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ABSTRACT Unsupervised anomaly detection for spatio-temporal data has extensive use in a wide variety 

of applications such as earth science, traffic monitoring, fraud and disease outbreak detection. Most real-

world time series data have a spatial dimension as an additional context which is often expressed in terms of 

coordinates of the region of interest (such as latitude - longitude information). However, existing techniques 

are limited to handle spatial and temporal contextual attributes in an integrated and meaningful way 

considering both spatial and temporal dependency between observations. In this paper, a hybrid deep learning 

framework is proposed to solve the unsupervised anomaly detection problem in multivariate spatio-temporal 

data. The proposed framework works with unlabeled data and no prior knowledge about anomalies are 

assumed. As a case study, we use the public COVID-19 data provided by the Italian Department of Civil 

Protection. Northern Italy regions’ COVID-19 data are used to train the framework; and then any abnormal 

trends or upswings in COVID-19 data of central and southern Italian regions are detected. The proposed 

framework detects early signals of the COVID-19 outbreak in test regions based on the reconstruction error. 

For performance comparison, we perform a detailed evaluation of 15 algorithms on the COVID-19 Italy 

dataset including the state-of-the-art deep learning architectures. Experimental results show that our 

framework shows significant improvement on unsupervised anomaly detection performance even in data 

scarce and high contamination ratio scenarios (where the ratio of anomalies in the data set is more than 5%). 

It achieves the earliest detection of COVID-19 outbreak and shows better performance on tracking the peaks 

of the COVID-19 pandemic in test regions. As the timeliness of detection is quite important in the fight 

against any outbreak, our framework provides useful insight to suppress the resurgence of local novel 

coronavirus outbreaks as early as possible. 

INDEX TERMS Spatio-temporal anomaly detection, multivariate, unsupervised, deep learning, COVID-

19, outbreak detection, Italy. 

I. INTRODUCTION 

An anomaly is an observation whose properties are 

significantly different from the majority of other 

observations under consideration, which are called the 

normal data. Anomaly detection refers to the problem of 

finding these observations in data that do not conform to 

expected or normal behavior. A spatial-temporal outlier (ST-

Outlier) is an object whose behavioral (non-spatial and non-

temporal) attributes are significantly different from those of 

the other objects in its spatial and temporal neighborhoods 

[1]. Spatio-temporal data are extremely common in many 

problem settings where collecting data from various spatial 

locations at different times for the nature of the problem are 

important. In such settings, detection of ST-Outliers can lead 

to the discovery of unexpected and interesting knowledge 

such as local instability and deformations [2]. Some 

examples of such spatio-temporal datasets are as follows: 

meteorological data, traffic data, earth science, and disease 

outbreak data. Events that generate spatio-temporal data are 

evolving events, such as hurricanes and disease outbreaks, 

and both spatial and temporal continuity are important in 

modelling such events [3]. 

For a problem domain, obtaining the labelled training data 

for all types of anomalies is often too expensive if not 

impossible [4]. This highlights the need for unsupervised 

techniques to find spatio-temporal anomalies. Moreover, 
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spatio-temporal datasets are generally multivariate, and have 

many contextual structures in them (spatial and temporal 

regularities), which makes them particularly difficult for 

labelling and well suited for unsupervised learning models. 

In the unsupervised scenarios, the type of anomalies and the 

ratio of anomalous events within the given dataset are 

generally not known. In such scenarios, we need to model 

the normal behavior of the underlying system in the presence 

of noise and anomaly which pose extra difficulty. 

In this study, we address these challenges by proposing a 

hybrid deep learning framework. It is an autoencoder based 

anomaly detection framework. The hybrid framework 

structure is based on the idea of combining various deep 

neural network components. It has been successfully applied 

to multivariate time series forecasting [5], face detection [6], 

and video classification [7]. However, it has not yet been 

applied to unsupervised anomaly detection problem for non-

image multivariate spatio-temporal data. Our proposed 

framework is composed of three stages: The first stage is the 

pre-processing of the multivariate spatio-temporal data so 

that the deep autoencoder network can exploit the spatial and 

temporal contexts jointly. The second stage is the data 

reconstruction stage, which is executed by a deep hybrid 

autoencoder network. The third stage is the anomaly 

detection stage, which is performed based on the 

reconstruction error. The hybrid autoencoder network is 

composed of a 3D convolutional neural network (CNN) 

based spatio-temporal encoder and a convolutional Long 

Short-Term Memory (ConvLSTM) network-based spatio-

temporal decoder. It is designed to be trained in a truly 

unsupervised fashion for anomaly detection in non-image 

spatio-temporal datasets. We know that in a time series data 

set, data points with two adjacent timestamps are likely to 

have a higher similarity than data points with more distant 

timestamps. It is also true for spatio-temporal datasets that 

neighboring regions may have some strongly positively 

correlated patterns, such as traffic jam, climate change, and 

human activity. The hybrid deep learning framework is able 

to exploit contextual features of neighboring regions for 

anomaly detection in the absence of labels for normal or 

abnormal events.  

The world has been fighting a pandemic caused by a new 

type of coronavirus (SARS-CoV-2) since it was discovered 

in China in December 2019. Almost all countries have been 

affected by the novel coronavirus (COVID-19) outbreak, and 

Italy is one of the hardest-hit European countries. As of May 

15, the total number of positive cases reached 223,885 and 

the number of deaths exceeded 31,000. Following the 

identification of the first infections on the second half of 

February 2020 in northern Italy, authorities put an increasing 

number of restrictions in place [8]. Due to the high 

contagiousness of the infection, this did not stop further 

spreading of the epidemic by asymptomatic people. The 

peaks of the epidemic were delayed in Central and Southern 

Italian regions as expected compared to Lombardy and other 

northern regions [9]. As it has been shown by the COVID-

19 outbreak, the biggest challenge is to detect the outbreak 

during its early stages and mitigate its effects. The lack of an 

early epidemic warning system eliminated the opportunity to 

prohibit the epidemic spread at the initial stage. We would 

like to apply the proposed hybrid framework to tackle the 

problem of early disease outbreak detection in the midst of 

this global health crisis. 

There have been many studies that model the 

epidemiological dynamics of COVID-19 [10]-[16]. They use 

either SEIR or other statistical models to predict the spreading 

and peaks of the epidemic, duration of the epidemic, and an 

overall number of potentially infected individuals at a national 

or regional level. However, none of those studies have focused 

on building an anomaly detection system for early epidemic 

detection. We believe that the proposed deep learning-based 

anomaly detection framework will prove useful in detecting 

COVID-19 epidemic waves. According to an analysis by 

disease experts, cases may come in waves of different heights 

by the end of 2021 depending on control measures and other 

factors [17]. This makes it quite necessary to build a 

monitoring tool for the timely detection of COVID-19 waves 

in different regions. 

For any anomaly detection algorithm to be successful in 

early detection of disease outbreaks, it must incorporate both 

spatial and temporal aspects of a disease [18]. On the other 

hand, accurate monitoring of the evolution of the COVID-19 

epidemic becomes extremely meaningful for the decision-

making authorities to take appropriate actions against any 

public health crisis. As the extreme timeliness of detection is 

the new requirement of public health [19], this data-driven 

approach may help us build an anomaly detection tool for a 

more timely detection of the COVID-19 outbreak. 

We use public COVID-19 data provided by the Italian 

Department of Civil Protection [20] as a case study in this 

research. We test the proposed model with the dataset at a 

resolution of the region level. We train one unified model 

with the data from northern regions, and using that model, 

we track the progression of the COVID-19 epidemic in test 

regions, which are central and southern regions of Italy. The 

framework can detect anomalous trends in test regions, 

which may signal the possibility of an outbreak. The main 

assumption here is that the data generated by northern 

regions' experience going through the epidemic can be used 

to derive an anomaly detection model. We evaluate the 

performance of the proposed framework against various 

univariate and multivariate methods including state-of-the 

art deep learning-based approaches proposed in recent years. 

Our framework has outperformed the state-of-the-art 

anomaly detection models in all test cases.  

The main contributions of this study are the following: 

1) To the best of our knowledge, the proposed approach, 

which is composed of a novel data crafting and a hybrid 

deep learning model, is the first attempt in solving 

unsupervised anomaly detection problem in non-image 

multivariate spatio-temporal data. 

2) It achieves good generalization capabilities in 

scenarios where the training data are scarce and 

contaminated with anomalies. In the case study, only 
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82 daily data entries (data points) are available for 

each region. Even these contaminated outbreak data 

are sufficient to build a robust anomaly detection 

model due to its effective architecture to exploit 

spatial neighborhood data. 

3) The biggest challenge in anomaly detection for 

spatio-temporal data is to combine the contextual 

attributes in a meaningful way. In the proposed hybrid 

approach, spatial and temporal contexts are handled 

by different deep learning components as these 

contextual variables refer to different types of 

dependencies. 

4) The proposed hybrid framework is designed to be 

trained in a truly unsupervised fashion without any 

labels indicating normal or abnormal data. The 

architecture is robust enough to learn the underlying 

dynamics even if the training dataset contains noise 

and anomalies. 

The rest of the paper is organized as follows. Section II 

provides an overview of existing methods for anomaly 

detection. Traditional anomaly detection methods are 

discussed in part A of Section II, whereas the state-of-the-art 

deep learning-based anomaly detection methods are 

mentioned and summarized in part B of Section II. Section 

III provides the related background information on 

traditional autoencoders and autoencoder based anomaly 

detection. The methodology including the problem 

formulation and the design of the proposed hybrid deep 

learning framework is presented in Section IV. Experiments 

and results are presented in Section V. Finally, Section VI 

concludes the paper and gives the directions for possible 

future work. 

II. RELATED WORK 

A.  TRADITIONAL APPROACHES 

The task of detecting outliers or anomalous events in data has 

been studied extensively in the context of time series and 

spatial data separately. Time-series outlier detection studies 

find outliers considering only temporal context [21], [22]. For 

data with spatial context, several context-based anomaly 

detection techniques have been proposed [23]-[26]. In 

geoscience and environmental research, some statistical and 

simulation-based methods have been proposed for spatial 

anomaly detection [27], [28]. For spatio-temporal outlier 

detection, both spatial and temporal continuity should be 

considered for modeling. Hence, spatio-temporal outlier 

detection methods are significantly more challenging because 

of the additional difficulty of modeling the temporal and 

spatial components jointly [2], [3]. 

Distance and density-based outlier detection algorithms 

have also been applied to anomaly detection problems in 

spatial datasets, such as Local Outlier Factor (LOF) [29], [30], 

and DBSCAN [31]. LDBSCAN algorithm [32], created by the 

merge of DBSCAN and LOF, is a density-based algorithm for 

unsupervised anomaly detection problems in spatial databases 

with noise. Another popular proximity-based outlier detection 

approach is based on cluster analysis. The non-membership of 

a data point to any of the clusters can be used as a sign of being 

outlier [33]. Cluster-Based Local Outlier Factor (CBLOF) 

[34] is a clustering-based anomaly detection algorithm, in 

which the anomaly score of an instance is the distance to the 

next large cluster. Choosing the right number of clusters is 

very important since all clustering methods tend to be very 

sensitive to this choice. 

In [35], Birant and Kut propose a neighborhood-based ST-

Outlier detection algorithm. They use a modified version of 

DBSCAN algorithm to identify the spatial neighborhoods 

within the dataset. They define spatial outliers based on these 

neighborhoods. Then, they check the temporal context of 

spatial outlier objects by comparing them to temporal 

neighbor objects. However, their algorithm does not generate 

a score for data points. In [2], Cheng and Li propose a four-

step approach to identify spatio-temporal outliers: 

classification (clustering), aggregation, comparison and 

verification. In [36], Gupta et al. introduce the notion of 

context-aware anomaly detection in distributed systems by 

integrating the information from system logs and time series 

measurement data. They propose a two-stage clustering 

methodology to extract context and metric patterns using a 

PCA-based method and a modified K-Means algorithm. 

The aforementioned spatio-temporal anomaly detection 

methods have something in common: They first apply spatial 

(or non-temporal) context to find spatial outliers using a 

distance-based technique. Then, spatial outliers are compared 

with other spatial objects using temporal neighborhoods to 

identify if they are temporal outliers too. They do not combine 

the contextual (spatial and temporal) attributes in a meaningful 

way as these attributes refer to different types of dependencies. 

Despite the inherent unsupervised settings of distance and 

cluster-based algorithms, they may still not detect anomalies 

effectively due to the following reasons:  

1) In multivariate time series data, strong temporal 

dependency exists between time steps. Hence, distance-

/cluster-based methods, may not perform well since they 

cannot capture temporal dependencies properly across 

different time steps. 

2) The definition of distance between data points in 

multivariate spatio-temporal data with mixed attributes is 

often challenging. This difficulty may have an adverse effect 

on outlier detection performance of distance-based clustering 

algorithms. 

3) Another problem with distance-based methods is that 

they are well known to be computationally expensive and not 

suitable for large datasets. 

IsolationForest [37], [38] is a powerful approach for 

anomaly detection in multivariate data without relying on any 

distance or density measure. In particular, it is an 

unsupervised, tree-based ensemble method that applies the 

novel concept of isolation to anomaly detection. It detects 

anomalies based on a fundamentally different model-based 

approach: an anomalous point is isolated via recursive 

partitioning by randomly selecting a feature, and then 
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randomly selecting a split value for the selected feature. The 

output is the anomaly score for each data point. Although it 

establishes a powerful multivariate non-parametric approach, 

it works on continuous-valued data only. Numenta HTM [39], 

[40] is an unsupervised anomaly detection method for 

univariate streaming data based on Hierarchical Temporal 

Memory (HTM). It works based on the multiple predictions 

for the next time step which is done by a layer of HTM 

neurons. Anomaly score is generated based on the likelihood 

of the prediction error, which is a probabilistic metric defining 

how anomalous the current state is, based on prediction 

history. One-class SVM (OCSVM), which is a semi-

supervised anomaly detection technique, has been applied 

extensively to anomaly detection problems in time series data 

[41] - [43]. However, OCSVM is sensitive to the outliers 

especially when used in an unsupervised fashion when there 

are no labels. 

Several algorithms proposed in the statistics literature have 

been used widely for time series prediction and anomaly 

detection such as autoregressive integrated moving average 

(ARIMA) and Exponentially Weighted Moving Average 

(EWMA) [44] - [47]. Most detection algorithms in bio-

surveillance which operate on univariate time series data have 

been taken from the field of quality control [48]. The common 

techniques include control charts [49] and CUmulative SUM 

Statistics (CUSUM) [47], [50]. What’s Strange About Recent 

Events (WSARE) [48] algorithm was developed for 

syndromic surveillance to the hospital setting, such as 

symptoms exhibited by patients at an Emergency Department 

(ED). WSARE is a rule-based algorithm specifically designed 

for patients’ pre-clinical data. It combines two approaches: 

association rule mining and Bayesian networks. Although the 

WSARE algorithm works on multidimensional data, it can 

only be used on categorical data sets. The Spatial Scan 

Statistic [51] can be considered the real-valued analog of 

WSARE. However, it is computationally expensive for large 

data sets. Neill and Cooper [52] proposed the multivariate 

Bayesian scan statistic (MBSS) for event detection in 

multivariate spatial time series data. However, their approach 

requires the prior probability of each event occurring in each 

space-time region. They need either an expert knowledge or 

labeled data to obtain the prevalence of each event type. 

 

B.  DEEP LEARNING BASED APPROACHES 

Besides traditional anomaly detection methods, deep learning-

based anomaly detection approaches have recently gained a lot 

of attention. In the literature, artificial neural networks have 

been widely applied to anomaly detection tasks for various 

types of datasets [53]. Reconstruction based and prediction 

based deep learning models are among the most widely used 

architectures for anomaly detection in videos and time-series 

data [54], [55]. 

Malhotra et al. [56] proposes a deep Long Short-Term 

Memory (LSTM) network to detect anomalies in univariate 

time series. They use LSTM network architecture to predict 

next l steps of the input. Then, the prediction error is used to 

detect anomalies. The model is trained using normal data to 

learn the Gaussian distribution of error vectors. Malhotra et al. 

[57] propose an LSTM network-based encoder-decoder 

scheme for anomaly detection in univariate time series 

datasets. Their model learns to reconstruct ‘normal’ time 

series data and uses reconstruction error to detect anomalies. 

Hasan et al. [58] propose a deep fully convolutional 

autoencoder to reconstruct the input sequence of video frames 

to detect anomalies. The network is trained in semi-supervised 

fashion with regular videos. It learns the signature of each 

frame in regular motion videos. An anomaly score of each 

frame in the test set is then calculated based on reconstruction 

error.  

Various deep learning-based feature extraction methods 

have been proposed in the literature. The proposed 

architectures are used to extract useful (discriminative) 

features for anomaly detection, novelty detection or 

classification problems. Yang et al. [59] present a CNN-

LSTM based recurrent autoencoder network for unsupervised 

extraction of highlights in video data, whereas in [60] a pre-

trained 3D convolutional network is used to extract features 

from video segments for anomaly detection process. Munawar 

et al. [61] build an encoder composed of deep convolutional 

neural network and Restricted Boltzman Machine to extract 

features from videos. The extracted features are fed into an 

LSTM based prediction system to predict the next video frame 

in the learned feature space. Then, the difference between the 

prediction and actual observation in the feature space is used 

to detect anomalies. In a recent study, Perera and Patel [62] 

propose a one-class transfer learning schema for feature 

extraction based on Convolutional Neural Network (CNN). 

Estiri and Murphy [63] use a semi-supervised deep 

autoencoder for outlier detection in multivariate clinical 

observation data from Electronic Health Records (EHR).  

D’Avino et al. [64] propose an LSTM-based autoencoder 

framework to detect forgeries in video frames. They train their 

model with pristine frames without any forgeries. They use 

reconstruction errors to detect any abnormalities in the frames 

with spliced areas. Chong and Tay [65] propose a 

spatiotemporal architecture for anomaly detection in videos. 

Their autoencoder based anomaly detection framework 

contains a spatial feature extractor and temporal encoder-

decoder component. The spatial encoder component 

comprises two convolutional and two de-convolutional layers. 

They use a three-layer convolutional long short-term memory 

(LSTM) network as temporal encoder-decoder component. 

Munir et al. [66] present DeepAnT, a deep learning based 

unsupervised anomaly detection approach for time series data. 

DeepAnT architecture is based on 1D deep convolutional 

neural network to predict univariate time series data. They use 

the prediction-based approach where a window of time series 

is used as a context and the next time stamp is predicted. The 

anomaly detector module uses the prediction error and a pre-

defined threshold value to tag each data point as normal or 
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abnormal. Nogas et al. [67] use a deep spatio-temporal 

convolutional autoencoder schema, DeepFall, to detect falls in 

videos. They formulate the fall detection problem as one class 

classification problem. Their classification framework 

consists of a 3D convolutional autoencoder for learning 

spatio-temporal features from video frames. They use semi-

supervised learning approach that their model is trained only 

on the videos with normal activities of daily living without fall 

frames in them. Then, they use annotated video data to detect 

fall frames which are considered abnormal. 

Despite the effectiveness of those abovementioned deep 

learning approaches, they are either supervised or semi-

supervised models. In the supervised approaches, models need 

labels for all targeted anomaly classes for training. In the semi-

supervised approaches, models use only normal data to model 

the majority class (normal class) to further detect future 

anomalies. The proposed framework is designed to be trained 

in a truly unsupervised fashion without any labels indicating 

normal or abnormal data. The architecture is robust enough to 

learn the underlying dynamics even if the training dataset 

contains noise and anomalies. The main distinction between 

other deep learning based methods and the proposed hybrid 

approach is that they perform on either multivariate time series 

data or video data, and none of them is actually designed for 

non-image spatio-temporal multivariate datasets with both 

spatial and temporal contextual attributes. 

 

III. BACKGROUND 

A. AUTOENCODERS 

Autoencoders are commonly used for dimensionality 

reduction of multidimensional data as a powerful non-linear 

alternative to PCA or matrix factorization [68] – [70]. If a 

linear activation function is used, the autoencoder becomes 

virtually identical to a simple linear regression model or 

PCA/matrix factorization model. When a nonlinear activation 

function is used, such as rectified linear unit (ReLU) or a 

sigmoid function, the autoencoder goes beyond the PCA, 

capturing multi-modal aspects of the input distribution [71], 

[72]. It is shown that carefully designed autoencoders with 

tuned hyperparameters outperform PCA or K-Means methods 

in dimension reduction and characterizing data distribution 

[73], [74]. They are also more efficient in detecting subtle 

anomalies and in computation cost than linear PCAs and 

kernel PCAs respectively [75]. 

A traditional autoencoder is a feed-forward multi-layer 

neural network which is trained to copy its input into the 

output. To prevent identity mapping, deep autoencoders are 

built with low dimensional hidden layers by creating non-

linear representation of input data [68]. Usually, an 

autoencoder with more than one hidden layer is called a deep 

autoencoder [76]. Deep autoencoders have been successfully 

applied to dimensionality reduction, image denoising, and 

information retrieval tasks [77], [78].  

 

FIGURE 1.  Illustration of an autoencoder. 

 

An autoencoder is trained to encode the input 𝑥 into some 

latent representation 𝑧 so that the input can be reconstructed 

from that lower dimensional representation. An autoencoder 

is usually trained using back-propagation in an unsupervised 

manner, to learn how to build its original input by minimizing 

the reconstruction error of the decoding results. Fig. 1 depicts  

a typical autoencoder network structure with one hidden layer. 

They are composed of two parts: an encoder and a decoder. 

Deep autoencoders learn a non-linear mapping from the input 

to the output through multiple encoding and decoding steps. 

An autoencoder takes an input vector 𝑥 ∈ 𝑅𝑑, and first maps 

it to a latent representation 𝑧 ∈ 𝑅𝑑′
 through a mapping: 

𝑧 = 𝑓𝜃(𝑥) = 𝑊𝑥 + 𝑏        (1) 

where the function 𝑓𝜃 represents encoding steps and 

parameterized by 𝜃 = {𝑊, 𝑏}. 𝑊 is a 𝑑′ × 𝑑 weight matrix 

and 𝑏 is a bias vector. The lower dimensional latent 

representation of the input is then mapped back to a 

reconstructed vector 𝑥′ ∈ 𝑅𝑑  in the input space: 

𝑥′ = 𝑔𝜃′(𝑧) = 𝑊′𝑧 + 𝑏′        (2) 

where the function 𝑔𝜃′ represents decoding steps and 

parameterized by 𝜃′ =  {𝑊′, 𝑏′}. The autoencoders training 

procedure consists of finding a set of parameters 

{𝑊, 𝑏, 𝑊′, 𝑏′} that make the reconstructed vector 𝑥′ as close 

as possible to the original input 𝑥. The parameters of 

autoencoder are optimized by minimizing a loss function that 

measures the quality of the reconstructions. The loss function 

of an autoencoder is sum-of-squared differences between the 

input and the output: 

                             ∑ ∑ ||𝑥𝑖 − 𝑥′𝑖
||2𝑑

𝑖=1𝑥∈∅   (3) 

where ∅ is the training dataset. 

B. ANOMALY DETECTION WITH AUTOENCODERS 

The main idea behind autoencoder based anomaly detection 

is to measure how much the reconstructed data deviates from 

the original data. An autoencoder has an unsupervised 
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learning objective whose primary task is to copy the input to 

the output [77]. Therefore, an autoencoder is trained to 

reconstruct data by minimizing this objective function, or 

loss function. For anomaly detection, reconstruction error is 

used as the anomaly score. Data points which generate high 

reconstruction errors can be categorized as anomalous data 

points based on a threshold value. When autoencoders are 

used for anomaly detection, they are trained using only 

normal data instances as we have abundance of normal data. 

The training dataset should be cleaned from anomalous data 

points and outliers as much as possible for a successful 

model generation. After the training process, the autoencoder 

will generally reconstruct normal data with very small 

reconstruction error. As the autoencoder has not encountered 

the abnormal data during the training, it will fail to 

reconstruct them and generate high reconstruction errors 

which can be used as anomaly score [71], [75]. 

There are some practical issues in using autoencoders with 

contaminated training data (dataset with normal and 

anomalous data points). Since anomalies are treated as 

normal data points during the training phase, there will be 

inevitably more errors in the model compared to training 

with only normal data points. If we try to overcome these 

errors by tuning the network with more layers and neurons, 

we may face the problem of overfitting which is a significant 

problem in the case of deep neural networks. A sufficiently 

complex deep autoencoder may even learn how to represent 

each anomaly with sufficient training by generating low 

reconstruction errors which would be a problem in anomaly 

detection [71]. 

IV. METHODOLOGY 

A. PROBLEM FORMULATION 

A univariate time series is a sequence of real valued data points 

with timestamps. A multivariate time series is a set of 

univariate time series with the same timestamps. In this paper, 

we focus on multivariate time series that are measured at 

successive points in time, spaced at uniform time intervals. 

Let 𝑋 =  {𝑥(𝑛)}𝑛=1
𝑁  denote a multivariate time series 

dataset composed of N data points. Let each data point 𝑥(𝑛) 
has T time steps, and each observation at time step t, is a d 
dimensional vector. The dataset X has dimensions of (d, T), 

where 𝑥(𝑛) ∈  ℝ𝑑×𝑇. Each data point 𝑥(𝑛) is a two-
dimensional data matrix and can be represented as: 

                         𝑥(𝑛)  =  (
𝑥11

𝑛 ⋯ 𝑥1𝑇
𝑛

⋮ ⋱ ⋮
𝑥𝑑1

𝑛 ⋯ 𝑥𝑑𝑇
𝑛  

)                           (4) 

The superscript 𝑛 represents the ordered number of each data 

point within the dataset X. 𝑥(𝑛) is a multivariate time series 

data point with a contextual time attribute. Each 𝑥(𝑛) in the 

dataset 𝑋 is ordered based on the timestamp. As the number 𝑛  

increases, the time context changes, and time dimension, or 

timestamps, moves ahead. 
In a spatio-temporal dataset, each multivariate data point 

𝑥(𝑛)  comes from a different spatial location, or region, which 

has different spatial attributes (such as latitude and longitude). 

We denote the multivariate spatio-temporal dataset as DST = 

{(𝑋(𝑖), 𝑆(𝑖))}𝑖=1
𝑚  which contains multivariate time series data 

points from m different spatial regions. Each spatial region  𝑆𝑖, 

where 𝑆𝑖 Є S, has a set of multivariate time series data 

represented by the dataset 𝑋(𝑖). 𝑁(𝑖) represents the number of 

data points (or observations) in each spatial region 𝑆𝑖. In other 

words, it is the size of 𝑋(𝑖), which may be different for each 

region in real-world scenarios. 

𝑋𝑆𝑇, which is the multivariate spatio-temporal data matrix, 

can be represented as a 3-dimensional tensor as shown in Fig. 

2. It is built using multivariate time series data from 𝑚 

different spatial regions or 𝑆𝑖s, where 𝑖 = 1 … 𝑚. The sliding 

window technique which is used to build the 3-dimensional 

data matrix 𝑋𝑆𝑇, is given in Algorithm 1. It is composed of 𝑚 

multivariate time series data points from 𝑚 different spatial 

regions and representing observations from the same time 

window with the same timestamps. 𝑇, which is called the 

“input window-size”, represents the number of timestamps in 

the multivariate data point, and 𝑑 represents the number of 

univariate time series. 𝑚 represents the number of nearest 

spatial neighborhood to include in the anomaly detection 

process. The best 𝑚 can be found empirically for each 

problem domain. The 𝑚 number of nearest neighboring 

regions are selected from S different regions based on the 

pairwise spatial distance between regions. 

 

FIGURE 2.  3-dimensional multivariate spatio-temporal data matrix 

structure used in anomaly detection procedure. 

 

We formulate the spatio-temporal anomaly detection 

problem as detecting anomalous multivariate observations 

(sample of 𝑥(𝑖) data points) in the dataset DST which 

differentiate significantly from their spatial and temporal 

neighbors. Given the spatio-temporal 3-dimensional data 

matrix 𝑋𝑆𝑇, the goal is to reconstruct the multivariate-time 

series data from the region 𝑆𝑖, where 𝑆𝑖 ∈ 𝑆. 𝑆𝑖 represents the 

target region or the region of interest in which spatio-temporal 

anomalies are investigated. Anomalous data points have large 

reconstruction errors because they do not conform to the 

subspace patterns in the data. Therefore, the aggregated 

reconstruction errors over the time dimension 𝑇 can be used 
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as the anomaly score for the autoencoder based proposed 

framework. All 𝑥𝑖
(𝑛)

 multivariate data points, or sub 

sequences, with high reconstruction errors from the region 𝑆𝑖 

are considered to be anomalies. 

 

B. PROPOSED HYBRID FRAMEWORK 

The proposed approach consists of three main stages: The 

first stage is the data pre-processing stage. At this stage, the 

multivariate spatio-temporal dataset is processed in such a 

way that the deep autoencoder network can exploit the 

spatial and temporal contexts jointly. Multivariate data from 

𝑚 nearest spatial neighbors are used to represent spatial 

dependency between different spatial regions. The sliding 

window technique given in Algorithm 1 is applied to build 

the multivariate spatial-temporal input data for the 

framework. By using the multistep overlapping 

subsequences from 𝑚 nearest spatial neighborhood of each 

data point, we build a 3-dimensional data matrix as shown in 

Fig. 2, which can represent the spatial and temporal 

dependency within the dataset. 

The important parameters of this algorithm are window 

size T and step size s. They should be chosen carefully based 

on the underlying dynamics of each dataset and the goal of 

anomaly detection problem at hand. The length of each 

subsequence is equal to the window size. Using sliding 

window technique, for a long sequence with length L, the 

number of extracted subsequences can be given as: 

                num. of subseq. =   ⌈(𝐿 − 𝑇 + 1)/𝑠⌉                   (5) 

which gives the maximum number of subsequences we can 

possibly extract for a given T and s. 

The second stage is the data reconstruction stage which is 

executed by the deep hybrid autoencoder network. The 

proposed hybrid autoencoder network consists of two main 

components: a spatio-temporal encoder component which 

has a 3D convolutional neural network (CNN), and a spatio-

temporal decoder component which has a Convolutional 

Long Short-term Memory (ConvLSTM) network. 

The third stage is the anomaly detection stage. The anomaly 

detection is performed by calculating the reconstruction error 

as anomaly score. Let 𝑥 = {𝑥(1), 𝑥(2), … , 𝑥(𝑇)} be a univariate 

time series data representing one of the reconstructed features 

and 𝑇 is the length of the input window. Each data point 𝑥(𝑖) 

represents a data reading for that feature at time instance 𝑡𝑖. 

The mean absolute error (MAE) is used to calculate the 

reconstruction error for the given time period (input window) 

for each feature as: 

                         𝑒𝑀𝐴𝐸(𝑥) =  
1

𝑇
 ∑ |𝑥𝑖 − 𝑥̂𝑖|T                       (6) 

where 𝑥𝑖 is the real value and 𝑥̂𝑖 is the reconstructed value at 

time instance 𝑡𝑖. The reconstruction error for each feature 

and for all data points in the test set is calculated. Each data 

point in the test set represents a window of size 𝑇 as the 

rolling window. As each data point in the dataset is generated 

using sliding window algorithm with step size set to s, we 

generate rolling window estimation, and hence the rolling 

window errors. 

For an anomaly detection problem, we are only interested 

with the reconstruction of a subset of original spatio-temporal 

multivariate dataset and not the fully reconstructed version of 

it. The overall framework is trained to produce the target 

multivariate time series  𝑋 =  {𝑥1, … , 𝑥𝑇′}  of length 𝑇′ 

which is the size of the reconstruction window. The length of  

𝑇′ can be equal to or smaller than the input window size 𝑇 and 

should be tuned for each problem. Each sequence 𝑥𝑖 ∈ ℝ𝑑′
is 

an 𝑑′-dimensional vector where 𝑑′ ≤  𝑑. 

C. SPATIO-TEMPORAL ENCODING 

The encoder component uses 3D convolutions to capture 

complex spatial dependencies in each spatial neighborhood. 

By convolving a 3D kernel over the cube formed data, the 

encoder can extract better representative features. The 

cuboid data is formed by stacking the data from the nearest 

spatial neighbors of each data point as explained in 

Algorithm 1. This allows information across these spatially 

close neighbors to be connected to form feature maps, 

thereby capturing spatio-temporal information encoded in 

the close neighborhood.  

In most typical CNNs for image recognition, the input data 

is a single image with three channels for color images (R, G 

and B color channels) or one channel for grayscale images. 

In anomaly detection networks, the input data is generally a 

video clip consisting of multiple frames. In convolutional 

autoencoder based applications, T frames in the channel 

dimension are stuck, and then fed into the autoencoder where 

T is the length of the sliding window. In the case of 2D 

convolutional autoencoders, the temporal features are rarely 

preserved as 2D convolution operations are performed only 

spatially [58]. 

In this study, 3D convolutional operations are applied on 

multivariate spatio-temporal data to better preserve the 

temporal features along with the spatial features. The input 

data are re-constructed as a 3-dimensional cuboid by 

stacking multivariate data frames as illustrated in Fig. 2. By 

applying this idea, we can accomplish dimensionality 

reduction both in spatial and temporal context for a given 

input window during the encoding phase. The main 

component of the spatio-temporal encoder is the 3D 

convolutional layer, which is defined as follows: the value 𝑣 

at position (𝑥, 𝑦, 𝑧) of the 𝑗 th feature map in the 𝑖th 3D 

convolutional layer, with bias 𝑏𝑖𝑗 , can be written by the 

following equation [79]: 

𝑣𝑖𝑗
𝑥𝑦𝑧

= 𝑓 (∑ ∑ ∑ ∑ 𝑤𝑖𝑗𝑚
𝑝𝑞𝑠

𝑣(𝑖−1)𝑚
(𝑥+𝑝)(𝑦+𝑞)(𝑧+𝑠)

+ 𝑏𝑖𝑗

𝑆𝑖−1

𝑠=0

𝑄𝑖−1

𝑞=0

𝑃𝑖−1

𝑝=0𝑚

)     (7) 

where 𝑃𝑖 , 𝑄𝑖 , and 𝑆𝑖 represent the vertical (temporal depth, 

or window size, T), horizontal (temporal width, or number of 
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features, d), and spatial depth (number of spatial neighbors, 

m) dimensions of the kernel cube 𝑤𝑖  in the 𝑖th layer. The set 

of feature maps from the (𝑖 − 1)th layer is indexed by 𝑚, 

and  𝑤𝑖𝑗𝑚
𝑝𝑞𝑠

 is the value of the kernel cube at the position 𝑝𝑞𝑠 

connected to the 𝑚th feature map in the previous layer. The 

number of feature maps is defined by the number of kernel 

cubes at each convolution layer. 

C. SPATIO-TEMPORAL DECODING 

For the decoding part of the framework, we use convolutional 

LSTM (ConvLSTM) network, which is a variant of LSTM 

network. It has been introduced by Shi et al. [80]. It has been 

recently utilized by Chong and Tay in [65] for abnormal event 

detection in videos and by Patraucean et al. in [81] for motion 

estimation in videos. 

The major drawback of regular Long Short-Term Memory 

(LSTM) networks is that they are not capable of preserving the 

spatial information during the state transitions [80]. To 

overcome this problem, ConvLSTM units have convolutions 

operations in place of matrix operations in all gates and cell 

outputs. As they use convolution for both input-to-hidden and 

hidden-to-hidden connections, they require fewer weights and 

yield better spatio-temporal feature encoding and decoding 

performance. The formulation of a ConvLSTM unit can be 

given by the following equations from (8) through (13): 

                      𝑓𝑡 = 𝜎(𝑊𝑓 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑓)                  (8) 

                      𝑖𝑡 = 𝜎(𝑊𝑖 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑖)                  (9) 

                      𝐶̂𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∗ [𝑋𝑡 , 𝐻𝑡−1] + 𝑏𝐶)                 (10) 

                      𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 + 𝑖𝑡 ⊗ 𝐶̂𝑡                   (11) 

                      𝑜𝑡 = 𝜎(𝑊𝑜 ∗ [𝑋𝑡 , 𝐻𝑡−1, 𝐶𝑡−1] + 𝑏𝑜)               (12) 

                      ℎ𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡)                    (13) 

where ’∗’ denotes the convolution operator and ’ ⊗’ denotes 

the Hadamard product. Equation (8) represents the forget 

gate, (9) and (10) are the gates where new information (input 

𝑋𝑡) is added, (11) combines the new and old information 

factored by the forget gate, whereas (12) and (13) give the 

output of the ConvLSTM unit for the next time step. The 

variable 𝑋𝑡 denotes the input vector, ℎ𝑡  denotes the hidden 

state, and 𝐶𝑡denotes the cell state for the time step 𝑡. 𝑊′s are 

the trainable weight matrices and 𝑏′𝑠 are the bias vectors. 

V. EXPERIMENT 

A. DATASET 

We use the public Italian COVID-19 time series dataset 

provided by the Italian Department of Civil Protection. It can 

be downloaded from the website [82], which is constructed as 

a national response effort for coronavirus emergency. For this 

study, we use the regional dataset which shows the daily 

progress of new coronavirus epidemic in regions of Italy. The 

regional dataset provides detailed epidemiological figures for 

all 21 regions (19 regions and 2 autonomous provinces) 

starting from February 24 and updated daily. 

The regions dataset has 20 features as follows (translated 

into English): Date, country, region code, region name, 

latitude, longitude, hospitalized with symptoms, intensive care 

patients, total hospitalized patients, home isolation, total 

positives (current positives), change in total positive, new 

positives, recovered (discharged), deceased, total cases, tests 

performed, total number of people tested, notes in Italian, 

notes in English.  

Features “date, country, region code, region name, latitude, 

longitude” are contextual attributes whereas the rest are 

regarded as behavioral attributes. The feature "tests 

performed" is part of the government intervention measures 

and shows significant differences between regions depending 

on the policies taken by each regional government in Italy 

[83]. As proactive testing and mobility can affect the 

epidemiological dynamics of the COVID-19 epidemic [84], it 

is regarded as contextual variable for the modelling, and is not 

included in the reconstruction space as a behavioral attribute. 

All these features have been used during the modeling 

except the redundant and mostly empty attributes. The "total 

number of people tested" field is empty for most of the 

regions, so it is dropped for the modelling. Features "notes in 

Italian, notes in English, total number of people tested" are 

also discarded for this study as they are mostly empty. As the 

only country in the dataset is Italy, ‘country’ column is also 

dropped. On the website, the data format is explained as 

follows: 

- total positives: Total amount of current positive cases 

(hospitalized patients + home confinement) 

- change in total positive: New amount of current positive 

cases (total positives current day – total positives previous 

day) 

- new positives: New amount of current positive cases (total 

cases current day – total cases previous day) 

- total cases: Total amount of positive cases 

Based on those detailed descriptions of dataset, we rename 

the feature "total positives" as "current positive cases" in our 

study to make the feature name more representative. We also  

regard the feature "new positives" as "daily confirmed new 

positive cases," and renamed it as "new positive cases" for 

clarity. In addition to the regional epidemic data, we have also 

used population data of each region from ISTAT website [85]. 

By using population information, we have calculated three 

additional features: "total positive cases, new positive cases 

and deaths" on each 10,000 inhabitants. Using these 

engineered features, we have incorporated the case density 

information on each region to enrich spatial data.  

Latitude and longitude are also provided for each region 

making this regional dataset a spatiotemporal dataset. Daily 

epidemic data entry for each region has two contextual 

attributes: a date attribute (temporal context) and latitude-
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longitude attributes (spatial context), which is static for each 

region. Besides these contextual attributes, the rest of the 

attributes including the engineered features are regarded as 

behavioral attributes. We use the min-max normalization 

method to scale all behavioral attributes in the dataset into the 

range of [0, 1] to accelerate the learning process and to avoid 

large weights which cause neural networks to overfit. 

B. DATA PREPARATION 

We use the regional data entries between February 24 and May 

15, inclusively. The model is trained with the data from 

northern regions which provides a complete epidemiological 

data in the sense that they have gone through all the peaks of 

COVID-19 outbreak showing a complete perspective for 

anomaly detection. The training dataset contains data from 

following northern regions: P.A. Bolzano, Emilia-Romagna, 

Liguria, Lombardia, Piemonte, P.A. Trento, Valle d'Aosta, 

Veneto, and Friuli Venezia Giulia. We use data from one 

central region (Marche) as validation set; data from one central 

region (Lazio), one region from southern Italy (Campania), 

and one island region (Sicilia) as test set. The total data entry 

for each region is 82, which means 82 days of COVID-19 

epidemiological data are entered for each region. 

The spatial attributes of all regions used in this study is 

given in Table I. Using the latitude and longitude information, 

we calculate the distance matrix showing the pairwise distance 

of all regions used in this study. We use the haversine formula 

to calculate the shortest distance between regions, which is 

used to measure distances on a sphere [86]. 

 
TABLE I 

REGION INFORMATION 

Region Name Latitude Longitude Population 

Piemonte 45.0733 7.68069 4356406 
Valle d'Aosta 45.7375 7.32015 125666 

Lombardi 45.4668 9.19035 10060574 

P.A. Bolzano 46.4993 11.3566 531178 
P.A. Trento 46.0689 11.1212 541098 

Veneto 45.4349 12.3385 4905854 

Friuli Venezia Giulia 45.6494 13.7681 1215220 
Liguria 44.4115 8.9327 1550640 

Emilia-Romagna 44.4944 11.3417 4459477 
Marche 43.6168 13.5189 1525271 

Lazio 41.8928 12.4837 5879082 

Campania 40.8396 14.2508 5801692 
Sicilia 38.1157 13.3624 4999891 

 

We calculate the correlation coefficients for the feature 

"current positive cases" between every pair of districts in the 

training data using Pearson correlation. The correlation 

heatmap matrix in Fig. 3 shows that all the neighboring 

regions have strong spatial correlations. Remote regions in the 

dataset, such as Valle d'Aosta and Marche, show weaker 

correlations between other regions. These results reflect that 

the spatial correlation of COVID-19 epidemic progression 

occurring in certain geographic regions at a certain spatial 

resolution is quite strong. 

By using the spatial neighborhood of each region, we create 

a spatio-temporal multivariate input for the model. The sliding  

window technique given in Algorithm 1 is applied to training, 

validation, and test datasets to build spatio-temporal 

multivariate subsequences. We apply the algorithm with 

parameters representing the number of spatial neighbors 

(which is called depth in the algorithm) set to 10, the window 

size set to 7 representing 7-day worth of data point, and step 

size to 1. According to the formula given in (5) in which T is 

set to 7, s is set to 1 and L is set to 82, we have 76 multivariate 

subsequences for each region. As the total number of 

behavioral attributes is 13, excluding spatial features “region 

code, region name, latitude, and longitude”, and with the depth 

of spatial neighborhood is set to 10, we create 76x7x13x10 

dimensional spatio-temporal multivariate dataset from each 

region. By using this sliding window algorithm, we perform 

data augmentation by moving the start of the T-day data entry 

by step size resulting in a nearly six-fold expansion of the 

training data. 

The parameter "number of spatial neighbors" represents the 

number of nearest neighbors to use while building spatio-

temporal multivariate subsequences. It also corresponds to the 

spatial dimension of the 3D CNN encoder. After data 

preprocessing step is completed, training, validation and test 

sets are created. They are 4-dimensional data matrices with the 

following sizes: The dimension of the training set is 

684x7x13x10, the dimension of the validation set is 

76x7x13x10, and the dimension of the test set is 

228x7x13x10. Numbers 684, 76 and 228 represent the number 

of data points or observations in training, validation, and test 

sets, respectively. The proposed framework is trained to 

reconstruct the following behavioral attributes: Hospitalized 

patients, intensive care patients, total hospitalized patients, 

home confinement, current positive cases, new positive cases, 

total positive cases, recovered, and deaths. The size of the 

reconstruction space for the test set is 228x7x9. 

C. FRAMEWORK ARCHITECTURE AND TUNING 

Extensive experiments through grid search are executed to 

finalize the architecture of the framework and its 

hyperparameters. Specifically, we use 2 CNN blocks in the 

encoder component, each of which has a 3D convolutional 

layer, followed by a 3D max-pooling layer. Number of feature 

maps is set to 64 in the first block and set to 32 in the second 

block with padding and no striding (or with strides 1×1×1). 

We set the kernel size to 3 × 3 × 5, where 𝑃𝑖  = 𝑄𝑖  = 3 and 𝑆𝑖 = 

5 in (7), for all convolutional layers for the experiment, as 

these values are found to produce the best result for the dataset. 

The max-pooling layers have pool size of 2 × 2 × 2 and strides 

of 1 × 2 × 2 with padding. This means that the pooling 

operation is performed over all three dimensions: 

(𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑒𝑝𝑡ℎ × 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑖𝑑𝑡ℎ × 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑑𝑒𝑝𝑡ℎ). 

In addition, temporal width and spatial depth dimensions are 

reduced by a factor of 2 with every max-pooling layer. The 

activation function 𝑓 in (7) in all hidden convolutional layers 

in the encoder component are set to Rectified Linear Unit 
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(ReLU) non-linearity, 𝑅𝑒𝐿𝑈(𝑥) = max (𝑥, 0), which allows 

the deep neural networks converge faster [87]. 

The decoder component is composed of two ConvLSTM 

layers with the number of feature maps set to 32 and 64, 

respectively to preserve the symmetry of the autoencoder 

framework. We apply 2D convolution operation over spatial 

and temporal dimensions using the kernel size of 3 × 2 and 

the stride of 1 × 1 with padding. Batch normalization (BN) 

[88] is applied to each of the ConvLSTM layers, which 

accelerates the training of deep neural networks. In the final 

layer, a fully connected neural network (FCNN) is used to 

reconstruct the target output. Thus, we add a layer to reshape 

the 4D output of final ConvLSTM layer before passing the 

output to the FCNN. The FCNN layer is a time distributed 

dense layer which applies the same fully connected operation 

to every time step. The number of units in the dense layer is 

set to 𝑑′ = 9 and it is equal to the number of univariate time 

series (features) that we want to reconstruct. The number of 

hidden units in the FCNN layer can be adjusted according to 

the problem context at hand. 

Activation functions of ConvLSTM units are set to 

hyperbolic tangent and the activation functions in the final 

dense layer are set to ReLU. Layer weights are initialized 

with the Glorot uniform initializer [89]. The deep learning 

framework is optimized using the Adam optimizer with 

learning rate set to 0.0001. It ran for 100 epochs with batch 

size 16. The training is regularized by weight decay (the 𝐿2 

penalty multiplier set to 1 × 10−4) and dropout 

regularization for the two ConvLSTM layers (the dropout 

ratio set to 0.25). The model is trained to minimize the 

following mean absolute error (MAE) loss function: 

                          𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑥𝑖 − 𝑥𝑖|𝑛

𝑖=1   (14) 

where 𝑥𝑖 and 𝑥̂𝑖 represent the true value and the reconstructed 

value, respectively, and 𝑛 is the total number of data points in 

each batch. The detailed architecture of the final deep learning 

framework is illustrated in Fig. 4. The final framework has 

299,241 trainable parameters. The data structure of each 

component in the trained framework is given in Table II, 

where N represents number of data points. 

 
TABLE II 

FRAMEWORK DATA STRUCTURE 

Layer Name Output Shape Param # 

Input Layer (data) [(N, 7, 13, 10, 1)] 0 

3D CNN Encoder [(N, 7, 4, 3, 32)] 95,136 

   

ConvLSTM Decoder [(N, 7, 4, 3, 64)] 197,376 

   

Reshape Layer [(N, 7, 768)] 0 

   

FCNN Layer [(N, 7, 9)] 6921 

   

 

 

 

E. PERFORMANCE COMPARISON 

We have compared the proposed framework with 15 different 

anomaly detection models which include several state-of-the-

art deep learning-based approaches. Tested models fall under 

the following categories: 

1) STATISTICAL MODELS 

The following univariate statistical models are used: 

CUmulative SUM Statistics (CUSUM) [47] and Shewhart 

control chart [49]. 

2) PREDICTION BASED MODELS 

Models under this category use the temporal dependencies of 

training data to build a model and predict the value of the test 

data. We employ three univariate time series regression 

models: Autoregressive Integrated Moving Average 

(ARIMA), Exponentially Weighted Moving Average 

(EWMA), and Fast Fourier Transform (FFT) extrapolation 

[90]. 

3) ONE-CLASS CLASSIFICATION MODELS 

Models under this category learn a decision function during 

training to identify normal samples. Then, the trained classifier 

is applied to test data and generates an anomaly score based 

on being similar or dissimilar to the training set. The 

unsupervised variant of the OCSVM algorithm is used for this 

experiment. This unsupervised variant does not require its 

training set to be labeled to determine a decision surface [91]. 

4) DISTANCE BASED MODELS 

These models use a distance metric to score data points in the 

test set. They have intrinsically unsupervised settings and 

don’t need training. Under this category, we employ the LOF 

algorithm [29], which is a locality-based outlier detection 

algorithm, and LDBSCAN algorithm [32], which is a local-

density based spatial clustering algorithm. 

5) ISOLATION BASED MODEL 

This model detects anomalies based on the concept of isolation 

without employing any distance or density measure: Isolation 

Forest (iForest) [37], [38]. 

6) DEEP LEARNING MODELS 

Various state of the art deep learning models which have been 

proven to be successful on anomaly detection problems are 

tested.  

a) Prediction based models: LSTM and CNN based 

deep learning predictor models are used under this 

category. A deep stacked LSTM predictor model 

based on the architecture proposed by Malhotra et al. 

in [56] and a 1D CNN based predictor model 

(namely DeepAnT) proposed by Munir et al. in [66] 

have been employed as multivariate time series 

prediction based models for anomaly detection. 

 

b) Reconstruction based models: Four different 

reconstruction based deep autoencoder architectures 

are tested. These architectures include a deep LSTM 

autoencoder architecture [57], a deep 2D CNN based 

autoencoder schema proposed by Hasan et al. in [58], 
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a deep spatio-temporal autoencoder model for 

anomaly detection in videos proposed by Chong and 

Tay in [65], and a deep 3D CNN based spatio-

temporal autoencoder model (namely DeepFall) 

proposed by Nogas et al. in [67]. 

 

All models are implemented using Python 3.6.8 

programming language. Deep learning models including the 

proposed framework are implemented using the TensorFlow 

library [92]. For LOF, IsolationForest, and One-Class SVM 

methods, we use implementations available in the scikit-learn 

[93], which is a free machine learning library for Python 

programming language. To build the ARIMA model, we use 

the statsmodels library [94], which is a free Python module 

providing implementations of many different statistical 

models. Euclidean distance is used for all proximity-based 

algorithms since it has generated better results compared to 

other distance metrics. 

 
F. MODELS TUNING 

Shewhart control chart comes from the quality control and 

originated in 1931. It uses previous data to estimate a 

reasonable upper limit or threshold value [49]. If future 

measurements stay under the threshold value, the process is 

‘under control’. New measurements which exceed the 

calculated threshold limit may indicate that a noteworthy 

change has occurred in the underlying process. In our early 

outbreak detection scenario, it may indicate an anomalous 

daily data entry. The standard detector was trained on training 

dataset to obtain the mean 𝜇 and variance 𝜎2. The control 

chart threshold value is calculated for each feature by the 

formula given below as defined in [48]: 

                𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝜇 + 𝜎 ∗ 𝜙−1(1 −
𝑝_𝑣𝑎𝑙𝑢𝑒

2
) (15) 

where 𝜙−1 is the inverse to the cumulative distribution 

function of a standard normal, and the p-value is supplied by 

the user. Given a 𝑝_𝑣𝑎𝑙𝑢𝑒 of 0.5, we calculate the threshold 

level for the feature “new positive cases” as 0.492. 

CUSUM charts are good at detecting small shift from the 

mean more quickly than Shewhart control charts [47]. 

CUSUM is calculated by taking the cumulative summation of 

the difference between each measured value and the estimated 

in-control mean value: 

                𝑆𝑘 =  ∑ (𝑥𝑘 − 𝜇)𝑘
𝑖=1 + 𝑆𝑘−1  (16) 

where 𝑆𝑖 is the ith cumulative sum, 𝑥𝑖  is the ith observation 

and 𝜇 is the in-control mean value. It keeps a running sum of 

excess values over the mean each day. When this sum exceeds 

a threshold level, we can signal an alarm as an indication of 

abnormality. For a process that is under control, each 

measured value should be reasonably close to the mean. Thus, 

as long as the process remains in control, the CUSUM plot of 

each calculated value of 𝑆𝑘 should be centered about zero with 

small fluctuations. If the process mean shifts upward, the 

CUSUM values for data points will eventually drift upwards. 

Standard moving average algorithm introduces lag into the 

original time series, which means that changes in the trend are 

only seen with a delay. Exponentially Weighted Moving 

Average (EWMA) reduces this lag effect by introducing the 

decay parameter and puts more weight on more recent 

observations. The window (span) is chosen as 7 days. The 

ARIMA model is represented by (p, d, q) model parameters 

which show the order of Auto-regressive (AR), the 

differencing component, and Moving Average (MA), 

respectively. The integrated part of ARIMA (the differencing 

component) helps in reducing the non-stationarity. The 

optimum parameters of this model are selected by minimizing 

the Akaike information criterion (AIC). The final model is 

built using the parameters ARIMA (2, 1, 3). Fast Fourier 

Transform (FFT) is the discrete Fourier transform algorithm 

to express a time series function as a sum of periodic 

components. We apply FFT to univariate time series data 

("new positive cases" attribute of each region) and extrapolate 

to make one step prediction. 

An unsupervised version of the OCSVM algorithm is used 

for the anomaly detection in test regions. It learns a decision 

function during training and classifies the test data as similar 

to or different from the training set using the decision score. A 

OCSVM model with the Radial Basis Function kernel is used 

to build the classifier and detect anomalies in the unseen test 

dataset. 

The Local Outlier Factor (LOF) algorithm is an 

unsupervised anomaly detection method based on local 

density deviation of a given dataset. It calculates the local 

density of a given data point with respect to its neighbors. It 

gives higher LOF scores to the samples that have a 

substantially lower density than their neighbors. For LOF 

model, we set the number of neighbors to 30 to use in k-nearest 

neighbor calculations and set the contamination ratio to 0.1. 

The Local Density-Based Spatial Clustering of 

Applications with Noise (LDBSCAN) algorithm is an 

extension to DBSCAN and takes the advantage of the LOF 

algorithm in scoring data points and identifying clusters. The 

following values are assigned to the LDBSCAN parameters 

since they give the best result: MinPtsLOF = 20, MinPtsLDBCAN 

= 30, LOFUB = 5,  pct = 0.3. 

Isolation Forest algorithm returns an anomaly score for each 

observation and 'isolates' anomalous points via recursive 

partitioning by randomly selecting a feature and then 

randomly selecting a split value for the selected feature. It can 

be represented by a tree structure and the number of splitting 

required to isolate a sample is used as a measure of normality. 

As the name infers, it is an ensemble of trees doing random 

partitioning to detect anomalies. The number of estimators (or 

trees) is selected as 100; and the rate of contamination is set to 

0.1. 

For the deep LSTM predictor model proposed in [56], we 

employ a stacked LSTM network with the history window size 

set to 7, and the prediction window size to 1 to perform the 

one-step prediction. The final LSTM predictor architecture is 
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built with 3 hidden LSTM layers (having 64, 32 and 16 units, 

respectively) with ReLU activation function and a final fully 

connected neural network (FCNN) layer for inference of target 

variables. For the CNN based predictor, we follow the 

DeepAnT architecture proposed in [66]. Each 1D convolution 

layer has 32 filters followed by ReLU activation function and 

max pooling layer. The last layer of the network is a FCNN 

layer in which each neuron is connected to all the neurons in 

the previous layer. This layer generates the final prediction of 

the network for the next time stamp as in LSTM based 

predictor. 

The encoder component in the deep CNN autoencoder 

model, which is similar to the one proposed by Hasan et al. in 

[58], is composed of three convolutional layers: Conv1-Conv3 

with 64 kernels of size 3×3, 32 kernels of size 3×3, and 16 

kernels of size 3×3 respectively with no strides. We use a max 

pooling layer after the first and the second convolution layers 

with pool size of 2×2 and strides 1×2 with padding. The 

decoder component is built to maintain the symmetricity with 

three convolutional layers and two unpooling layers with the 

same number of kernels of size 3×3. For the deep LSTM 

autoencoder architecture proposed in [57], we use three LSTM 

layers in the encoder, and three LSTM layers in the decoder 

with a fully connected neural network as the inference layer. 

On the encoder side, the number of units in the LSTM layers 

are 64, 32, and 16. On the decoder side, the same number of 

units are used in reverse order to build a symmetric 

architecture. 

We build the deep spatio-temporal autoencoder for 

abnormal event detection by following the architecture 

proposed by Chong and Tay in [65]. The spatial encoder has 

two 2D convolutional layers with 64 and 32 kernels of size 

2×2 and 3×3, respectively. Temporal encoder-decoder 

component is composed of three convolutional LSTM 

(ConvLSTM) layers with the number of units are set to 16, 8, 

and 16 with the convolution kernel size of 3×3. The spatial 

decoder has two deconvolutional layers with 32 and 64 kernels 

of size 3×3 and 2×2, respectively. It has a final FCNN layer to 

generate the reconstruction of the selected test features. 

To build the spatio-temporal 3D convolutional autoencoder, 

we follow the architecture of DeepFall proposed in [67]. The 

encoder has two layers of 3D convolutions with stride of 

1×1×1 and padding. They have 16 and 8 kernels with kernel 

size set to 2×2×2. After each convolution layer, 3D max 

pooling operation is applied with the stride size of 2×2×2 and 

pool size of 2×2×2 and 3×3×3, respectively. The decoder has 

three layers of 3D deconvolutions with a stride of 2×2×2 and 

padding. The kernel sizes are set to 3×3×3, 2×2×2, 2×2×2, 

respectively. 

All deep learning models are trained to minimize the mean 

absolute error with Adam optimizer with learning rate set to 

0.0001. The 𝐿2 regularization with the penalty multiplier set 

to 1 × 10−4 and dropout regularization with the dropout ratio 

set to 0.25 are applied for training. Models are trained for 100 

epochs with mini batches of size 16. 

G. Performance Metric 

In order to evaluate the performance of models, we measure 

the number of days until an anomaly is detected against the 

threshold level. In the context of this empirical study, an 

anomaly might mean that the COVID-19 pandemic might be 

moving out of control for the investigated region. According 

to European Centre for Disease Prevention and Control [95], 

the number of newly confirmed cases (or daily new positive 

cases) is one of the most accurate indicators of epidemic 

intensity. To compare the early COVID-19 outbreak detection 

performance, we compare the anomaly scores of models 

generated for the feature "new positive cases". For the 

prediction-based model, we use the one step prediction errors 

as anomaly scores. For the reconstruction-based models, we 

use the reconstruction errors as anomaly scores. OCSVM, 

IsolationForest, LOF and LDBSCAN models generate one 

anomaly score for each multivariate observation regardless of 

the feature monitored. 

 

VI. RESULTS 

A. FRAMEWORK PERFORMANCE 

During the training process, the framework learns to 

reconstruct the selected features in each data point with the 

minimum possible error. In the case of anomalous events such 

as peaks of the COVID-19 pandemic, these reconstruction 

errors will get bigger, causing an alarm for the possible 

outbreak. The framework learns the normal data structure with 

the data from northern regions, which have gone through the 

pandemic earlier than other regions. To be able to detect the 

COVID-19 outbreak as early as possible, the framework must 

learn what the normal is when it is trained with highly 

contaminated data. As there is no label indicating anomalous 

events, the framework learns the distinctive patterns of 

abnormal events using the data from the nearest spatial 

neighbors. 

We train one unified deep learning model using the training 

set, which has a total of 684 spatio-temporal multivariate data 

points from 9 different regions. Then, we use the model to 

calculate the reconstruction errors of each 228 data points in 

the test set. As we set the window size to 7 days during the 

data preparation process and sliding step size to 1 day, we 

calculate the rolling window errors of each feature. 

The reconstructed values and reconstruction errors for 

features "hospitalized patients, current positive cases, new 

positive cases, recovered cases, deaths, and total positive 

cases" on test data are plotted against the real case numbers in 

figures from 5 to 7. Test results for the region Lazio are given 

in Fig. 5; test results for the region Campania are given in Fig. 

6; and test results for the region Sicilia are given in Fig. 7. In 

these figures, the real data are depicted in blue; the 

reconstructions are depicted in orange; and the reconstruction 

errors are depicted in red. All values are min-max normalized 

into the range of [0, 1] before plotting. 
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It can be seen in these plots that there is a subtle increase in 

the model error when the real case counts have peaks as each 

region goes through the COVID-19 pandemic. The 

progression of the COVID-19 pandemic in each test region is 

quite different: Lazio hits the peak of the epidemic earlier, and 

goes through a larger wave with many peaks, while Campania 

and Sicilia have shorter waves with a smaller number of peaks. 

Sicilia has the least number of peaks compared to other 

regions. The framework captures the overall structure of the 

real data and gives a good error margin to enable the early 

detection of the outbreak in each test region. 

B. DETECTION TIME 

To compare the early outbreak detection performance of the 

proposed framework with other models, anomaly detection 

time in days is calculated. The Shewhart control chart value 

for the feature “new positive cases” is used as the threshold 

level for an alarm. Outbreak detection date is calculated as the 

date of the first alert raised when the alarm level passes the 

threshold line. Table III shows a comparison of all models 

based on the early outbreak detection performance. Best 

performing models on all three regions are highlighted. 

In this test dataset, the anomalies are not just the spike or 

point anomalies. They are contextual anomalies; and there is a 

trend in them showing the progression of the COVID-19 

pandemic in each region. This makes this dataset difficult for 

an anomaly detection algorithm as contamination rate is very 

high in the training set. 

The proposed framework outperforms all compared models 

in early outbreak detection for all test regions. Statistical 

models show similar performance on the regions Campania 

and Sicilia. The FFT falls behind other models on the region 

Lazio. LDBSCAN algorithm shows better early outbreak 

detection performance on the regions Lazio and Sicilia 

compared to IsolationForest and LOF. It can be seen that 

OCSVM does not work on such highly contaminated training 

data as it falls behind on early outbreak detection in all test 

regions. CUSUM, on the other hand, performs significantly 

better than other statistical and distance-based models. In 

general, other deep learning models show similar performance 

on each test region except DeepAnT, which shows better 

performance than other compared deep learning models. 

We compare our model with the best performing models, 

namely the CUSUM, DeepAnT, and LDBSCAN. Fig. 8 to 10 

illustrate the alarms generated by models, which are plotted 

against the standard threshold level and daily real case counts 

for the parameter “new positive cases”. The case counts and 

model alarm values (or anomaly scores) are min-max 

normalized into the range of [0, 1] before plotting. When an 

alarm value passes the threshold line, it is plotted in red to 

illustrate an outbreak signal. 

When we look at plots for the region Lazio in Fig. 8, the 

alarm level of the proposed framework passes the threshold 

line on March 4. It generates strong alarm signals through the 

wave of the COVID-19 pandemic. CUSUM, LDBSCAN and 

DeepAnT send first alarm signals on March 12, which is the 

date national lockdown was announced in Italy. Fig. 9 shows 

the test results for the region Campania. The proposed model 

can detect the early upswing trend in the epidemic while other 

models fall behind in detecting the outbreak. The proposed 

model gives the first outbreak signal which passes the 

threshold level on March 5, while CUSUM and DeepAnT give 

on March 8, and LDBSCAN gives the signal on March 18. 

The region Campania is very challenging for early outbreak 

detection as the upswing trend starts very late and suddenly in 

mid-March. Fig. 10 shows the test results for the region Sicilia. 

The proposed framework sends the first outbreak signal on 

March 1. It is followed by the DeepAnT model, which sends 

the first outbreak signal on March 4, followed by the CUSUM 

model, which sends the first outbreak signal on March 12, and 

followed by LDBSCAN, which sends the first outbreak signal 

on March 16. LDBSCAN shows good outbreak detection 

performance on Lazio and Campania but fails on the region 

Sicilia. DeepAnT is very successful in early outbreak 

detection in all regions, but significantly better on the region 

Sicilia compared to other base models. However, despite the 

downward trend of the pandemic in the region Sicilia after 

April 15, DeepAnT continues to send outbreak signals. 

It can be observed that our model has the capability of 

detecting abnormal upswing trends in COVID-19 pandemic 

waves in each test region. The main advantage of the proposed 

framework is that once it is trained on the training set, it does 

not need the history of the tested region to detect any 

anomalous event. It can detect point anomalies as well as 

contextual anomalies in test regions. It is better at tracking the 

abnormal events and in detecting every major peak throughout 

the wave of the COVID-19 pandemic in each test region. What 

makes the proposed framework different from other deep 

learning-based models is the way it uses the spatio-temporal 

data. The nearest neighbor’s data, which is weighted based on 

the distance to the region, is exploited to extract the best 

spatio-temporal features. This makes the framework robust 

against noise and anomalies in the dataset. 

C. DISCUSSION ON OTHER PARAMETERS 

The basic reproduction number (R0), which is an indicator of 

average number of secondary cases infected by the person who 

already had an infection, is one of the most important 

characteristics of an epidemic [96]. Health authorities and 

governments around the world build their preventive measures 

based on the reproduction number of the epidemic [97]. The 

most concerning characteristics of the current COVID-19 is its 

high reproduction number which was  around 4.5 during the 

early outbreak and may evolve throughout the pandemic based 

on the mitigation measures taken by the governments such as 

rates of diagnostic testing, quarantine measures, case and 

contact isolation, face masks usage enforcement, and public 

education [98], [99]. In Italy, almost every day from February 

25 until the start of national lockdown in March 12, new and 

stricter policies have been declared in many Italian provinces 
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aimed at containing the outbreak and delaying the epidemic 

peak [8]. 

A recent study by Tahmasebi et al. [100] emphasizes the 

effect of different social distancing scenarios on the spread of 

COVID-19. They also discuss that other than government 

intervention scenarios, the pre-existing regional specific 

variables such as environmental, economic, and health factors 

may also have influenced the vulnerability to COVID-19. In 

order to build a more realistic early outbreak detection and 

pandemic tracking algorithm, all region-specific factors 

should be considered. In fact, many questions regarding the 

spread dynamics of COVID-19 have remained unanswered, 

such as why different regions experience different 

reproduction and fatality rates, which cultural and health 

variables have the most influence on the spread of COVID-19. 

As we gain more information on the COVID-19 pandemic, we 

will be able to build more effective models to detect the 

outbreak on each different region. 

 

VI. CONCLUSION 

In this study, a deep learning framework is presented for 

unsupervised detection of anomalies in multivariate spatio-

temporal data. We also presented a novel way of pre-

processing the non-image multivariate spatio-temporal data by 

using the nearest spatial neighborhood. The 3D cuboid data is 

formed by stacking the data from the nearest spatio-temporal 

neighbors of each multivariate data point. The proposed 

hybrid framework is designed to be trained in a truly 

unsupervised fashion without any labels indicating normal or 

abnormal data. The proposed approach is robust enough to 

learn the underlying dynamics even if the training dataset is 

highly contaminated with anomalies (more than 5%). 

In all distance/clustering-based algorithms, the biggest 

challenge is to combine the contextual features along the 

spatial and temporal dimensions in a meaningful way. In the 

proposed approach, we handle spatial and temporal context by 

different deep learning components as these contextual 

variables refer to different types of dependencies. The 

proposed framework requires no prior knowledge on 

anomalies such as the distribution and types of anomalies. 

There have been many studies that model the 

epidemiological dynamics of Covid-19. However, none of 

them have been focused on building an anomaly detection 

system for early epidemic detection. We conducted 

experiments using COVID-19 Italy dataset provided by the 

Italian Department of Civil Protection. We used northern 

Italian regions data to train the model and then used this one 

unified model to detect anomalous patterns of central and 

southern regions of Italy. We evaluated the performance of the 

proposed framework against 15 different anomaly detection 

algorithms including state-of-the art deep learning-based 

approaches proposed in recent years. It outperformed the state-

of-the-art deep learning approaches in both early detection and 

tracking the COVID-19 outbreak. Experiments have shown 

that the framework is capable of handling the small amount of 

data event if the contamination level is too high as in the case 

of COVID-19 Italy dataset. 

Our contributions can be summarized as follows: 

1) To the best of our knowledge, the proposed framework, 

which is composed of a novel data crafting and a hybrid deep 

learning model, is the first attempt in solving unsupervised 

anomaly detection problem which is designed specifically for 

non-image multivariate spatio-temporal data. 

2) It achieves good generalization capabilities in scenarios 

where the training data are scarce and contaminated with 

anomalies. In the case study, only 82 daily data entries (data 

points) are available for each region. Even these contaminated 

outbreak data are sufficient to build a robust anomaly 

detection model due to its effective architecture to exploit 

spatio-temporal neighborhood data. 

3) The biggest challenge in anomaly detection for spatio-

temporal data is to combine the contextual attributes in a 

meaningful way. In the proposed hybrid approach, spatial and 

temporal contexts are handled by different deep learning 

components as these contextual variables refer to different 

types of dependencies. 

This study illustrates the capability of the proposed 

approach to detect anomalous patterns and disease outbreaks 

in a timely manner. Our framework is aimed to provide useful 

insight for the crisis management against the novel 

coronavirus. It might help monitoring COVID-19 pandemic 

progression in various regions simultaneously to detect any 

signs of an outbreak.  

The proposed framework has some limitations. The main 

limitation is that it is based on the assumption that similar 

control measures to suppress the outbreak are taken by all 

regions. However, it is not true as some regions put more 

restrictions on mobility resulting less correlation on daily 

pandemic data between neighboring regions. Further 

improvements can be achieved by including the control 

measures taken by each region into the model as part of the 

spatial context. Another limitation is the selection of the hyper 

parameters for each dataset for optimum performance. We 

plan to explore optimization-based techniques to select 

framework’s hyper-parameters to further enhance the 

performance. Finally, we plan to enhance the framework by 

adding the attention mechanism to tackle the weaknesses in 

analyzing long sequences. 
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Algorithm 1 Sliding window algorithm used in subsequence generation 
   # dataset: region dataset 

   # T  : Number of timesteps, window size (T) 

   # region_list: region id list 

   # s  : sliding step size 

   # depth: the number of spatial neighbors 

   # distance_matrix: distance matrix of      regions 

   # output : multivariate spatio-temporal tensor data 

 

   process_dataset (dataset,  

                    T,  

                    region_list,  

                    s,  

                    depth, 

                    distance_matrix) 

1:    output = list() 

2:    for each region in region_list: 

          # get region data from dataset 

3:        data  dataset[region] 

4:        start_indx = 0 

5:        end_indx = start_indx + T 

          # step through the region data  

6:        while (end_indx < length(data)): 

             # get start and end timestamps of data slice of size T 

7:           start_date = getStartTimestamp (data, start_indx) 

8:           end_date = getEndTimestamp(data, end_indx) 

             # get subsequence from region data: 

             # seqs : 3D spatio-temporal data 

9:           seqs[n, 0] = data[start_indx..end_indx] 

             # get subsequences from  depth-1 nearest neighbours: 

10:          seqs[n, 1:depth] = getDataFromNeighbours(dataset, T,    

start_date_time, end_date_time, region_code, depth-1) 

             output.append(seqs) 

10.          start_indx = start_indx + s 

11.          end_indx = start_indx + T 

12.          n = n + 1   # end-while  

13.   return output 
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FIGURE 3.  Correlation matrix visualized as heatmap. It shows the strong spatial correlation between regions for the feature “Current Positive 

Cases”. 

 
 



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3022366, IEEE Access

 

20 

 

FIGURE 4. The proposed hybrid spatio-temporal autoencoder network architecture. 
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TABLE III 
OUTBREAK DETECTION DATE OF MODELS 

 

Model Name        Lazio Campania Sicilia 

Shewhart Control Chart 18 March 19 March 22 March 

CUSUM 12 March 8 March 12 March 

ARIMA 13 March 19 March 21 March 

EWMA 13 March 19 March 22 March 

FFT 18 March 19 March 22 March 

IsolationForest 13 March 15 March 18 March 

LOF 13 March 15 March 17 March 

LDBSCAN 12 March 18 March 16 March 

OCSVM 15 March 20 March 17 March 

LSTM Predictor [56] 13 March 19 March 8 March 

LSTM Autoencoder [57] 13 March 19 March 19 March 

CNN Autoencoder [58] 13 March 19 March 22 March 

Chong and Tay [65] 16 March 19 March 21 March 

DeepAnT [66] 12 March  8 March  4 March 

DeepFall [67] 13 March 19 March 21 March 

Proposed Framework 4 March   5 March         1 March 
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FIGURE 5.  Model test results for the region Lazio are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases, 

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and 

reconstruction errors are plotted in red. 
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FIGURE 6.  Model test results for the region Campania are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases, 

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and 

reconstruction errors are plotted in red. 
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FIGURE 7.  Model test results for the region Sicilia are given for features HospitalizedPatients, CurrentPositiveCases, NewPositiveCases, 

Recovered cases, Death cases, and TotalPositiveCases. Real case counts are plotted in blue, reconstructed case counts are plotted in orange, and 

reconstruction errors are plotted in red. 
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FIGURE 8. Region Lazio: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new positive 

cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted in red. 

A red alarm signal can be interpreted as an outbreak for the region. 
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FIGURE 9. Region Campania: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new 

positive cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted 

in red. A red alarm signal can be interpreted as an outbreak for the region. 
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FIGURE 10.  Region Sicilia: Generated alarms of top performing models are plotted against daily real case counts for the parameter “new positive 

cases”. Shewhart control chart value is plotted as the threshold level. When a generated alarm signal passes the threshold level, it is plotted in red. 

A red alarm signal can be interpreted as an outbreak for the region. 

 


