
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Unsupervised Anomaly Detection in Multivariate Spatio-Temporal

Data using Deep Learning: Early Detection of COVID-19 Outbreak

in Italy

YILDIZ KARADAYI1, MEHMET N. AYDIN2, A. SELÇUK ÖĞRENCİ,3 Senior Member, IEEE
1Computer Engineering, Kadir Has University, Istanbul, Turkey
2Management Information Systems, Kadir Has University, Istanbul, Turkey
3Electrical-Electronics Engineering, Kadir Has University, Istanbul, Turkey

Corresponding author: YILDIZ KARADAYI (e-mail: yildiz.karadayi@stu.khas.edu.tr; yildiz.karadayi@gmail.com).

ABSTRACT Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety

of applications such as earth science, traffic monitoring, fraud and disease outbreak detection. Most real-

world time series data have a spatial dimension as an additional context which is often expressed in terms of

coordinates of the region of interest (such as latitude - longitude information). However, existing techniques

are limited to handle spatial and temporal contextual attributes in an integrated and meaningful way

considering both spatial and temporal dependency between observations. In this paper, a hybrid deep learning

framework is proposed to solve the unsupervised anomaly detection problem in multivariate spatio-temporal

data. The proposed framework works with unlabeled data and no prior knowledge about anomalies are

assumed. As a case study, we use the public COVID-19 data provided by the Italian Department of Civil

Protection. Northern Italy regions’ COVID-19 data are used to train the framework; and then any abnormal

trends or upswings in COVID-19 data of central and southern Italian regions are detected. The proposed

framework detects early signals of the COVID-19 outbreak in test regions based on the reconstruction error.

For performance comparison, we perform a detailed evaluation of 15 algorithms on the COVID-19 Italy

dataset including the state-of-the-art deep learning architectures. Experimental results show that our

framework shows significant improvement on unsupervised anomaly detection performance even in data

scarce and high contamination ratio scenarios (where the ratio of anomalies in the data set is more than 5%).

It achieves the earliest detection of COVID-19 outbreak and shows better performance on tracking the peaks

of the COVID-19 pandemic in test regions. As the timeliness of detection is quite important in the fight

against any outbreak, our framework provides useful insight to suppress the resurgence of local novel

coronavirus outbreaks as early as possible.

INDEX TERMS Spatio-temporal anomaly detection, multivariate, unsupervised, deep learning, COVID-

19, outbreak detection, Italy.

I. INTRODUCTION

An anomaly is an observation whose properties are

significantly different from the majority of other

observations under consideration, which are called the

normal data. Anomaly detection refers to the problem of

finding these observations in data that do not conform to

expected or normal behavior. A spatial-temporal outlier (ST-

Outlier) is an object whose behavioral (non-spatial and non-

temporal) attributes are significantly different from those of

the other objects in its spatial and temporal neighborhoods

[1]. Spatio-temporal data are extremely common in many

problem settings where collecting data from various spatial

locations at different times for the nature of the problem are

important. In such settings, detection of ST-Outliers can lead

to the discovery of unexpected and interesting knowledge

such as local instability and deformations [2]. Some

examples of such spatio-temporal datasets are as follows:

meteorological data, traffic data, earth science, and disease

outbreak data. Events that generate spatio-temporal data are

evolving events, such as hurricanes and disease outbreaks,

and both spatial and temporal continuity are important in

modelling such events [3].

For a problem domain, obtaining the labelled training data

for all types of anomalies is often too expensive if not

impossible [4]. This highlights the need for unsupervised

techniques to find spatio-temporal anomalies. Moreover,

mailto:yildiz.karadayi@stu.khas.edu.tr

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

2

spatio-temporal datasets are generally multivariate, and have

many contextual structures in them (spatial and temporal

regularities), which makes them particularly difficult for

labelling and well suited for unsupervised learning models.

In the unsupervised scenarios, the type of anomalies and the

ratio of anomalous events within the given dataset are

generally not known. In such scenarios, we need to model

the normal behavior of the underlying system in the presence

of noise and anomaly which pose extra difficulty.

In this study, we address these challenges by proposing a

hybrid deep learning framework. It is an autoencoder based

anomaly detection framework. The hybrid framework

structure is based on the idea of combining various deep

neural network components. It has been successfully applied

to multivariate time series forecasting [5], face detection [6],

and video classification [7]. However, it has not yet been

applied to unsupervised anomaly detection problem for non-

image multivariate spatio-temporal data. Our proposed

framework is composed of three stages: The first stage is the

pre-processing of the multivariate spatio-temporal data so

that the deep autoencoder network can exploit the spatial and

temporal contexts jointly. The second stage is the data

reconstruction stage, which is executed by a deep hybrid

autoencoder network. The third stage is the anomaly

detection stage, which is performed based on the

reconstruction error. The hybrid autoencoder network is

composed of a 3D convolutional neural network (CNN)

based spatio-temporal encoder and a convolutional Long

Short-Term Memory (ConvLSTM) network-based spatio-

temporal decoder. It is designed to be trained in a truly

unsupervised fashion for anomaly detection in non-image

spatio-temporal datasets. We know that in a time series data

set, data points with two adjacent timestamps are likely to

have a higher similarity than data points with more distant

timestamps. It is also true for spatio-temporal datasets that

neighboring regions may have some strongly positively

correlated patterns, such as traffic jam, climate change, and

human activity. The hybrid deep learning framework is able

to exploit contextual features of neighboring regions for

anomaly detection in the absence of labels for normal or

abnormal events.

The world has been fighting a pandemic caused by a new

type of coronavirus (SARS-CoV-2) since it was discovered

in China in December 2019. Almost all countries have been

affected by the novel coronavirus (COVID-19) outbreak, and

Italy is one of the hardest-hit European countries. As of May

15, the total number of positive cases reached 223,885 and

the number of deaths exceeded 31,000. Following the

identification of the first infections on the second half of

February 2020 in northern Italy, authorities put an increasing

number of restrictions in place [8]. Due to the high

contagiousness of the infection, this did not stop further

spreading of the epidemic by asymptomatic people. The

peaks of the epidemic were delayed in Central and Southern

Italian regions as expected compared to Lombardy and other

northern regions [9]. As it has been shown by the COVID-

19 outbreak, the biggest challenge is to detect the outbreak

during its early stages and mitigate its effects. The lack of an

early epidemic warning system eliminated the opportunity to

prohibit the epidemic spread at the initial stage. We would

like to apply the proposed hybrid framework to tackle the

problem of early disease outbreak detection in the midst of

this global health crisis.

There have been many studies that model the

epidemiological dynamics of COVID-19 [10]-[16]. They use

either SEIR or other statistical models to predict the spreading

and peaks of the epidemic, duration of the epidemic, and an

overall number of potentially infected individuals at a national

or regional level. However, none of those studies have focused

on building an anomaly detection system for early epidemic

detection. We believe that the proposed deep learning-based

anomaly detection framework will prove useful in detecting

COVID-19 epidemic waves. According to an analysis by

disease experts, cases may come in waves of different heights

by the end of 2021 depending on control measures and other

factors [17]. This makes it quite necessary to build a

monitoring tool for the timely detection of COVID-19 waves

in different regions.

For any anomaly detection algorithm to be successful in

early detection of disease outbreaks, it must incorporate both

spatial and temporal aspects of a disease [18]. On the other

hand, accurate monitoring of the evolution of the COVID-19

epidemic becomes extremely meaningful for the decision-

making authorities to take appropriate actions against any

public health crisis. As the extreme timeliness of detection is

the new requirement of public health [19], this data-driven

approach may help us build an anomaly detection tool for a

more timely detection of the COVID-19 outbreak.

We use public COVID-19 data provided by the Italian

Department of Civil Protection [20] as a case study in this

research. We test the proposed model with the dataset at a

resolution of the region level. We train one unified model

with the data from northern regions, and using that model,

we track the progression of the COVID-19 epidemic in test

regions, which are central and southern regions of Italy. The

framework can detect anomalous trends in test regions,

which may signal the possibility of an outbreak. The main

assumption here is that the data generated by northern

regions' experience going through the epidemic can be used

to derive an anomaly detection model. We evaluate the

performance of the proposed framework against various

univariate and multivariate methods including state-of-the

art deep learning-based approaches proposed in recent years.

Our framework has outperformed the state-of-the-art

anomaly detection models in all test cases.

The main contributions of this study are the following:

1) To the best of our knowledge, the proposed approach,

which is composed of a novel data crafting and a hybrid

deep learning model, is the first attempt in solving

unsupervised anomaly detection problem in non-image

multivariate spatio-temporal data.

2) It achieves good generalization capabilities in

scenarios where the training data are scarce and

contaminated with anomalies. In the case study, only

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

3

82 daily data entries (data points) are available for

each region. Even these contaminated outbreak data

are sufficient to build a robust anomaly detection

model due to its effective architecture to exploit

spatial neighborhood data.

3) The biggest challenge in anomaly detection for

spatio-temporal data is to combine the contextual

attributes in a meaningful way. In the proposed hybrid

approach, spatial and temporal contexts are handled

by different deep learning components as these

contextual variables refer to different types of

dependencies.

4) The proposed hybrid framework is designed to be

trained in a truly unsupervised fashion without any

labels indicating normal or abnormal data. The

architecture is robust enough to learn the underlying

dynamics even if the training dataset contains noise

and anomalies.

The rest of the paper is organized as follows. Section II

provides an overview of existing methods for anomaly

detection. Traditional anomaly detection methods are

discussed in part A of Section II, whereas the state-of-the-art

deep learning-based anomaly detection methods are

mentioned and summarized in part B of Section II. Section

III provides the related background information on

traditional autoencoders and autoencoder based anomaly

detection. The methodology including the problem

formulation and the design of the proposed hybrid deep

learning framework is presented in Section IV. Experiments

and results are presented in Section V. Finally, Section VI

concludes the paper and gives the directions for possible

future work.

II. RELATED WORK

A. TRADITIONAL APPROACHES

The task of detecting outliers or anomalous events in data has

been studied extensively in the context of time series and

spatial data separately. Time-series outlier detection studies

find outliers considering only temporal context [21], [22]. For

data with spatial context, several context-based anomaly

detection techniques have been proposed [23]-[26]. In

geoscience and environmental research, some statistical and

simulation-based methods have been proposed for spatial

anomaly detection [27], [28]. For spatio-temporal outlier

detection, both spatial and temporal continuity should be

considered for modeling. Hence, spatio-temporal outlier

detection methods are significantly more challenging because

of the additional difficulty of modeling the temporal and

spatial components jointly [2], [3].

Distance and density-based outlier detection algorithms

have also been applied to anomaly detection problems in

spatial datasets, such as Local Outlier Factor (LOF) [29], [30],

and DBSCAN [31]. LDBSCAN algorithm [32], created by the

merge of DBSCAN and LOF, is a density-based algorithm for

unsupervised anomaly detection problems in spatial databases

with noise. Another popular proximity-based outlier detection

approach is based on cluster analysis. The non-membership of

a data point to any of the clusters can be used as a sign of being

outlier [33]. Cluster-Based Local Outlier Factor (CBLOF)

[34] is a clustering-based anomaly detection algorithm, in

which the anomaly score of an instance is the distance to the

next large cluster. Choosing the right number of clusters is

very important since all clustering methods tend to be very

sensitive to this choice.

In [35], Birant and Kut propose a neighborhood-based ST-

Outlier detection algorithm. They use a modified version of

DBSCAN algorithm to identify the spatial neighborhoods

within the dataset. They define spatial outliers based on these

neighborhoods. Then, they check the temporal context of

spatial outlier objects by comparing them to temporal

neighbor objects. However, their algorithm does not generate

a score for data points. In [2], Cheng and Li propose a four-

step approach to identify spatio-temporal outliers:

classification (clustering), aggregation, comparison and

verification. In [36], Gupta et al. introduce the notion of

context-aware anomaly detection in distributed systems by

integrating the information from system logs and time series

measurement data. They propose a two-stage clustering

methodology to extract context and metric patterns using a

PCA-based method and a modified K-Means algorithm.

The aforementioned spatio-temporal anomaly detection

methods have something in common: They first apply spatial

(or non-temporal) context to find spatial outliers using a

distance-based technique. Then, spatial outliers are compared

with other spatial objects using temporal neighborhoods to

identify if they are temporal outliers too. They do not combine

the contextual (spatial and temporal) attributes in a meaningful

way as these attributes refer to different types of dependencies.

Despite the inherent unsupervised settings of distance and

cluster-based algorithms, they may still not detect anomalies

effectively due to the following reasons:

1) In multivariate time series data, strong temporal

dependency exists between time steps. Hence, distance-

/cluster-based methods, may not perform well since they

cannot capture temporal dependencies properly across

different time steps.

2) The definition of distance between data points in

multivariate spatio-temporal data with mixed attributes is

often challenging. This difficulty may have an adverse effect

on outlier detection performance of distance-based clustering

algorithms.

3) Another problem with distance-based methods is that

they are well known to be computationally expensive and not

suitable for large datasets.

IsolationForest [37], [38] is a powerful approach for

anomaly detection in multivariate data without relying on any

distance or density measure. In particular, it is an

unsupervised, tree-based ensemble method that applies the

novel concept of isolation to anomaly detection. It detects

anomalies based on a fundamentally different model-based

approach: an anomalous point is isolated via recursive

partitioning by randomly selecting a feature, and then

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

4

randomly selecting a split value for the selected feature. The

output is the anomaly score for each data point. Although it

establishes a powerful multivariate non-parametric approach,

it works on continuous-valued data only. Numenta HTM [39],

[40] is an unsupervised anomaly detection method for

univariate streaming data based on Hierarchical Temporal

Memory (HTM). It works based on the multiple predictions

for the next time step which is done by a layer of HTM

neurons. Anomaly score is generated based on the likelihood

of the prediction error, which is a probabilistic metric defining

how anomalous the current state is, based on prediction

history. One-class SVM (OCSVM), which is a semi-

supervised anomaly detection technique, has been applied

extensively to anomaly detection problems in time series data

[41] - [43]. However, OCSVM is sensitive to the outliers

especially when used in an unsupervised fashion when there

are no labels.

Several algorithms proposed in the statistics literature have

been used widely for time series prediction and anomaly

detection such as autoregressive integrated moving average

(ARIMA) and Exponentially Weighted Moving Average

(EWMA) [44] - [47]. Most detection algorithms in bio-

surveillance which operate on univariate time series data have

been taken from the field of quality control [48]. The common

techniques include control charts [49] and CUmulative SUM

Statistics (CUSUM) [47], [50]. What’s Strange About Recent

Events (WSARE) [48] algorithm was developed for

syndromic surveillance to the hospital setting, such as

symptoms exhibited by patients at an Emergency Department

(ED). WSARE is a rule-based algorithm specifically designed

for patients’ pre-clinical data. It combines two approaches:

association rule mining and Bayesian networks. Although the

WSARE algorithm works on multidimensional data, it can

only be used on categorical data sets. The Spatial Scan

Statistic [51] can be considered the real-valued analog of

WSARE. However, it is computationally expensive for large

data sets. Neill and Cooper [52] proposed the multivariate

Bayesian scan statistic (MBSS) for event detection in

multivariate spatial time series data. However, their approach

requires the prior probability of each event occurring in each

space-time region. They need either an expert knowledge or

labeled data to obtain the prevalence of each event type.

B. DEEP LEARNING BASED APPROACHES

Besides traditional anomaly detection methods, deep learning-

based anomaly detection approaches have recently gained a lot

of attention. In the literature, artificial neural networks have

been widely applied to anomaly detection tasks for various

types of datasets [53]. Reconstruction based and prediction

based deep learning models are among the most widely used

architectures for anomaly detection in videos and time-series

data [54], [55].

Malhotra et al. [56] proposes a deep Long Short-Term

Memory (LSTM) network to detect anomalies in univariate

time series. They use LSTM network architecture to predict

next l steps of the input. Then, the prediction error is used to

detect anomalies. The model is trained using normal data to

learn the Gaussian distribution of error vectors. Malhotra et al.

[57] propose an LSTM network-based encoder-decoder

scheme for anomaly detection in univariate time series

datasets. Their model learns to reconstruct ‘normal’ time

series data and uses reconstruction error to detect anomalies.

Hasan et al. [58] propose a deep fully convolutional

autoencoder to reconstruct the input sequence of video frames

to detect anomalies. The network is trained in semi-supervised

fashion with regular videos. It learns the signature of each

frame in regular motion videos. An anomaly score of each

frame in the test set is then calculated based on reconstruction

error.

Various deep learning-based feature extraction methods

have been proposed in the literature. The proposed

architectures are used to extract useful (discriminative)

features for anomaly detection, novelty detection or

classification problems. Yang et al. [59] present a CNN-

LSTM based recurrent autoencoder network for unsupervised

extraction of highlights in video data, whereas in [60] a pre-

trained 3D convolutional network is used to extract features

from video segments for anomaly detection process. Munawar

et al. [61] build an encoder composed of deep convolutional

neural network and Restricted Boltzman Machine to extract

features from videos. The extracted features are fed into an

LSTM based prediction system to predict the next video frame

in the learned feature space. Then, the difference between the

prediction and actual observation in the feature space is used

to detect anomalies. In a recent study, Perera and Patel [62]

propose a one-class transfer learning schema for feature

extraction based on Convolutional Neural Network (CNN).

Estiri and Murphy [63] use a semi-supervised deep

autoencoder for outlier detection in multivariate clinical

observation data from Electronic Health Records (EHR).

D’Avino et al. [64] propose an LSTM-based autoencoder

framework to detect forgeries in video frames. They train their

model with pristine frames without any forgeries. They use

reconstruction errors to detect any abnormalities in the frames

with spliced areas. Chong and Tay [65] propose a

spatiotemporal architecture for anomaly detection in videos.

Their autoencoder based anomaly detection framework

contains a spatial feature extractor and temporal encoder-

decoder component. The spatial encoder component

comprises two convolutional and two de-convolutional layers.

They use a three-layer convolutional long short-term memory

(LSTM) network as temporal encoder-decoder component.

Munir et al. [66] present DeepAnT, a deep learning based

unsupervised anomaly detection approach for time series data.

DeepAnT architecture is based on 1D deep convolutional

neural network to predict univariate time series data. They use

the prediction-based approach where a window of time series

is used as a context and the next time stamp is predicted. The

anomaly detector module uses the prediction error and a pre-

defined threshold value to tag each data point as normal or

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

5

abnormal. Nogas et al. [67] use a deep spatio-temporal

convolutional autoencoder schema, DeepFall, to detect falls in

videos. They formulate the fall detection problem as one class

classification problem. Their classification framework

consists of a 3D convolutional autoencoder for learning

spatio-temporal features from video frames. They use semi-

supervised learning approach that their model is trained only

on the videos with normal activities of daily living without fall

frames in them. Then, they use annotated video data to detect

fall frames which are considered abnormal.

Despite the effectiveness of those abovementioned deep

learning approaches, they are either supervised or semi-

supervised models. In the supervised approaches, models need

labels for all targeted anomaly classes for training. In the semi-

supervised approaches, models use only normal data to model

the majority class (normal class) to further detect future

anomalies. The proposed framework is designed to be trained

in a truly unsupervised fashion without any labels indicating

normal or abnormal data. The architecture is robust enough to

learn the underlying dynamics even if the training dataset

contains noise and anomalies. The main distinction between

other deep learning based methods and the proposed hybrid

approach is that they perform on either multivariate time series

data or video data, and none of them is actually designed for

non-image spatio-temporal multivariate datasets with both

spatial and temporal contextual attributes.

III. BACKGROUND

A. AUTOENCODERS

Autoencoders are commonly used for dimensionality

reduction of multidimensional data as a powerful non-linear

alternative to PCA or matrix factorization [68] – [70]. If a

linear activation function is used, the autoencoder becomes

virtually identical to a simple linear regression model or

PCA/matrix factorization model. When a nonlinear activation

function is used, such as rectified linear unit (ReLU) or a

sigmoid function, the autoencoder goes beyond the PCA,

capturing multi-modal aspects of the input distribution [71],

[72]. It is shown that carefully designed autoencoders with

tuned hyperparameters outperform PCA or K-Means methods

in dimension reduction and characterizing data distribution

[73], [74]. They are also more efficient in detecting subtle

anomalies and in computation cost than linear PCAs and

kernel PCAs respectively [75].

A traditional autoencoder is a feed-forward multi-layer

neural network which is trained to copy its input into the

output. To prevent identity mapping, deep autoencoders are

built with low dimensional hidden layers by creating non-

linear representation of input data [68]. Usually, an

autoencoder with more than one hidden layer is called a deep

autoencoder [76]. Deep autoencoders have been successfully

applied to dimensionality reduction, image denoising, and

information retrieval tasks [77], [78].

FIGURE 1. Illustration of an autoencoder.

An autoencoder is trained to encode the input 𝑥 into some

latent representation 𝑧 so that the input can be reconstructed

from that lower dimensional representation. An autoencoder

is usually trained using back-propagation in an unsupervised

manner, to learn how to build its original input by minimizing

the reconstruction error of the decoding results. Fig. 1 depicts

a typical autoencoder network structure with one hidden layer.

They are composed of two parts: an encoder and a decoder.

Deep autoencoders learn a non-linear mapping from the input

to the output through multiple encoding and decoding steps.

An autoencoder takes an input vector 𝑥 ∈ 𝑅𝑑, and first maps

it to a latent representation 𝑧 ∈ 𝑅𝑑′
 through a mapping:

𝑧 = 𝑓𝜃(𝑥) = 𝑊𝑥 + 𝑏 (1)

where the function 𝑓𝜃 represents encoding steps and

parameterized by 𝜃 = {𝑊, 𝑏}. 𝑊 is a 𝑑′ × 𝑑 weight matrix

and 𝑏 is a bias vector. The lower dimensional latent

representation of the input is then mapped back to a

reconstructed vector 𝑥′ ∈ 𝑅𝑑 in the input space:

𝑥′ = 𝑔𝜃′(𝑧) = 𝑊′𝑧 + 𝑏′ (2)

where the function 𝑔𝜃′ represents decoding steps and

parameterized by 𝜃′ = {𝑊′, 𝑏′}. The autoencoders training

procedure consists of finding a set of parameters

{𝑊, 𝑏, 𝑊′, 𝑏′} that make the reconstructed vector 𝑥′ as close

as possible to the original input 𝑥. The parameters of

autoencoder are optimized by minimizing a loss function that

measures the quality of the reconstructions. The loss function

of an autoencoder is sum-of-squared differences between the

input and the output:

 ∑ ∑ ||𝑥𝑖 − 𝑥′𝑖
||2𝑑

𝑖=1𝑥∈∅ (3)

where ∅ is the training dataset.

B. ANOMALY DETECTION WITH AUTOENCODERS

The main idea behind autoencoder based anomaly detection

is to measure how much the reconstructed data deviates from

the original data. An autoencoder has an unsupervised

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

6

learning objective whose primary task is to copy the input to

the output [77]. Therefore, an autoencoder is trained to

reconstruct data by minimizing this objective function, or

loss function. For anomaly detection, reconstruction error is

used as the anomaly score. Data points which generate high

reconstruction errors can be categorized as anomalous data

points based on a threshold value. When autoencoders are

used for anomaly detection, they are trained using only

normal data instances as we have abundance of normal data.

The training dataset should be cleaned from anomalous data

points and outliers as much as possible for a successful

model generation. After the training process, the autoencoder

will generally reconstruct normal data with very small

reconstruction error. As the autoencoder has not encountered

the abnormal data during the training, it will fail to

reconstruct them and generate high reconstruction errors

which can be used as anomaly score [71], [75].

There are some practical issues in using autoencoders with

contaminated training data (dataset with normal and

anomalous data points). Since anomalies are treated as

normal data points during the training phase, there will be

inevitably more errors in the model compared to training

with only normal data points. If we try to overcome these

errors by tuning the network with more layers and neurons,

we may face the problem of overfitting which is a significant

problem in the case of deep neural networks. A sufficiently

complex deep autoencoder may even learn how to represent

each anomaly with sufficient training by generating low

reconstruction errors which would be a problem in anomaly

detection [71].

IV. METHODOLOGY

A. PROBLEM FORMULATION

A univariate time series is a sequence of real valued data points

with timestamps. A multivariate time series is a set of

univariate time series with the same timestamps. In this paper,

we focus on multivariate time series that are measured at

successive points in time, spaced at uniform time intervals.

Let 𝑋 = {𝑥(𝑛)}𝑛=1
𝑁 denote a multivariate time series

dataset composed of N data points. Let each data point 𝑥(𝑛)
has T time steps, and each observation at time step t, is a d
dimensional vector. The dataset X has dimensions of (d, T),

where 𝑥(𝑛) ∈ ℝ𝑑×𝑇. Each data point 𝑥(𝑛) is a two-
dimensional data matrix and can be represented as:

 𝑥(𝑛) = (
𝑥11

𝑛 ⋯ 𝑥1𝑇
𝑛

⋮ ⋱ ⋮
𝑥𝑑1

𝑛 ⋯ 𝑥𝑑𝑇
𝑛

) (4)

The superscript 𝑛 represents the ordered number of each data

point within the dataset X. 𝑥(𝑛) is a multivariate time series

data point with a contextual time attribute. Each 𝑥(𝑛) in the

dataset 𝑋 is ordered based on the timestamp. As the number 𝑛

increases, the time context changes, and time dimension, or

timestamps, moves ahead.
In a spatio-temporal dataset, each multivariate data point

𝑥(𝑛) comes from a different spatial location, or region, which

has different spatial attributes (such as latitude and longitude).

We denote the multivariate spatio-temporal dataset as DST =

{(𝑋(𝑖), 𝑆(𝑖))}𝑖=1
𝑚 which contains multivariate time series data

points from m different spatial regions. Each spatial region 𝑆𝑖,

where 𝑆𝑖 Є S, has a set of multivariate time series data

represented by the dataset 𝑋(𝑖). 𝑁(𝑖) represents the number of

data points (or observations) in each spatial region 𝑆𝑖. In other

words, it is the size of 𝑋(𝑖), which may be different for each

region in real-world scenarios.

𝑋𝑆𝑇, which is the multivariate spatio-temporal data matrix,

can be represented as a 3-dimensional tensor as shown in Fig.

2. It is built using multivariate time series data from 𝑚

different spatial regions or 𝑆𝑖s, where 𝑖 = 1 … 𝑚. The sliding

window technique which is used to build the 3-dimensional

data matrix 𝑋𝑆𝑇, is given in Algorithm 1. It is composed of 𝑚

multivariate time series data points from 𝑚 different spatial

regions and representing observations from the same time

window with the same timestamps. 𝑇, which is called the

“input window-size”, represents the number of timestamps in

the multivariate data point, and 𝑑 represents the number of

univariate time series. 𝑚 represents the number of nearest

spatial neighborhood to include in the anomaly detection

process. The best 𝑚 can be found empirically for each

problem domain. The 𝑚 number of nearest neighboring

regions are selected from S different regions based on the

pairwise spatial distance between regions.

FIGURE 2. 3-dimensional multivariate spatio-temporal data matrix

structure used in anomaly detection procedure.

We formulate the spatio-temporal anomaly detection

problem as detecting anomalous multivariate observations

(sample of 𝑥(𝑖) data points) in the dataset DST which

differentiate significantly from their spatial and temporal

neighbors. Given the spatio-temporal 3-dimensional data

matrix 𝑋𝑆𝑇, the goal is to reconstruct the multivariate-time

series data from the region 𝑆𝑖, where 𝑆𝑖 ∈ 𝑆. 𝑆𝑖 represents the

target region or the region of interest in which spatio-temporal

anomalies are investigated. Anomalous data points have large

reconstruction errors because they do not conform to the

subspace patterns in the data. Therefore, the aggregated

reconstruction errors over the time dimension 𝑇 can be used

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

7

as the anomaly score for the autoencoder based proposed

framework. All 𝑥𝑖
(𝑛)

 multivariate data points, or sub

sequences, with high reconstruction errors from the region 𝑆𝑖

are considered to be anomalies.

B. PROPOSED HYBRID FRAMEWORK

The proposed approach consists of three main stages: The

first stage is the data pre-processing stage. At this stage, the

multivariate spatio-temporal dataset is processed in such a

way that the deep autoencoder network can exploit the

spatial and temporal contexts jointly. Multivariate data from

𝑚 nearest spatial neighbors are used to represent spatial

dependency between different spatial regions. The sliding

window technique given in Algorithm 1 is applied to build

the multivariate spatial-temporal input data for the

framework. By using the multistep overlapping

subsequences from 𝑚 nearest spatial neighborhood of each

data point, we build a 3-dimensional data matrix as shown in

Fig. 2, which can represent the spatial and temporal

dependency within the dataset.

The important parameters of this algorithm are window

size T and step size s. They should be chosen carefully based

on the underlying dynamics of each dataset and the goal of

anomaly detection problem at hand. The length of each

subsequence is equal to the window size. Using sliding

window technique, for a long sequence with length L, the

number of extracted subsequences can be given as:

 num. of subseq. = ⌈(𝐿 − 𝑇 + 1)/𝑠⌉ (5)

which gives the maximum number of subsequences we can

possibly extract for a given T and s.

The second stage is the data reconstruction stage which is

executed by the deep hybrid autoencoder network. The

proposed hybrid autoencoder network consists of two main

components: a spatio-temporal encoder component which

has a 3D convolutional neural network (CNN), and a spatio-

temporal decoder component which has a Convolutional

Long Short-term Memory (ConvLSTM) network.

The third stage is the anomaly detection stage. The anomaly

detection is performed by calculating the reconstruction error

as anomaly score. Let 𝑥 = {𝑥(1), 𝑥(2), … , 𝑥(𝑇)} be a univariate

time series data representing one of the reconstructed features

and 𝑇 is the length of the input window. Each data point 𝑥(𝑖)

represents a data reading for that feature at time instance 𝑡𝑖.

The mean absolute error (MAE) is used to calculate the

reconstruction error for the given time period (input window)

for each feature as:

 𝑒𝑀𝐴𝐸(𝑥) =
1

𝑇
 ∑ |𝑥𝑖 − 𝑥̂𝑖|T (6)

where 𝑥𝑖 is the real value and 𝑥̂𝑖 is the reconstructed value at

time instance 𝑡𝑖. The reconstruction error for each feature

and for all data points in the test set is calculated. Each data

point in the test set represents a window of size 𝑇 as the

rolling window. As each data point in the dataset is generated

using sliding window algorithm with step size set to s, we

generate rolling window estimation, and hence the rolling

window errors.

For an anomaly detection problem, we are only interested

with the reconstruction of a subset of original spatio-temporal

multivariate dataset and not the fully reconstructed version of

it. The overall framework is trained to produce the target

multivariate time series 𝑋 = {𝑥1, … , 𝑥𝑇′} of length 𝑇′

which is the size of the reconstruction window. The length of

𝑇′ can be equal to or smaller than the input window size 𝑇 and

should be tuned for each problem. Each sequence 𝑥𝑖 ∈ ℝ𝑑′
is

an 𝑑′-dimensional vector where 𝑑′ ≤ 𝑑.

C. SPATIO-TEMPORAL ENCODING

The encoder component uses 3D convolutions to capture

complex spatial dependencies in each spatial neighborhood.

By convolving a 3D kernel over the cube formed data, the

encoder can extract better representative features. The

cuboid data is formed by stacking the data from the nearest

spatial neighbors of each data point as explained in

Algorithm 1. This allows information across these spatially

close neighbors to be connected to form feature maps,

thereby capturing spatio-temporal information encoded in

the close neighborhood.

In most typical CNNs for image recognition, the input data

is a single image with three channels for color images (R, G

and B color channels) or one channel for grayscale images.

In anomaly detection networks, the input data is generally a

video clip consisting of multiple frames. In convolutional

autoencoder based applications, T frames in the channel

dimension are stuck, and then fed into the autoencoder where

T is the length of the sliding window. In the case of 2D

convolutional autoencoders, the temporal features are rarely

preserved as 2D convolution operations are performed only

spatially [58].

In this study, 3D convolutional operations are applied on

multivariate spatio-temporal data to better preserve the

temporal features along with the spatial features. The input

data are re-constructed as a 3-dimensional cuboid by

stacking multivariate data frames as illustrated in Fig. 2. By

applying this idea, we can accomplish dimensionality

reduction both in spatial and temporal context for a given

input window during the encoding phase. The main

component of the spatio-temporal encoder is the 3D

convolutional layer, which is defined as follows: the value 𝑣

at position (𝑥, 𝑦, 𝑧) of the 𝑗 th feature map in the 𝑖th 3D

convolutional layer, with bias 𝑏𝑖𝑗 , can be written by the

following equation [79]:

𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝑓 (∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑠

𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑠)

+ 𝑏𝑖𝑗

𝑆𝑖−1

𝑠=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

) (7)

where 𝑃𝑖 , 𝑄𝑖 , and 𝑆𝑖 represent the vertical (temporal depth,

or window size, T), horizontal (temporal width, or number of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

8

features, d), and spatial depth (number of spatial neighbors,

m) dimensions of the kernel cube 𝑤𝑖 in the 𝑖th layer. The set

of feature maps from the (𝑖 − 1)th layer is indexed by 𝑚,

and 𝑤𝑖𝑗𝑚
𝑝𝑞𝑠

 is the value of the kernel cube at the position 𝑝𝑞𝑠

connected to the 𝑚th feature map in the previous layer. The

number of feature maps is defined by the number of kernel

cubes at each convolution layer.

C. SPATIO-TEMPORAL DECODING

For the decoding part of the framework, we use convolutional

LSTM (ConvLSTM) network, which is a variant of LSTM

network. It has been introduced by Shi et al. [80]. It has been

recently utilized by Chong and Tay in [65] for abnormal event

detection in videos and by Patraucean et al. in [81] for motion

estimation in videos.

The major drawback of regular Long Short-Term Memory

(LSTM) networks is that they are not capable of preserving the

spatial information during the state transitions [80]. To

overcome this problem, ConvLSTM units have convolutions

operations in place of matrix operations in all gates and cell

outputs. As they use convolution for both input-to-hidden and

hidden-to-hidden connections, they require fewer weights and

yield better spatio-temporal feature encoding and decoding

performance. The formulation of a ConvLSTM unit can be

given by the following equations from (8) through (13):

 𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑓) (8)

 𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑖) (9)

 𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∗ [𝑋𝑡 , 𝐻𝑡−1] + 𝑏𝐶) (10)

 𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 + 𝑖𝑡 ⊗ 𝐶̂𝑡 (11)

 𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑜) (12)

 ℎ𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (13)

where ’∗’ denotes the convolution operator and ’ ⊗’ denotes

the Hadamard product. Equation (8) represents the forget

gate, (9) and (10) are the gates where new information (input

𝑋𝑡) is added, (11) combines the new and old information

factored by the forget gate, whereas (12) and (13) give the

output of the ConvLSTM unit for the next time step. The

variable 𝑋𝑡 denotes the input vector, ℎ𝑡 denotes the hidden

state, and 𝐶𝑡denotes the cell state for the time step 𝑡. 𝑊′s are

the trainable weight matrices and 𝑏′𝑠 are the bias vectors.

V. EXPERIMENT

A. DATASET

We use the public Italian COVID-19 time series dataset

provided by the Italian Department of Civil Protection. It can

be downloaded from the website [82], which is constructed as

a national response effort for coronavirus emergency. For this

study, we use the regional dataset which shows the daily

progress of new coronavirus epidemic in regions of Italy. The

regional dataset provides detailed epidemiological figures for

all 21 regions (19 regions and 2 autonomous provinces)

starting from February 24 and updated daily.

The regions dataset has 20 features as follows (translated

into English): Date, country, region code, region name,

latitude, longitude, hospitalized with symptoms, intensive care

patients, total hospitalized patients, home isolation, total

positives (current positives), change in total positive, new

positives, recovered (discharged), deceased, total cases, tests

performed, total number of people tested, notes in Italian,

notes in English.

Features “date, country, region code, region name, latitude,

longitude” are contextual attributes whereas the rest are

regarded as behavioral attributes. The feature "tests

performed" is part of the government intervention measures

and shows significant differences between regions depending

on the policies taken by each regional government in Italy

[83]. As proactive testing and mobility can affect the

epidemiological dynamics of the COVID-19 epidemic [84], it

is regarded as contextual variable for the modelling, and is not

included in the reconstruction space as a behavioral attribute.

All these features have been used during the modeling

except the redundant and mostly empty attributes. The "total

number of people tested" field is empty for most of the

regions, so it is dropped for the modelling. Features "notes in

Italian, notes in English, total number of people tested" are

also discarded for this study as they are mostly empty. As the

only country in the dataset is Italy, ‘country’ column is also

dropped. On the website, the data format is explained as

follows:

- total positives: Total amount of current positive cases

(hospitalized patients + home confinement)

- change in total positive: New amount of current positive

cases (total positives current day – total positives previous

day)

- new positives: New amount of current positive cases (total

cases current day – total cases previous day)

- total cases: Total amount of positive cases

Based on those detailed descriptions of dataset, we rename

the feature "total positives" as "current positive cases" in our

study to make the feature name more representative. We also

regard the feature "new positives" as "daily confirmed new

positive cases," and renamed it as "new positive cases" for

clarity. In addition to the regional epidemic data, we have also

used population data of each region from ISTAT website [85].

By using population information, we have calculated three

additional features: "total positive cases, new positive cases

and deaths" on each 10,000 inhabitants. Using these

engineered features, we have incorporated the case density

information on each region to enrich spatial data.

Latitude and longitude are also provided for each region

making this regional dataset a spatiotemporal dataset. Daily

epidemic data entry for each region has two contextual

attributes: a date attribute (temporal context) and latitude-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

9

longitude attributes (spatial context), which is static for each

region. Besides these contextual attributes, the rest of the

attributes including the engineered features are regarded as

behavioral attributes. We use the min-max normalization

method to scale all behavioral attributes in the dataset into the

range of [0, 1] to accelerate the learning process and to avoid

large weights which cause neural networks to overfit.

B. DATA PREPARATION

We use the regional data entries between February 24 and May

15, inclusively. The model is trained with the data from

northern regions which provides a complete epidemiological

data in the sense that they have gone through all the peaks of

COVID-19 outbreak showing a complete perspective for

anomaly detection. The training dataset contains data from

following northern regions: P.A. Bolzano, Emilia-Romagna,

Liguria, Lombardia, Piemonte, P.A. Trento, Valle d'Aosta,

Veneto, and Friuli Venezia Giulia. We use data from one

central region (Marche) as validation set; data from one central

region (Lazio), one region from southern Italy (Campania),

and one island region (Sicilia) as test set. The total data entry

for each region is 82, which means 82 days of COVID-19

epidemiological data are entered for each region.

The spatial attributes of all regions used in this study is

given in Table I. Using the latitude and longitude information,

we calculate the distance matrix showing the pairwise distance

of all regions used in this study. We use the haversine formula

to calculate the shortest distance between regions, which is

used to measure distances on a sphere [86].

TABLE I

REGION INFORMATION

Region Name Latitude Longitude Population

Piemonte 45.0733 7.68069 4356406
Valle d'Aosta 45.7375 7.32015 125666

Lombardi 45.4668 9.19035 10060574

P.A. Bolzano 46.4993 11.3566 531178
P.A. Trento 46.0689 11.1212 541098

Veneto 45.4349 12.3385 4905854

Friuli Venezia Giulia 45.6494 13.7681 1215220
Liguria 44.4115 8.9327 1550640

Emilia-Romagna 44.4944 11.3417 4459477
Marche 43.6168 13.5189 1525271

Lazio 41.8928 12.4837 5879082

Campania 40.8396 14.2508 5801692
Sicilia 38.1157 13.3624 4999891

We calculate the correlation coefficients for the feature

"current positive cases" between every pair of districts in the

training data using Pearson correlation. The correlation

heatmap matrix in Fig. 3 shows that all the neighboring

regions have strong spatial correlations. Remote regions in the

dataset, such as Valle d'Aosta and Marche, show weaker

correlations between other regions. These results reflect that

the spatial correlation of COVID-19 epidemic progression

occurring in certain geographic regions at a certain spatial

resolution is quite strong.

By using the spatial neighborhood of each region, we create

a spatio-temporal multivariate input for the model. The sliding

window technique given in Algorithm 1 is applied to training,

validation, and test datasets to build spatio-temporal

multivariate subsequences. We apply the algorithm with

parameters representing the number of spatial neighbors

(which is called depth in the algorithm) set to 10, the window

size set to 7 representing 7-day worth of data point, and step

size to 1. According to the formula given in (5) in which T is

set to 7, s is set to 1 and L is set to 82, we have 76 multivariate

subsequences for each region. As the total number of

behavioral attributes is 13, excluding spatial features “region

code, region name, latitude, and longitude”, and with the depth

of spatial neighborhood is set to 10, we create 76x7x13x10

dimensional spatio-temporal multivariate dataset from each

region. By using this sliding window algorithm, we perform

data augmentation by moving the start of the T-day data entry

by step size resulting in a nearly six-fold expansion of the

training data.

The parameter "number of spatial neighbors" represents the

number of nearest neighbors to use while building spatio-

temporal multivariate subsequences. It also corresponds to the

spatial dimension of the 3D CNN encoder. After data

preprocessing step is completed, training, validation and test

sets are created. They are 4-dimensional data matrices with the

following sizes: The dimension of the training set is

684x7x13x10, the dimension of the validation set is

76x7x13x10, and the dimension of the test set is

228x7x13x10. Numbers 684, 76 and 228 represent the number

of data points or observations in training, validation, and test

sets, respectively. The proposed framework is trained to

reconstruct the following behavioral attributes: Hospitalized

patients, intensive care patients, total hospitalized patients,

home confinement, current positive cases, new positive cases,

total positive cases, recovered, and deaths. The size of the

reconstruction space for the test set is 228x7x9.

C. FRAMEWORK ARCHITECTURE AND TUNING

Extensive experiments through grid search are executed to

finalize the architecture of the framework and its

hyperparameters. Specifically, we use 2 CNN blocks in the

encoder component, each of which has a 3D convolutional

layer, followed by a 3D max-pooling layer. Number of feature

maps is set to 64 in the first block and set to 32 in the second

block with padding and no striding (or with strides 1×1×1).

We set the kernel size to 3 × 3 × 5, where 𝑃𝑖 = 𝑄𝑖 = 3 and 𝑆𝑖 =

5 in (7), for all convolutional layers for the experiment, as

these values are found to produce the best result for the dataset.

The max-pooling layers have pool size of 2 × 2 × 2 and strides

of 1 × 2 × 2 with padding. This means that the pooling

operation is performed over all three dimensions:

(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑒𝑝𝑡ℎ × 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑖𝑑𝑡ℎ × 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑡ℎ).

In addition, temporal width and spatial depth dimensions are

reduced by a factor of 2 with every max-pooling layer. The

activation function 𝑓 in (7) in all hidden convolutional layers

in the encoder component are set to Rectified Linear Unit

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

10

(ReLU) non-linearity, 𝑅𝑒𝐿𝑈(𝑥) = max (𝑥, 0), which allows

the deep neural networks converge faster [87].

The decoder component is composed of two ConvLSTM

layers with the number of feature maps set to 32 and 64,

respectively to preserve the symmetry of the autoencoder

framework. We apply 2D convolution operation over spatial

and temporal dimensions using the kernel size of 3 × 2 and

the stride of 1 × 1 with padding. Batch normalization (BN)

[88] is applied to each of the ConvLSTM layers, which

accelerates the training of deep neural networks. In the final

layer, a fully connected neural network (FCNN) is used to

reconstruct the target output. Thus, we add a layer to reshape

the 4D output of final ConvLSTM layer before passing the

output to the FCNN. The FCNN layer is a time distributed

dense layer which applies the same fully connected operation

to every time step. The number of units in the dense layer is

set to 𝑑′ = 9 and it is equal to the number of univariate time

series (features) that we want to reconstruct. The number of

hidden units in the FCNN layer can be adjusted according to

the problem context at hand.

Activation functions of ConvLSTM units are set to

hyperbolic tangent and the activation functions in the final

dense layer are set to ReLU. Layer weights are initialized

with the Glorot uniform initializer [89]. The deep learning

framework is optimized using the Adam optimizer with

learning rate set to 0.0001. It ran for 100 epochs with batch

size 16. The training is regularized by weight decay (the 𝐿2

penalty multiplier set to 1 × 10−4) and dropout

regularization for the two ConvLSTM layers (the dropout

ratio set to 0.25). The model is trained to minimize the

following mean absolute error (MAE) loss function:

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑥𝑖 − 𝑥𝑖|𝑛

𝑖=1 (14)

where 𝑥𝑖 and 𝑥̂𝑖 represent the true value and the reconstructed

value, respectively, and 𝑛 is the total number of data points in

each batch. The detailed architecture of the final deep learning

framework is illustrated in Fig. 4. The final framework has

299,241 trainable parameters. The data structure of each

component in the trained framework is given in Table II,

where N represents number of data points.

TABLE II

FRAMEWORK DATA STRUCTURE

Layer Name Output Shape Param #

Input Layer (data) [(N, 7, 13, 10, 1)] 0

3D CNN Encoder [(N, 7, 4, 3, 32)] 95,136

ConvLSTM Decoder [(N, 7, 4, 3, 64)] 197,376

Reshape Layer [(N, 7, 768)] 0

FCNN Layer [(N, 7, 9)] 6921

E. PERFORMANCE COMPARISON

We have compared the proposed framework with 15 different

anomaly detection models which include several state-of-the-

art deep learning-based approaches. Tested models fall under

the following categories:

1) STATISTICAL MODELS

The following univariate statistical models are used:

CUmulative SUM Statistics (CUSUM) [47] and Shewhart

control chart [49].

2) PREDICTION BASED MODELS

Models under this category use the temporal dependencies of

training data to build a model and predict the value of the test

data. We employ three univariate time series regression

models: Autoregressive Integrated Moving Average

(ARIMA), Exponentially Weighted Moving Average

(EWMA), and Fast Fourier Transform (FFT) extrapolation

[90].

3) ONE-CLASS CLASSIFICATION MODELS

Models under this category learn a decision function during

training to identify normal samples. Then, the trained classifier

is applied to test data and generates an anomaly score based

on being similar or dissimilar to the training set. The

unsupervised variant of the OCSVM algorithm is used for this

experiment. This unsupervised variant does not require its

training set to be labeled to determine a decision surface [91].

4) DISTANCE BASED MODELS

These models use a distance metric to score data points in the

test set. They have intrinsically unsupervised settings and

don’t need training. Under this category, we employ the LOF

algorithm [29], which is a locality-based outlier detection

algorithm, and LDBSCAN algorithm [32], which is a local-

density based spatial clustering algorithm.

5) ISOLATION BASED MODEL

This model detects anomalies based on the concept of isolation

without employing any distance or density measure: Isolation

Forest (iForest) [37], [38].

6) DEEP LEARNING MODELS

Various state of the art deep learning models which have been

proven to be successful on anomaly detection problems are

tested.

a) Prediction based models: LSTM and CNN based

deep learning predictor models are used under this

category. A deep stacked LSTM predictor model

based on the architecture proposed by Malhotra et al.

in [56] and a 1D CNN based predictor model

(namely DeepAnT) proposed by Munir et al. in [66]

have been employed as multivariate time series

prediction based models for anomaly detection.

b) Reconstruction based models: Four different

reconstruction based deep autoencoder architectures

are tested. These architectures include a deep LSTM

autoencoder architecture [57], a deep 2D CNN based

autoencoder schema proposed by Hasan et al. in [58],

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

11

a deep spatio-temporal autoencoder model for

anomaly detection in videos proposed by Chong and

Tay in [65], and a deep 3D CNN based spatio-

temporal autoencoder model (namely DeepFall)

proposed by Nogas et al. in [67].

All models are implemented using Python 3.6.8

programming language. Deep learning models including the

proposed framework are implemented using the TensorFlow

library [92]. For LOF, IsolationForest, and One-Class SVM

methods, we use implementations available in the scikit-learn

[93], which is a free machine learning library for Python

programming language. To build the ARIMA model, we use

the statsmodels library [94], which is a free Python module

providing implementations of many different statistical

models. Euclidean distance is used for all proximity-based

algorithms since it has generated better results compared to

other distance metrics.

F. MODELS TUNING

Shewhart control chart comes from the quality control and

originated in 1931. It uses previous data to estimate a

reasonable upper limit or threshold value [49]. If future

measurements stay under the threshold value, the process is

‘under control’. New measurements which exceed the

calculated threshold limit may indicate that a noteworthy

change has occurred in the underlying process. In our early

outbreak detection scenario, it may indicate an anomalous

daily data entry. The standard detector was trained on training

dataset to obtain the mean 𝜇 and variance 𝜎2. The control

chart threshold value is calculated for each feature by the

formula given below as defined in [48]:

 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 + 𝜎 ∗ 𝜙−1(1 −
𝑝_𝑣𝑎𝑙𝑢𝑒

2
) (15)

where 𝜙−1 is the inverse to the cumulative distribution

function of a standard normal, and the p-value is supplied by

the user. Given a 𝑝_𝑣𝑎𝑙𝑢𝑒 of 0.5, we calculate the threshold

level for the feature “new positive cases” as 0.492.

CUSUM charts are good at detecting small shift from the

mean more quickly than Shewhart control charts [47].

CUSUM is calculated by taking the cumulative summation of

the difference between each measured value and the estimated

in-control mean value:

 𝑆𝑘 = ∑ (𝑥𝑘 − 𝜇)𝑘
𝑖=1 + 𝑆𝑘−1 (16)

where 𝑆𝑖 is the ith cumulative sum, 𝑥𝑖 is the ith observation

and 𝜇 is the in-control mean value. It keeps a running sum of

excess values over the mean each day. When this sum exceeds

a threshold level, we can signal an alarm as an indication of

abnormality. For a process that is under control, each

measured value should be reasonably close to the mean. Thus,

as long as the process remains in control, the CUSUM plot of

each calculated value of 𝑆𝑘 should be centered about zero with

small fluctuations. If the process mean shifts upward, the

CUSUM values for data points will eventually drift upwards.

Standard moving average algorithm introduces lag into the

original time series, which means that changes in the trend are

only seen with a delay. Exponentially Weighted Moving

Average (EWMA) reduces this lag effect by introducing the

decay parameter and puts more weight on more recent

observations. The window (span) is chosen as 7 days. The

ARIMA model is represented by (p, d, q) model parameters

which show the order of Auto-regressive (AR), the

differencing component, and Moving Average (MA),

respectively. The integrated part of ARIMA (the differencing

component) helps in reducing the non-stationarity. The

optimum parameters of this model are selected by minimizing

the Akaike information criterion (AIC). The final model is

built using the parameters ARIMA (2, 1, 3). Fast Fourier

Transform (FFT) is the discrete Fourier transform algorithm

to express a time series function as a sum of periodic

components. We apply FFT to univariate time series data

("new positive cases" attribute of each region) and extrapolate

to make one step prediction.

An unsupervised version of the OCSVM algorithm is used

for the anomaly detection in test regions. It learns a decision

function during training and classifies the test data as similar

to or different from the training set using the decision score. A

OCSVM model with the Radial Basis Function kernel is used

to build the classifier and detect anomalies in the unseen test

dataset.

The Local Outlier Factor (LOF) algorithm is an

unsupervised anomaly detection method based on local

density deviation of a given dataset. It calculates the local

density of a given data point with respect to its neighbors. It

gives higher LOF scores to the samples that have a

substantially lower density than their neighbors. For LOF

model, we set the number of neighbors to 30 to use in k-nearest

neighbor calculations and set the contamination ratio to 0.1.

The Local Density-Based Spatial Clustering of

Applications with Noise (LDBSCAN) algorithm is an

extension to DBSCAN and takes the advantage of the LOF

algorithm in scoring data points and identifying clusters. The

following values are assigned to the LDBSCAN parameters

since they give the best result: MinPtsLOF = 20, MinPtsLDBCAN

= 30, LOFUB = 5, pct = 0.3.

Isolation Forest algorithm returns an anomaly score for each

observation and 'isolates' anomalous points via recursive

partitioning by randomly selecting a feature and then

randomly selecting a split value for the selected feature. It can

be represented by a tree structure and the number of splitting

required to isolate a sample is used as a measure of normality.

As the name infers, it is an ensemble of trees doing random

partitioning to detect anomalies. The number of estimators (or

trees) is selected as 100; and the rate of contamination is set to

0.1.

For the deep LSTM predictor model proposed in [56], we

employ a stacked LSTM network with the history window size

set to 7, and the prediction window size to 1 to perform the

one-step prediction. The final LSTM predictor architecture is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

12

built with 3 hidden LSTM layers (having 64, 32 and 16 units,

respectively) with ReLU activation function and a final fully

connected neural network (FCNN) layer for inference of target

variables. For the CNN based predictor, we follow the

DeepAnT architecture proposed in [66]. Each 1D convolution

layer has 32 filters followed by ReLU activation function and

max pooling layer. The last layer of the network is a FCNN

layer in which each neuron is connected to all the neurons in

the previous layer. This layer generates the final prediction of

the network for the next time stamp as in LSTM based

predictor.

The encoder component in the deep CNN autoencoder

model, which is similar to the one proposed by Hasan et al. in

[58], is composed of three convolutional layers: Conv1-Conv3

with 64 kernels of size 3×3, 32 kernels of size 3×3, and 16

kernels of size 3×3 respectively with no strides. We use a max

pooling layer after the first and the second convolution layers

with pool size of 2×2 and strides 1×2 with padding. The

decoder component is built to maintain the symmetricity with

three convolutional layers and two unpooling layers with the

same number of kernels of size 3×3. For the deep LSTM

autoencoder architecture proposed in [57], we use three LSTM

layers in the encoder, and three LSTM layers in the decoder

with a fully connected neural network as the inference layer.

On the encoder side, the number of units in the LSTM layers

are 64, 32, and 16. On the decoder side, the same number of

units are used in reverse order to build a symmetric

architecture.

We build the deep spatio-temporal autoencoder for

abnormal event detection by following the architecture

proposed by Chong and Tay in [65]. The spatial encoder has

two 2D convolutional layers with 64 and 32 kernels of size

2×2 and 3×3, respectively. Temporal encoder-decoder

component is composed of three convolutional LSTM

(ConvLSTM) layers with the number of units are set to 16, 8,

and 16 with the convolution kernel size of 3×3. The spatial

decoder has two deconvolutional layers with 32 and 64 kernels

of size 3×3 and 2×2, respectively. It has a final FCNN layer to

generate the reconstruction of the selected test features.

To build the spatio-temporal 3D convolutional autoencoder,

we follow the architecture of DeepFall proposed in [67]. The

encoder has two layers of 3D convolutions with stride of

1×1×1 and padding. They have 16 and 8 kernels with kernel

size set to 2×2×2. After each convolution layer, 3D max

pooling operation is applied with the stride size of 2×2×2 and

pool size of 2×2×2 and 3×3×3, respectively. The decoder has

three layers of 3D deconvolutions with a stride of 2×2×2 and

padding. The kernel sizes are set to 3×3×3, 2×2×2, 2×2×2,

respectively.

All deep learning models are trained to minimize the mean

absolute error with Adam optimizer with learning rate set to

0.0001. The 𝐿2 regularization with the penalty multiplier set

to 1 × 10−4 and dropout regularization with the dropout ratio

set to 0.25 are applied for training. Models are trained for 100

epochs with mini batches of size 16.

G. Performance Metric

In order to evaluate the performance of models, we measure

the number of days until an anomaly is detected against the

threshold level. In the context of this empirical study, an

anomaly might mean that the COVID-19 pandemic might be

moving out of control for the investigated region. According

to European Centre for Disease Prevention and Control [95],

the number of newly confirmed cases (or daily new positive

cases) is one of the most accurate indicators of epidemic

intensity. To compare the early COVID-19 outbreak detection

performance, we compare the anomaly scores of models

generated for the feature "new positive cases". For the

prediction-based model, we use the one step prediction errors

as anomaly scores. For the reconstruction-based models, we

use the reconstruction errors as anomaly scores. OCSVM,

IsolationForest, LOF and LDBSCAN models generate one

anomaly score for each multivariate observation regardless of

the feature monitored.

VI. RESULTS

A. FRAMEWORK PERFORMANCE

During the training process, the framework learns to

reconstruct the selected features in each data point with the

minimum possible error. In the case of anomalous events such

as peaks of the COVID-19 pandemic, these reconstruction

errors will get bigger, causing an alarm for the possible

outbreak. The framework learns the normal data structure with

the data from northern regions, which have gone through the

pandemic earlier than other regions. To be able to detect the

COVID-19 outbreak as early as possible, the framework must

learn what the normal is when it is trained with highly

contaminated data. As there is no label indicating anomalous

events, the framework learns the distinctive patterns of

abnormal events using the data from the nearest spatial

neighbors.

We train one unified deep learning model using the training

set, which has a total of 684 spatio-temporal multivariate data

points from 9 different regions. Then, we use the model to

calculate the reconstruction errors of each 228 data points in

the test set. As we set the window size to 7 days during the

data preparation process and sliding step size to 1 day, we

calculate the rolling window errors of each feature.

The reconstructed values and reconstruction errors for

features "hospitalized patients, current positive cases, new

positive cases, recovered cases, deaths, and total positive

cases" on test data are plotted against the real case numbers in

figures from 5 to 7. Test results for the region Lazio are given

in Fig. 5; test results for the region Campania are given in Fig.

6; and test results for the region Sicilia are given in Fig. 7. In

these figures, the real data are depicted in blue; the

reconstructions are depicted in orange; and the reconstruction

errors are depicted in red. All values are min-max normalized

into the range of [0, 1] before plotting.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

13

It can be seen in these plots that there is a subtle increase in

the model error when the real case counts have peaks as each

region goes through the COVID-19 pandemic. The

progression of the COVID-19 pandemic in each test region is

quite different: Lazio hits the peak of the epidemic earlier, and

goes through a larger wave with many peaks, while Campania

and Sicilia have shorter waves with a smaller number of peaks.

Sicilia has the least number of peaks compared to other

regions. The framework captures the overall structure of the

real data and gives a good error margin to enable the early

detection of the outbreak in each test region.

B. DETECTION TIME

To compare the early outbreak detection performance of the

proposed framework with other models, anomaly detection

time in days is calculated. The Shewhart control chart value

for the feature “new positive cases” is used as the threshold

level for an alarm. Outbreak detection date is calculated as the

date of the first alert raised when the alarm level passes the

threshold line. Table III shows a comparison of all models

based on the early outbreak detection performance. Best

performing models on all three regions are highlighted.

In this test dataset, the anomalies are not just the spike or

point anomalies. They are contextual anomalies; and there is a

trend in them showing the progression of the COVID-19

pandemic in each region. This makes this dataset difficult for

an anomaly detection algorithm as contamination rate is very

high in the training set.

The proposed framework outperforms all compared models

in early outbreak detection for all test regions. Statistical

models show similar performance on the regions Campania

and Sicilia. The FFT falls behind other models on the region

Lazio. LDBSCAN algorithm shows better early outbreak

detection performance on the regions Lazio and Sicilia

compared to IsolationForest and LOF. It can be seen that

OCSVM does not work on such highly contaminated training

data as it falls behind on early outbreak detection in all test

regions. CUSUM, on the other hand, performs significantly

better than other statistical and distance-based models. In

general, other deep learning models show similar performance

on each test region except DeepAnT, which shows better

performance than other compared deep learning models.

We compare our model with the best performing models,

namely the CUSUM, DeepAnT, and LDBSCAN. Fig. 8 to 10

illustrate the alarms generated by models, which are plotted

against the standard threshold level and daily real case counts

for the parameter “new positive cases”. The case counts and

model alarm values (or anomaly scores) are min-max

normalized into the range of [0, 1] before plotting. When an

alarm value passes the threshold line, it is plotted in red to

illustrate an outbreak signal.

When we look at plots for the region Lazio in Fig. 8, the

alarm level of the proposed framework passes the threshold

line on March 4. It generates strong alarm signals through the

wave of the COVID-19 pandemic. CUSUM, LDBSCAN and

DeepAnT send first alarm signals on March 12, which is the

date national lockdown was announced in Italy. Fig. 9 shows

the test results for the region Campania. The proposed model

can detect the early upswing trend in the epidemic while other

models fall behind in detecting the outbreak. The proposed

model gives the first outbreak signal which passes the

threshold level on March 5, while CUSUM and DeepAnT give

on March 8, and LDBSCAN gives the signal on March 18.

The region Campania is very challenging for early outbreak

detection as the upswing trend starts very late and suddenly in

mid-March. Fig. 10 shows the test results for the region Sicilia.

The proposed framework sends the first outbreak signal on

March 1. It is followed by the DeepAnT model, which sends

the first outbreak signal on March 4, followed by the CUSUM

model, which sends the first outbreak signal on March 12, and

followed by LDBSCAN, which sends the first outbreak signal

on March 16. LDBSCAN shows good outbreak detection

performance on Lazio and Campania but fails on the region

Sicilia. DeepAnT is very successful in early outbreak

detection in all regions, but significantly better on the region

Sicilia compared to other base models. However, despite the

downward trend of the pandemic in the region Sicilia after

April 15, DeepAnT continues to send outbreak signals.

It can be observed that our model has the capability of

detecting abnormal upswing trends in COVID-19 pandemic

waves in each test region. The main advantage of the proposed

framework is that once it is trained on the training set, it does

not need the history of the tested region to detect any

anomalous event. It can detect point anomalies as well as

contextual anomalies in test regions. It is better at tracking the

abnormal events and in detecting every major peak throughout

the wave of the COVID-19 pandemic in each test region. What

makes the proposed framework different from other deep

learning-based models is the way it uses the spatio-temporal

data. The nearest neighbor’s data, which is weighted based on

the distance to the region, is exploited to extract the best

spatio-temporal features. This makes the framework robust

against noise and anomalies in the dataset.

C. DISCUSSION ON OTHER PARAMETERS

The basic reproduction number (R0), which is an indicator of

average number of secondary cases infected by the person who

already had an infection, is one of the most important

characteristics of an epidemic [96]. Health authorities and

governments around the world build their preventive measures

based on the reproduction number of the epidemic [97]. The

most concerning characteristics of the current COVID-19 is its

high reproduction number which was around 4.5 during the

early outbreak and may evolve throughout the pandemic based

on the mitigation measures taken by the governments such as

rates of diagnostic testing, quarantine measures, case and

contact isolation, face masks usage enforcement, and public

education [98], [99]. In Italy, almost every day from February

25 until the start of national lockdown in March 12, new and

stricter policies have been declared in many Italian provinces

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

14

aimed at containing the outbreak and delaying the epidemic

peak [8].

A recent study by Tahmasebi et al. [100] emphasizes the

effect of different social distancing scenarios on the spread of

COVID-19. They also discuss that other than government

intervention scenarios, the pre-existing regional specific

variables such as environmental, economic, and health factors

may also have influenced the vulnerability to COVID-19. In

order to build a more realistic early outbreak detection and

pandemic tracking algorithm, all region-specific factors

should be considered. In fact, many questions regarding the

spread dynamics of COVID-19 have remained unanswered,

such as why different regions experience different

reproduction and fatality rates, which cultural and health

variables have the most influence on the spread of COVID-19.

As we gain more information on the COVID-19 pandemic, we

will be able to build more effective models to detect the

outbreak on each different region.

VI. CONCLUSION

In this study, a deep learning framework is presented for

unsupervised detection of anomalies in multivariate spatio-

temporal data. We also presented a novel way of pre-

processing the non-image multivariate spatio-temporal data by

using the nearest spatial neighborhood. The 3D cuboid data is

formed by stacking the data from the nearest spatio-temporal

neighbors of each multivariate data point. The proposed

hybrid framework is designed to be trained in a truly

unsupervised fashion without any labels indicating normal or

abnormal data. The proposed approach is robust enough to

learn the underlying dynamics even if the training dataset is

highly contaminated with anomalies (more than 5%).

In all distance/clustering-based algorithms, the biggest

challenge is to combine the contextual features along the

spatial and temporal dimensions in a meaningful way. In the

proposed approach, we handle spatial and temporal context by

different deep learning components as these contextual

variables refer to different types of dependencies. The

proposed framework requires no prior knowledge on

anomalies such as the distribution and types of anomalies.

There have been many studies that model the

epidemiological dynamics of Covid-19. However, none of

them have been focused on building an anomaly detection

system for early epidemic detection. We conducted

experiments using COVID-19 Italy dataset provided by the

Italian Department of Civil Protection. We used northern

Italian regions data to train the model and then used this one

unified model to detect anomalous patterns of central and

southern regions of Italy. We evaluated the performance of the

proposed framework against 15 different anomaly detection

algorithms including state-of-the art deep learning-based

approaches proposed in recent years. It outperformed the state-

of-the-art deep learning approaches in both early detection and

tracking the COVID-19 outbreak. Experiments have shown

that the framework is capable of handling the small amount of

data event if the contamination level is too high as in the case

of COVID-19 Italy dataset.

Our contributions can be summarized as follows:

1) To the best of our knowledge, the proposed framework,

which is composed of a novel data crafting and a hybrid deep

learning model, is the first attempt in solving unsupervised

anomaly detection problem which is designed specifically for

non-image multivariate spatio-temporal data.

2) It achieves good generalization capabilities in scenarios

where the training data are scarce and contaminated with

anomalies. In the case study, only 82 daily data entries (data

points) are available for each region. Even these contaminated

outbreak data are sufficient to build a robust anomaly

detection model due to its effective architecture to exploit

spatio-temporal neighborhood data.

3) The biggest challenge in anomaly detection for spatio-

temporal data is to combine the contextual attributes in a

meaningful way. In the proposed hybrid approach, spatial and

temporal contexts are handled by different deep learning

components as these contextual variables refer to different

types of dependencies.

This study illustrates the capability of the proposed

approach to detect anomalous patterns and disease outbreaks

in a timely manner. Our framework is aimed to provide useful

insight for the crisis management against the novel

coronavirus. It might help monitoring COVID-19 pandemic

progression in various regions simultaneously to detect any

signs of an outbreak.

The proposed framework has some limitations. The main

limitation is that it is based on the assumption that similar

control measures to suppress the outbreak are taken by all

regions. However, it is not true as some regions put more

restrictions on mobility resulting less correlation on daily

pandemic data between neighboring regions. Further

improvements can be achieved by including the control

measures taken by each region into the model as part of the

spatial context. Another limitation is the selection of the hyper

parameters for each dataset for optimum performance. We

plan to explore optimization-based techniques to select

framework’s hyper-parameters to further enhance the

performance. Finally, we plan to enhance the framework by

adding the attention mechanism to tackle the weaknesses in

analyzing long sequences.

REFERENCES
[1] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, "Outlier Detection for

Temporal Data: A Survey," in IEEE Transactions on Knowledge and
Data Engineering, vol. 26, no. 9, pp. 2250-2267, Sept. 2014, doi:

10.1109/TKDE.2013.184.

[2] T. Cheng and Z. Li, "A Multiscale Approach for Spatio-
Temporal Outlier Detection", Transactions in GIS, vol. 10, no.

2, pp. 253-263, 2006, doi: 10.1111/j.1467-9671.2006.00256.x.

[3] C. C. Aggarwal, "Spatial Outlier Detection" in Outlier Analysis, 2nd
ed. New York, USA: Springer Nature, 2017, pp.345-367.

[4] V. Hodge and J. Austin, "A Survey of Outlier Detection
Methodologies", Artificial Intelligence Review, vol. 22, no. 2, pp. 85-

126, 2004. doi: 10.1023/b:aire.0000045502.10941.a9.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

15

[5] S. Du, T. Li, Y. Yang, and S. Horng, "Deep Air Quality Forecasting

Using Hybrid Deep Learning Framework", IEEE Transactions on

Knowledge and Data Engineering, pp. 1-1, 2020, doi:
10.1109/tkde.2019.2954510.

[6] Y. Sun, X. Wang and X. Tang, "Hybrid Deep Learning for Face

Verification," in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 10, pp. 1997-2009, 1 Oct. 2016, doi:

10.1109/TPAMI.2015.2505293.

[7] Y. Jiang, Z. Wu, J. Tang, Z. Li, X. Xue and S. Chang, "Modeling
Multimodal Clues in a Hybrid Deep Learning Framework for Video

Classification," in IEEE Transactions on Multimedia, vol. 20, no. 11,

pp. 3137-3147, Nov. 2018, doi: 10.1109/TMM.2018.2823900.
[8] E. Pepe, P. Bajardi, L. Guavin, F. Privitera, and B. Lake, "COVID-19

outbreak response, a dataset to assess mobility changes in Italy

following national lockdown", Scientific Data, vol. 7, no. 1, 2020, doi:
10.1038/s41597-020-00575-2.

[9] C. Distante, I. G. Pereira, L. G. Goncalves, P. Piscitelli, and A. Miani,

"Forecasting Covid-19 Outbreak Progression in Italian Regions: A
model based on neural network training from Chinese data", 2020, doi:

10.1101/2020.04.09.20059055.

[10] A. L. Ziff and R. M. Ziff, "Fractal kinetics of Covid-19 pandemics (with
update 3/1/20)," MedRxiv Preprint, Mar. 2020, doi:

10.1101/2020.02.16.20023820

[11] Z. Yang et al., "Modified SEIR and AI prediction of the epidemics trend
of COVID-19 in China under public health interventions", Journal of

Thoracic Disease, vol. 12, no. 3, pp. 165-174, 2020. Available:
10.21037/jtd.2020.02.64.

[12] L. Zhong, L. Mu, J. Li, J. Wang, Z. Yin, and D. Liu, "Early Prediction

of the 2019 Novel Coronavirus Outbreak in the Mainland China Based
on Simple Mathematical Model," IEEE Access, Mar. 2020, vol. 8, pp.

51761–51769, doi: 10.1109/ACCESS.2020.2979599.

[13] J. Wangping et al., "Extended SIR Prediction of the Epidemics Trend
of COVID-19 in Italy and Compared With Hunan, China", Frontiers in

Medicine, vol. 7, 2020. Available: 10.3389/fmed.2020.00169.

[14] R. Megna, "First month of the epidemic caused by COVID-19 in Italy:
current status and real-time outbreak development forecast," medRxiv

preprint, Mar. 2020, doi: 10.1101/2020.03.26.20044628.

[15] G. Perone, "An ARIMA Model to Forecast the Spread of COVID-2019
Epidemic in Italy", SSRN Electronic Journal, 2020. Available:

10.2139/ssrn.3564865.

[16] R. Dandekar and G. Barbastathis, "Neural network aided quarantine
control model estimation of COVID spread in Wuhan, China," arXiv

preprint arXiv:2003.09403, 2020.

[17] K. A. Moore, M. Lipsitch, J. M. Barry, and M. T. Osterholm, "COVID-
19: The CIDRAP Viewpoint. Part 1: The Future of the COVID-19

Pandemic: Lessons Learned from Pandemic Influenza," CIDRAP,

University of Minnesota, Minneapolis, MN, USA, Apr. 30, 2020.
[Online] Available:

https://www.cidrap.umn.edu/sites/default/files/public/downloads/cidra

p-covid19-viewpoint-part1_0.pdf
[18] W.-K. Wong, A. Moore, G. Cooper, and M. Wagner, "Rule-Based

Anomaly Pattern Detection for Detecting Disease Outbreaks", in Proc.

Nat'l Conf. Artificial Intelligence (AAAI '02), pp. 217-223, Aug. 2002.
[19] M. M. Wagner, F. C. Tsui, J. U. Espino, V. M. Dato, D. F. Sittig, R. A.

Caruana, L. F. McGinnis, D. W. Deerfield, M. J. Druzdzel, and D. B.

Fridsma, "The Emerging Science of Very Early Detection of Disease
Outbreaks," J. of Public Health Manag. & Pract., Nov. 2001, vol. 7, no.

6, pp. 51-9, doi: 10.1097/00124784-200107060-00006.

[20] The COVID-19 Data Italy website by Italian Department of Civil
Protection, URL: https://github.com/pcm-dpc/COVID-19, Accessed

on: May 15, 2020.

[21] J. Takeuchi and K. Yamanishi, "A unifying framework for detecting
outliers and change points from time series," in IEEE Transactions on

Knowledge and Data Engineering, vol. 18, no. 4, pp. 482-492, April

2006, doi: 10.1109/TKDE.2006.1599387.

[22] H. Cheng, P. N. Tan, C. Potter, and S. Klooster, "Detection and

Characterization of Anomalies in Multivariate Time Series," presented

at the SIAM Int. Conf. on Data Mining, Apr. 30-May 2, 2009, doi:
10.1137/1.9781611972795.36.

[23] S. Shekhar, C. T. Lu, and P. Zhang, "A Unified Approach to Detecting

Spatial Outliers," GeoInformatica, vol. 7, pp. 139–166, Jun. 2003, doi:
10.1023/A:1023455925009.

[24] C. -. Lu, D. Chen and Y. Kou, "Algorithms for spatial outlier detection,"

Third IEEE International Conference on Data Mining, Melbourne, FL,

USA, 2003, pp. 597-600, doi: 10.1109/ICDM.2003.1250986.
[25] S. Shekhar, C. T. Lu, and P. Zhang, "Detecting Graph-based Spatial

Outliers: Algorithms and Applications," in 7th ACM SIGKDD Int.

conf. on Knowledge Discovery and Data Mining, San Francisco,
California, Aug. 2001, pp. 371–376.

[26] P. Sun and S. Chawla, "On local spatial outliers," Fourth IEEE

International Conference on Data Mining (ICDM'04), Brighton, UK,
2004, pp. 209-216, doi: 10.1109/ICDM.2004.10097.

[27] S. A. McKenna, "Statistical Parametric Mapping for Geoscience

Applications", in Handbook of Mathematical Geosciences, Fifty Years
of IAMG, 1st ed. Cham, Switzerland: Springer, 2018, pp. 277-298.

[28] P. Tahmasebi, "Multiple Point Statistics: A Review," in Handbook of

Mathematical Geosciences, Fifty Years of IAMG, 1st ed. Cham,
Switzerland: Springer, 2018, pp. 613-644.

[29] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, "LOF:

Identifying Density-based Local Outliers," ACM SIGMOD Record,
vol. 29, no. 2, pp. 93-104, 2000. Available: 10.1145/335191.335388.

[30] D. Pokrajac, A. Lazarevic, and L. J. Latecki, "Incremental Local Outlier

Detection for Data Streams," 2007 IEEE Symposium on Computational
Intelligence and Data Mining, Honolulu, HI, 2007, pp. 504-515, doi:

10.1109/CIDM.2007.368917.

[31] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A Density-Based
Algorithm for Discovering Clusters in Large Spatial Databases with

Noise," in Proc. of the 2nd ACM Intl. Conf on Knowledge Discovery
and Data Mining, 1996, pp. 226–231.

[32] L. Duan, L. Xu, F. Guo, J. Lee, and B. Yan, "A local-density based

spatial clustering algorithm with noise", Information Systems, vol. 32,
no. 7, pp. 978-986, 2007. Available: 10.1016/j.is.2006.10.006.

[33] C. C. Aggarwal, "Proximity-Based Outlier Detection" in Outlier

Analysis, 2nd ed. Springer Nature, New York, USA, 2017, pp. 111-
148.

[34] Z. He, X. Xu, and S. Deng, "Discovering cluster-based local outliers",

Pattern Recognition Letters, vol. 24, no. 9-10, pp. 1641-1650, 2003.
Available: 10.1016/s0167-8655(03)00003-5.

[35] D. Birant and A. Kut, "Spatio-temporal outlier detection in large

databases," J. of Comp. and Inf. Tech., vol. 14, no. 4, 2006, pp. 291-
297.

[36] M. Gupta, A. B. Sharma, H. Chen, and G. Jiang, "Context-Aware Time

Series Anomaly Detection for Complex Systems," SDM Workshop on
Data Mining for Service and Maintenance, 2013, p. 14.

[37] F. T. Liu, K. M. Ting, and Z.-H. Zhou, "Isolation Forest," 2008 Eighth

IEEE International Conference on Data Mining, Pisa, Italy, 2008, pp.
413-422, doi: 10.1109/ICDM.2008.17.

[38] F. T. Liu, K. M. Ting and Z.-H. Zhou, "Isolation-based anomaly

detection", ACM Trans. Knowl. Discov. Data, vol. 6, no. 1, pp. 3:1-
3:39, Mar. 2012.

[39] A. Lavin and S. Ahmad, "Evaluating real-time anomaly detection

algorithms-The Numenta anomaly benchmark," in Proc. IEEE 14th Int.
Conf. Mach. Learn. Appl. (ICMLA), Dec. 2015, pp. 38-44.

[40] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, "Unsupervised realtime

anomaly detection for streaming data," Neurocomputing, vol. 262, pp.
134-147, Nov. 2017.

[41] P. Evangelista, P. Bonnisone, M. Embrechts, and B. Szymanski, "Fuzzy

ROC Curves for the 1 Class SVM: Application to Intrusion Detection,"
in Proc. of the 13th European Symposium on Artificial Neural

Networks, 2005, pp. 345–350.

[42] J. Ma and S. Perkins, "Time-series Novelty Detection using One-class
Support Vector Machines," in Proc. of the Intl. Joint Conf. on Neural

Networks (IJCNN), vol. 3, Jul 2003, pp. 1741–1745.

[43] B. Szymanski and Y. Zhang, "Recursive Data Mining for Masquerade
Detection and Author Identification," in Proc. of the 5th Annual IEEE

Systems, Man, and Cybernetics - Information Assurance Workshop,

2004, pp. 424–431.

[44] A. M. Bianco, M. G. Ben, E. J. Martnez, and V. J. Yohai, "Outlier

Detection in Regression Models with ARIMA Errors Using Robust

Estimates," Journal of Forecasting, vol. 20, no. 8, pp. 565–579, Dec
2001.

[45] A. H. Yaacob, I. K. Tan, S. F. Chien, and H. K. Tan, "ARIMA based

network anomaly detection," in Proc. 2nd Int. Conf. Commun. Softw.
Netw. (ICCSN), Feb. 2010, pp. 205-209.

https://www.cidrap.umn.edu/sites/default/files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf
https://www.cidrap.umn.edu/sites/default/files/public/downloads/cidrap-covid19-viewpoint-part1_0.pdf

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

16

[46] Q. Yu, L. Jibin, and L. Jiang, "An improved ARIMA-based traffic

anomaly detection algorithm for wireless sensor networks," Int. J.

Distrib. Sensor Netw., vol. 12, no. 1, p. 9653230, 2016. Available:
10.1155/2016/9653230.

[47] D. C. Montgomery, "Cumulative Sum and Exponentially Weighted

Moving Average Control Charts," in Introduction to Statistical Quality
Control, 6th ed., Hoboken, NJ, USA: John Wiley and Sons, 2009,

pp.399-432.

[48] W. Wong, A. Moore, G. Cooper, and M. Wagner, "What’s strange
about recent events (WSARE): An algorithm for the early detection of

disease outbreaks," Journal of Machine Learning Research, vol. 6, Dec.

2005, pp.1961–1998.
[49] D. C. Montgomery, "Control Charts for Variables," in Introduction to

Statistical Quality Control, 6th ed., Hoboken, NJ, USA: John Wiley and

Sons, 2009, pp.259-268.
[50] L. Hutwagner, W. Thompson, G. M. Seeman, and T. Treadwell, "The

bioterrorism preparedness and response early aberration reporting

system (EARS)," J. Urban Health, vol. 80, pp. 89–96, Mar. 2003.
[51] M. Kulldorff, "A spatial scan statistic," Communications in Statistics:

Theory and Methods, vol. 26 (6), pp. 1481–1496, 1997.

[52] D.B. Neill and G. F. Cooper, "A multivariate Bayesian scan statistic for
early event detection and characterizatio," Mach. Learn., vol. 79, 2010,

pp. 261–282, doi: 10.1007/s10994-009-5144-4.

[53] R. Chalapathy and S. Chawla, "DEEP LEARNING FOR ANOMALY
DETECTION: A SURVEY." [Online]. Available:

https://arxiv.org/abs/1901.03407
[54] B. R. Kiran, D. M. Thomas, and R. Parakkal, "An overview of deep

learning based methods for unsupervised and semi-supervised anomaly

detection in videos," Journal of Imaging, 4(2):36, 2018, doi:
10.3390/jimaging4020036

[55] C. C. Aggarwal, "Time Series and Multidimensional Streaming Outlier

Detection" in Outlier Analysis, 2nd ed. New York, USA: Springer
Nature, 2017, pp.273-311.

[56] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, "Long Short Term

Memory Networks for Anomaly Detection in Time Series," Proc. 23rd
European Symposium On Artificial Neural Networks Computational

Intelligence and Machine Learning, pp. 89-94, 2015.

[57] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G.
Shroff, "LSTM-based Encoder-Decoder for Multisensor Anomaly

Detection", Presented at ICML 2016 Anomaly Detection Workshop,

Jul. 2016.
[58] M. Hasan, J. Choi, J. Neumann, A. K. Roy-Chowdhury, and L. S.

Davis, "Learning temporal regularity in video sequences", Proc. IEEE

Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 733-742, Jun. 2016.
[59] H. Yang, B. Wang, S. Lin, D. Wipf, M. Guo, and B. Guo,

"Unsupervised extraction of video highlights via robust recurrent auto-

encoders", Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 4633-
4641, Oct. 2015.

[60] W. Sultani, C. Chen and M. Shah, "Real-world Anomaly Detection in

Surveillance Videos", IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2018.

[61] A. Munawar, P. Vinayavekhin and G. De Magistris, "Spatio-Temporal

Anomaly Detection for Industrial Robots through Prediction in
Unsupervised Feature Space," 2017 IEEE Winter Conference on

Applications of Computer Vision (WACV), Santa Rosa, CA, 2017, pp.

1017-1025, doi: 10.1109/WACV.2017.118.
[62] P. Perera and V. M. Patel, "Learning Deep Features for One-Class

Classification," in IEEE Transactions on Image Processing, vol. 28, no.

11, pp. 5450-5463, Nov. 2019, doi: 10.1109/TIP.2019.2917862.
[63] H. Estiri and S. Murphy, "Semi-supervised encoding for outlier

detection in clinical observation data," Computer Methods and

Programs in Biomedicine, vol. 181, 2019, pp.104830,
doi:10.1016/j.cmpb.2019.01.002.

[64] D. D’Avino, D. Cozzolino, G. Poggi, and L. Verdoliva, "Autoencoder

with recurrent neural networks for video forgery detection", Proc. IS&T

Int. Symp. Electron. Imag. Media Watermarking Secur. Forensics, pp.

92-99, 2017.

[65] Y. S. Chong and Y. H. Tay, "Abnormal event detection in videos using
spatiotemporal autoencoder," In International Symposium on Neural

Networks, pages 189–196. Springer, 2017.

[66] M. Munir, S. A. Siddiqui, A. Dengel and S. Ahmed, "DeepAnT: A
Deep Learning Approach for Unsupervised Anomaly Detection in

Time Series," in IEEE Access, vol. 7, pp. 1991-2005, 2019, doi:

10.1109/ACCESS.2018.2886457.

[67] J. Nogas, S. S. Khan, A. Mihailidis, "DeepFall: Non-Invasive Fall
Detection with Deep Spatio-Temporal Convolutional Autoencoders,"

J. Healthc. Inform. Res. vol. 4, pp. 50–70, 2020, doi: 10.1007/s41666-

019-00061-4.
[68] G. E. Hinton and R.R. Salakhutdinov, "Reducing the Dimensionality of

Data with Neural Networks," Science, Jul 2006, vol. 313, no. 5786, pp.

504-507, doi: 10.1126/science.1127647.
[69] Y. Bengio, "Learning Deep Architectures for AI," Found. Trends

Mach. Learn. 2009, vol. 2, pp. 1–127, doi:10.1561/2200000006.

[70] R. Hecht-Nielsen, "Replicator Neural Networks for Universal Optimal
Source Coding," Science, 29 Sep 1995, vol. 269, no. 5232, pp. 1860-

1863, doi: 10.1126/science.269.5232.1860.

[71] C. C. Aggarwal, "Linear Models for Outlier Detection" in Outlier
Analysis, 2nd ed. Springer Nature, New York, USA, 2017, pp.65-111.

[72] N. Japkowicz, S. J. Hanson, ; M. A. Gluck, "Nonlinear autoassociation

is not equivalent to PCA," Neural Comput. 2000, 12, pp. 531–545.
[73] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, Y., P.A. Manzagol,

"Stacked denoising autoencoders: Learning useful representations in a

deep network with a local denoising criterion," J. Mach. Learn. Res.
2010, vol. 11, pp. 3371–3408.

[74] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, "Contractive

Auto-Encoders: Explicit Invariance during Feature Extraction", in
Proc. Int'l Conf. Machine Learning, Jul. 2011, pp. 833–840.

[75] M. Sakurada and T. Yairi, "Anomaly detection using autoencoders with
nonlinear dimensionality reduction", Proc. ACM Workshop Mach.

Learn. Sensory Data Anal. (MLSDA), pp. 4, Dec. 2014,

doi:10.1145/2689746.2689747.
[76] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521,

pp. 436–444, 2015, doi:10.1038/nature14539.

[77] I. Goodfellow, Y. Bengio, A. Courville, "Autoencoders," in Deep
Learning, MIT Press, 2016, pp. 502–525.[Online]. Available:

http://www.deeplearningbook.org.

[78] P. Baldi, "Autoencoders, Unsupervised Learning, and Deep
Architectures," ICML Unsupervised Transf. Learn. pp. 37–50, 2012.

[79] S. Ji, W. Xu, M. Yang and K. Yu, "3D Convolutional Neural Networks

for Human Action Recognition," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan.

2013, doi: 10.1109/TPAMI.2012.59.

[80] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. Wong, W. Woo,
"Convolutional LSTM network: A machine learning approach for

precipitation nowcasting", Proc. Adv. Neural Inf. Process. Syst., pp.

802-810, 2015.
[81] V. Patraucean, A. Handa, and R. Cipolla, "Spatio-temporal video

autoencoder with differentiable memory," In ICLR Workshop, 2016.

[Online]. Available: http://arxiv.org/abs/1511.06309
[82] The COVID-19 Data Italy website by Italian Department of Civil

Protection, URL: https://github.com/pcm-dpc/COVID-19, Accessed

on: May 15, 2020.
[83] S. Boccia, W. Ricciardi, J.P.A. Ioannidis, "What Other Countries Can

Learn From Italy During the COVID-19 Pandemic," JAMA Intern

Med. 2020; vol. 180, pp. 927–928.
doi:10.1001/jamainternmed.2020.1447.

[84] M. U. G. Kraemer, C.-H. Yang, B. Gutierrez, C.-H. Wu, B. Klein, D.

M. Pigott, L. du Plessis, N. R. Faria, R. Li, W. P. Hanage, J. S.
Brownstein, M. Layan, A. Vespignani, H. Tian, C. Dye, O. G. Pybus,

S. V. Scarpino, Open COVID-19 Data Working Group, "The effect of

human mobility and control measures on the COVID-19 epidemic in
China," Science 368, 2020.

doi:10.1126/science.abb4218pmid:32213647.

[85] Italian National Institute of Statistics Website. [Online] Available:
http://dati.istat.it/Index.aspx?lang=en&SubSessionId=50f87960-20d5-

44f2-b405-5fe16f91da73

[86] P. V. Ingole and M. K. Nichat, "Landmark based shortest path detection

by using Dijkestra Algorithm and Haversine Formula," Int. J. Eng. Res.

and Appl. (IJERA), vol. 3, no. 3, 2013, pp.162-165.

[87] K. Simonyan and A. Zisserman, "Very deep convolutional networks for
large-scale image recognition", Proc. Int. Conf. Learn. Representations,

2015. [Online]. Available: https://arxiv.org/abs/1409.1556

https://arxiv.org/abs/1901.03407
http://www.deeplearningbook.org/
http://arxiv.org/abs/1511.06309
http://dati.istat.it/Index.aspx?lang=en&SubSessionId=50f87960-20d5-44f2-b405-5fe16f91da73
http://dati.istat.it/Index.aspx?lang=en&SubSessionId=50f87960-20d5-44f2-b405-5fe16f91da73
https://arxiv.org/abs/1409.1556

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

17

[88] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep

network training by reducing internal covariate shift," In ICML, 2015.

[Online]. Available: https://arxiv.org/abs/1502.03167
[89] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep

feedforward neural networks", Proc. AISTATS, pp. 249-256, 2010.

[90] A. Wojtak, "Attempt to Predict The Stock Market,” Interactive
Qualifying Project, Math. Sci., Worcester Polytec. Inst., Worcester,

MA, USA, February, 2008. [Online]. Available:

https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=3117&co
ntext=iqp-all

[91] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo, "A geometric

framework for unsupervised anomaly detection: Detecting intrusions in
unlabeled data", Proc. Appl. Data Mining Comput. Security, 2002.

[92] M. Abadi et al. "TensorFlow: Large-scale machine learning on

heterogeneous systems,", 2015. Available: https://www.tensorflow.org
[93] F. Pedregosa et al. "Scikit-learn: Machine Learning in Python," JMLR

12, pp. 2825-2830, 2011.

[94] S. Seabold and J. Perktold, "Statsmodels: Econometric and statistical
modeling with python," Proceedings of the 9th Python in Science

Conference, 2010.

[95] "Strategies for the surveillance of COVID-19," European Centre for
Disease Prevention and Control, Stockholm, 9 April 2020. [Online].

Available:https://www.ecdc.europa.eu/sites/default/files/documents/C

OVID-19-surveillance-strategy-9-Apr-2020.pdf
[96] N. Chintalapudi, G. Battineni, G.G. Sagaro, F. Amenta, "COVID-19

outbreak reproduction number estimations and forecasting in Marche,
Italy," International Journal of Infectious Diseases, vol. 96, July 2020,

pp. 327-333.

[97] N. Ferguson et al. "Report 9: Impact of non-pharmaceutical
interventions (NPIs) to reduce COVID-19 mortality and healthcare

demand," Faculty of Medicine, School of Public Health, Imperial

College London, 16 Mar 2020.
[98] S. Layne, J. Hyman, D. Morens, and J. Taubenberger, "New

coronavirus outbreak: framing questions for pandemic prevention," Sci.

Transl. Med. 2020, https://doi.org/10.1126/scitranslmed.abb1469.
[99] K. Linka, M. Pierlinck, E. Kuhl, "The reproduction number of COVID-

19 and its correlation with public health interventions," medRxiv

2020.05.01.20088047; doi:
https://doi.org/10.1101/2020.05.01.20088047

[100] P. Tahmasebi, S. M. S. Shokri-Kuehni, M. Sahimi, and N. Shokri,

"How do environmental, economic and health factors influence
regional vulnerability to COVID-19?" medRxiv 2020.04.09.20059659;

doi: 10.1101/2020.04.09.20059659.

https://arxiv.org/abs/1502.03167
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=3117&context=iqp-all
https://digitalcommons.wpi.edu/cgi/viewcontent.cgi?article=3117&context=iqp-all
https://www.tensorflow.org/
https://doi.org/10.1126/scitranslmed.abb1469
https://doi.org/10.1101/2020.05.01.20088047

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

18

Algorithm 1 Sliding window algorithm used in subsequence generation
 # dataset: region dataset

 # T : Number of timesteps, window size (T)

 # region_list: region id list

 # s : sliding step size

 # depth: the number of spatial neighbors

 # distance_matrix: distance matrix of regions

 # output : multivariate spatio-temporal tensor data

 process_dataset (dataset,

 T,

 region_list,

 s,

 depth,

 distance_matrix)

1: output = list()

2: for each region in region_list:

 # get region data from dataset

3: data  dataset[region]

4: start_indx = 0

5: end_indx = start_indx + T

 # step through the region data

6: while (end_indx < length(data)):

 # get start and end timestamps of data slice of size T

7: start_date = getStartTimestamp (data, start_indx)

8: end_date = getEndTimestamp(data, end_indx)

 # get subsequence from region data:

 # seqs : 3D spatio-temporal data

9: seqs[n, 0] = data[start_indx..end_indx]

 # get subsequences from depth-1 nearest neighbours:

10: seqs[n, 1:depth] = getDataFromNeighbours(dataset, T,

start_date_time, end_date_time, region_code, depth-1)

 output.append(seqs)

10. start_indx = start_indx + s

11. end_indx = start_indx + T

12. n = n + 1 # end-while

13. return output

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

19

FIGURE 3. Correlation matrix visualized as heatmap. It shows the strong spatial correlation between regions for the feature “Current Positive

Cases”.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

20

FIGURE 4. The proposed hybrid spatio-temporal autoencoder network architecture.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

21

TABLE III
OUTBREAK DETECTION DATE OF MODELS

Model Name Lazio Campania Sicilia

Shewhart Control Chart 18 March 19 March 22 March

CUSUM 12 March 8 March 12 March

ARIMA 13 March 19 March 21 March

EWMA 13 March 19 March 22 March

FFT 18 March 19 March 22 March

IsolationForest 13 March 15 March 18 March

LOF 13 March 15 March 17 March

LDBSCAN 12 March 18 March 16 March

OCSVM 15 March 20 March 17 March

LSTM Predictor [56] 13 March 19 March 8 March

LSTM Autoencoder [57] 13 March 19 March 19 March

CNN Autoencoder [58] 13 March 19 March 22 March

Chong and Tay [65] 16 March 19 March 21 March

DeepAnT [66] 12 March 8 March 4 March

DeepFall [67] 13 March 19 March 21 March

Proposed Framework 4 March 5 March 1 March

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

22

FIGURE 5. Model test results for the region Lazio are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases,

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and

reconstruction errors are plotted in red.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

23

FIGURE 6. Model test results for the region Campania are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases,

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and

reconstruction errors are plotted in red.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

24

FIGURE 7. Model test results for the region Sicilia are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases,

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and

reconstruction errors are plotted in red.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

25

FIGURE 8. Region Lazio: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new positive

cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted in red.

A red alarm signal can be interpreted as an outbreak for the region.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

26

FIGURE 9. Region Campania: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new

positive cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted

in red. A red alarm signal can be interpreted as an outbreak for the region.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

27

FIGURE 10. Region Sicilia: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new positive

cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted in red.

A red alarm signal can be interpreted as an outbreak for the region.

