    
hRef. [51]    
iRef. [52]

Method AutoDock MM-GB/SA

Pose Top ranked Top ranked min ΔG

GB model OBCb HCTa OBCb OBC-2c GBneckd GBneck2e

a 0.510 0.124 0.106 0.110 0.104 0.085 0.042
b 5.030 5.204 5.214 5.060 4.982 4.361 2.975
R
2 0.135 0.788 0.929 0.944 0.945 0.892 0.780

Molecule Estimated IC50 for the training set Exp. IC50

Ligand3 2.7 0.8 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 0.6 ± 0.1f

Ligand4 2.8 2.1 ± 0.8 0.9 ± 0.3 0.9 ± 0.3 1.0 ± 0.3 1.1 ± 0.4 1.1 ± 0.2 0.9 ± 0.2f

Ligand5 1.4 0.7 ± 0.3 1.3 ± 0.4 1.2 ± 0.4 1.1 ± 0.4 0.9 ± 0.3 0.9 ± 0.2 1.1 ± 0.4f

Ligand6 3.7 7.4 ± 2.6 8.7 ± 2.7 9.4 ± 3.0 10.0 ± 3.1 9.4 ± 2.3 6.7 ± 0.9 9.0 ± 0.8f

Ligand7 3.0 4.4 ± 1.1 4.1 ± 1.1 4.2 ± 1.2 4.2 ± 1.2 4.4 ± 1.1 4.9 ± 0.6 6.0 ± 0.5f

Ligand8 2.0 3.3 ± 1.0 4.7 ± 1.2 4.6 ± 1.3 4.4 ± 1.2 4.8 ± 1.1 4.7 ± 0.6 3.0 ± 0.5f

Ligand9 2.2 4.4 ± 1.5 3.2 ± 1.1 3.3 ± 1.2 3.3 ± 1.2 2.4 ± 0.8 1.9 ± 0.5 4.0 ± 0.5f

Ligand10 1.4 1.3 ± 0.4 2.3 ± 0.6 2.0 ± 0.6 1.9 ± 0.5 2.2 ± 0.6 3.4 ± 0.5 2.0 ± 0.5f

MAPE (%) 101.7 38.5 19.5 15.1 16.5 24.4 38.4

Molecule Estimated IC50 for the test set Exp. IC50

Tadalafil 2.3 6.7 ± 2.7 7.7 ± 2.8 8.5 ± 3.1 7.2 ± 2.7 5.6 ± 1.7 4.1 ± 0.8 9.2g

Rolipram 2.38 0.25 ± 0.12 0.36 ± 0.12 0.48 ± 0.20 0.42 ± 0.18 0.98 ± 0.37 0.29 ± 0.06 0.32±0.09f

Filaminast 3.15 0.28 ± 0.11 0.35 ± 0.12 0.52 ± 0.19 0.45 ± 0.16 0.33 ± 0.12 0.36 ± 0.07 0.96g

Mesopram 4.59 0.44 ± 0.19 0.62 ± 0.21 0.78 ± 0.31 0.70 ± 0.27 0.89 ± 0.37 0.51 ± 0.12 0.42g

Zardaverine 5.41 0.51 ± 0.21 0.87 ± 0.31 0.88 ± 0.33 0.86 ± 0.31 1.11 ± 0.36 0.59 ± 0.11 0.93g

Cilomilast 0.239 0.006 0.006 0.017 0.013 0.035 1.2 × 10−04 0.025g

±0.003 ±0.003 ±0.008 ±0.006 ±0.014 ±4.9 × 10−05 (0.31h)
Npv 0.342 9.962 0.023 0.022 0.011 0.012 0.002 0.049 ± 0.007h

±3.964 ±0.010 ±0.011 ±0.006 ±0.006 ±0.001 (0.650i)
MAPE (%) 553.6 2925.5 38.8 40.1 43.6 79.5 54.4
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lowest averaged MM-GB/SA values among representa-
tive poses of all AutoDock clusters. Because IC50 values 
are spread in an exponential range from 0.025 to 9.2 μM,  
we use mean absolute percentage error (MAPE) as a 
criterion to evaluate the error between experimental 
IC50 values and estimated IC50 values. MAPE numbers, 
expressed as percentage, are calculated using the follow-
ing expression:

where ICest
50

 and ICexp

50
 are the estimated and the experimen-

tal IC50 values for molecule i, respectively.
Figure 6 shows the correlation between estimated IC50 

values using the GB OBC model and experimental IC50 val-
ues for both the training set used to define Eq. 5 and the 
test set. By using all AutoDock clusters, the estimated 
IC50 values from the test set are within 38% of relative 
error (see Table  3). Like in the training set, the use of 
distinct AutoDock poses improves the estimation signifi-
cantly and no ligand from the test set are wrongly esti-
mated as it was the case when only the top ranked Auto-
Dock poses were considered (Fig. 4).

(6)MAPE =
1

N

∑

i=1

N

|||||

ICest
50

− IC
exp

50

IC
exp

50

|||||

From Table 3 and Figure S1b, IC50 prediction using the 
AutoDock scores gives a MAPE of 101.7% for the train-
ing set and 553.6% for the test set, respectively. As stated 
above, AutoDock ΔG values show a linear trend but the 
correlation is not strong (R2 = 0.135, Figure S1). When 
using the GB OBC model on the top ranked AutoDock poses, 
the agreement between experimental and predicted IC50 
values is improved (R2 = 0.788, MAPE= 38.5% for the 
training set). However, some ligands like npv are wrongly 
predicted. This yields a MAPE of 2925.5% for the test set. 
By adding alternative poses, the agreement for the training 
set is much better, yielding R2 = 0.944 and MAPE= 15.1%.  
Test ligands, including npv (see below), are now cor-
rectly predicted with a MAPE of around 40%. The GB OBC 
model is the one that leads to the best prediction. But 
other GB/SA models like GB HCT, GB OBC-2, and GB GBneck 
also give reliable predictions and are always superior than 
the approach which uses only the top ranked AutoDock 
poses (see Supplementary Information). Surprisingly, the 
GB GBneck2 model yields the worst results among all GB/SA 
models. This was not expected since it is one of the most 
recent GB/SA model and it has proved to be accurate in 
modeling solvent effects in protein folding studies [78]. At 
the same time, GB GBneck2 is the GB/SA model that yields to 
the smallest standard error when using multiple MD trajec-
tories (Figure S6).

Finally, one important question that arises from those 
results is to check if our current protocol is capable of 
discriminating between experimental values when several 
are available in the literature. This is the case for cilo-
milast and npv. Surprisingly, these two molecules are the 
only two of our sets that contain a carboxylate group. The 
results reported Table 3 have been obtained when the car-
boxylate form was considered. We have recomputed pre-
dicted IC50 values for the carboxylic acid form for both 
molecules (see Supporting Information for full results). 
For cilomilast and using the GB OBC model, the predicted 
IC50 values for the carboxylate and the carboxylic acid 
forms are 0.017 ± 0.008 and 0.278 ± 0.106 μM, respec-
tively. These two values are both in good agreement with 
the two reported experimental values: 0.025 μM [9] and 
0.31 μM [51]. A possible interpretation of this agreement 
could be that subtle differences in the two experimental 
protocols yielded to the measurement of the two different 
acidic forms of cilomilast. This is somewhat confirmed 
in the case of npv. The two predicted IC50 values are 
0.022 ± 0.011 and 1.256 ± 0.392 μM for the basic and the 
acidic forms of the carboxylic acid group, respectively. 
The predicted IC50 value of the carboxylic acid form 
again resembles more the experimental value (0.650) of 
Ref. [52] while the basic form resembles more the experi-
mental value from Ref.  [51]. It would be of course haz-
ardous to generalize such findings, but, in our case, two 
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main points can be drawn: (1) the change of protonation 
of ionizable residues can greatly affect the computed 
binding energies and great care should be taken to assess 
such effects; (2) when multiple experimental values are 
available, it does not necessarily mean that some of them 
are "correct" or "wrong", but they can represent different 
states or be the results of applying different measurement 
protocols.

Conclusions

In this study, the MM-GB/SA method was used to estimate 
the free energy of binding, ΔGbinding, of 15 PDE4B inhibi-
tors. Since there exists a linear dependency between bind-
ing affinity (K

i
) and IC50, assuming that Michaelis-Menten 

constant (K
m
), substrate concentrations [S], and experimen-

tal conditions are identical, the goal was to obtain a linear 
correspondence between log(IC50) values and ΔGbinding.

The first step of this study was the database prepara-
tion with a combination of training and test ligand sets 
categorized based on their IC50 values. As a second step, a 
molecular docking study was performed. This yielded poor 
correlations between the docking scores, expressed as ΔG 
values, and the experimental IC50 ones. The results indi-
cated that docking scores are not reliable enough to provide 
a linear dependency between IC50 values and ΔGbinding.

After the docking process, 40 independent 1 ns long MD 
simulations were performed for the all representative poses 
of each AutoDock cluster. Our results show that, instead 
of a single long simulation, running multiple independent 
runs starting from the same structure but with different ini-
tial velocities can yield to statistically converged MM-GB/
SA free energies of binding.

The binding free energy calculations were repeated for 
different solvation models: GB OBC , GB OBC-2 , GB HCT , 
GB GBneck , and GB GBneck2 . The best results were obtained 
with the GB OBC model, but other GB/SA models, except 
GB GBneck2, lead to similar results. After checking the 
results according to best docked poses for each inhibitor, 
the linear trend was improved when all different clusters for 
each ligand were considered. A linear relationship between 
estimated IC50 versus experimental ones with R2 = 0.944 
was achieved. The reliability of our approach was verified 
with the test set that is here correctly predicted.

Overall, our study indicates that, to obtain a linear 
dependency between log(IC50) and MM-GB/SA results, it is 
important to take into account all different poses obtained 
after a docking process and not the best ones only. Such 
approach will be used in future studies to serve as bench-
mark for putative PDE4B ligands when no experimental 
value is available.
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